Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (374)

Search Parameters:
Keywords = solvent retention

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
14 pages, 3346 KiB  
Article
DES-Mediated Mild Synthesis of Synergistically Engineered 3D FeOOH-Co2(OH)3Cl/NF for Enhanced Oxygen Evolution Reaction
by Bingxian Zhu, Yachao Liu, Yue Yan, Hui Wang, Yu Zhang, Ying Xin, Weijuan Xu and Qingshan Zhao
Catalysts 2025, 15(8), 725; https://doi.org/10.3390/catal15080725 - 30 Jul 2025
Viewed by 207
Abstract
Hydrogen energy is a pivotal carrier for achieving carbon neutrality, requiring green and efficient production via water electrolysis. However, the anodic oxygen evolution reaction (OER) involves a sluggish four-electron transfer process, resulting in high overpotentials, while the prohibitive cost and complex preparation of [...] Read more.
Hydrogen energy is a pivotal carrier for achieving carbon neutrality, requiring green and efficient production via water electrolysis. However, the anodic oxygen evolution reaction (OER) involves a sluggish four-electron transfer process, resulting in high overpotentials, while the prohibitive cost and complex preparation of precious metal catalysts impede large-scale commercialization. In this study, we develop a FeCo-based bimetallic deep eutectic solvent (FeCo-DES) as a multifunctional reaction medium for engineering a three-dimensional (3D) coral-like FeOOH-Co2(OH)3Cl/NF composite via a mild one-step impregnation approach (70 °C, ambient pressure). The FeCo-DES simultaneously serves as the solvent, metal source, and redox agent, driving the controlled in situ assembly of FeOOH-Co2(OH)3Cl hybrids on Ni(OH)2/NiOOH-coated nickel foam (NF). This hierarchical architecture induces synergistic enhancement through geometric structural effects combined with multi-component electronic interactions. Consequently, the FeOOH-Co2(OH)3Cl/NF catalyst achieves a remarkably low overpotential of 197 mV at 100 mA cm−2 and a Tafel slope of 65.9 mV dec−1, along with 98% current retention over 24 h chronopotentiometry. This study pioneers a DES-mediated strategy for designing robust composite catalysts, establishing a scalable blueprint for high-performance and low-cost OER systems. Full article
Show Figures

Graphical abstract

21 pages, 4090 KiB  
Article
Linear Actuation of Dielectrophoretic Formed Multi-Walled Carbon Nanotube Fiber with Carbide-Derived Carbon in Polar Aprotic and Polar Protic Solvents
by Chau B. Tran, Quoc Bao Le and Rudolf Kiefer
Materials 2025, 18(14), 3254; https://doi.org/10.3390/ma18143254 - 10 Jul 2025
Viewed by 330
Abstract
Carbon nanotube (CNT) fiber research focuses on developing functional fabrics with dual or multifunctional capabilities. This study investigates CNT fibers fabricated via dielectrophoresis (DEP) with the incorporation of 10 wt.% carbide-derived carbon (CDC), referred to as CNTCDC fibers. The linear actuation behavior of [...] Read more.
Carbon nanotube (CNT) fiber research focuses on developing functional fabrics with dual or multifunctional capabilities. This study investigates CNT fibers fabricated via dielectrophoresis (DEP) with the incorporation of 10 wt.% carbide-derived carbon (CDC), referred to as CNTCDC fibers. The linear actuation behavior of the CNT and the CNTCDC fibers is compared using identical electrolyte concentrations in both a polar aprotic solvent (propylene carbonate, PC) and a polar protic solvent (aqueous solution, aq). Electromechanical deformation (EMD) is studied through cyclic voltammetry and chronoamperometry. The CNTCDC fiber outperformed the pristine CNT fiber, exhibiting primary expansion during discharge in PC (stress: 1.64 kPa, strain: 0.1%) and during charge in water (stress: 1.32 kPa, strain: 0.047%). By contrast, the pristine CNT fibers showed mixed actuation responses in both solvents, resulting in diminished net stress and strain. Chronopotentiometric measurements indicated that the CNTCDC fibers achieved their highest specific capacitance in aqueous media, reaching 223 ± 17 F g−1 at ±0.8 A g−1, with a capacity retention of 94.2% at ±32 A g−1. Fundamental characterization techniques, including scanning electron microcopy (SEM), energy-dispersive X-ray spectroscopy (EDX), and Raman spectroscopy, are employed to analyze fiber morphology and composition. The dual functionality of CNTCDC fibers, as both actuators and energy storage elements, is demonstrated. Full article
(This article belongs to the Special Issue Electronic, Optical, and Structural Properties of Carbon Nanotubes)
Show Figures

Graphical abstract

15 pages, 1827 KiB  
Article
Hydrothermal Pretreatment Unlocks Waste Paper’s Sugar Potential: Enhanced Enzymatic Saccharification via Lignin Removal and Cellulose Decrystallization
by Hongzhi Ma, Pin Lv, Jian Yang, Yong Liang, Shuang Wu, Juncheng Song, Xiaobin Yang and Dayi Qian
Processes 2025, 13(7), 1994; https://doi.org/10.3390/pr13071994 - 24 Jun 2025
Viewed by 418
Abstract
Waste paper, with its high cellulose and hemicellulose content, represents a promising bioresource for producing fermentable sugars in biorefining processes. In this study, five types of waste paper were analyzed for cellulose content, and tissue paper (TP), exhibiting the highest cellulose content, was [...] Read more.
Waste paper, with its high cellulose and hemicellulose content, represents a promising bioresource for producing fermentable sugars in biorefining processes. In this study, five types of waste paper were analyzed for cellulose content, and tissue paper (TP), exhibiting the highest cellulose content, was selected for hydrothermal pretreatment. Optimal pretreatment conditions were determined through single-factor experiments: 160 °C, water as the solvent, and a retention time of 50 min, corresponding to a severity factor (SF) of 3.47. Under these conditions, the reducing sugar yield from pretreated TP reached 0.61 g sugar/g paper, a 38.64% increase compared to untreated TP. The enhancement was attributed to lignin solubilization, disruption of crystalline cellulose regions, and increased specific surface area. These findings demonstrate the effectiveness of hydrothermal pretreatment in improving the enzymatic digestibility of waste paper for biorefining applications. Full article
Show Figures

Figure 1

16 pages, 3548 KiB  
Article
Green Extraction Technologies for Carotenoid Recovery from Citrus Peel: Comparative Study and Encapsulation for Stability Enhancement
by Vanja Travičić, Teodora Cvanić, Anja Vučetić, Marija Kostić, Milica Perović, Lato Pezo and Gordana Ćetković
Processes 2025, 13(7), 1962; https://doi.org/10.3390/pr13071962 - 21 Jun 2025
Viewed by 479
Abstract
Citrus peel, a significant by-product of fruit processing, represents a rich source of carotenoids with strong antioxidant and health-promoting properties. The present study evaluated two green extraction techniques, cloud point extraction (CPE) and supramolecular solvent (SUPRAS)-based extraction, for carotenoids recovered from citron, orange, [...] Read more.
Citrus peel, a significant by-product of fruit processing, represents a rich source of carotenoids with strong antioxidant and health-promoting properties. The present study evaluated two green extraction techniques, cloud point extraction (CPE) and supramolecular solvent (SUPRAS)-based extraction, for carotenoids recovered from citron, orange, and tangerine peels. Whereas SUPRAS methods rely on a supramolecular solvent made of water, ethanol, and octanoic acid, CPE methods use surfactants and water, and both show a high potential to extract lipophilic components. CPE demonstrated superior efficiency in extracting total carotenoids and enhancing antioxidant activity, with orange peel extracts showing the highest concentrations. CPE and SUPRAS extracts were subsequently encapsulated using freeze-drying with chickpea protein isolate, achieving high encapsulation efficiencies (82.40–88.97%). The use of encapsulation technology is an effective strategy to protect carotenoids from environmental stressors. Color, morphological, and FTIR analyses confirmed the successful encapsulation and retention of carotenoids. Environmental impact was assessed using the EcoScale tool, revealing excellent sustainability for CPE (92 points) and satisfactory performance for SUPRAS-based extraction (70 points). The use of Generally Recognized As Safe (GRAS) solvents and plant-derived encapsulation materials makes this method highly suitable for clean-label product development across the food, cosmetic, and nutraceutical industries. In summary, the results point to a practical and sustainable approach to citrus waste valorization into valuable, health-promoting ingredients—supporting both circular economy goals and eco-friendly innovation. Full article
Show Figures

Figure 1

23 pages, 4651 KiB  
Article
High-Expansion Natural Composite Films for Controlled Delivery of Hydroxycitric Acid in Obesity Therapy
by Kantiya Fungfoung, Ousanee Issarachot, Rachanida Praparatana and Ruedeekorn Wiwattanapatapee
Polymers 2025, 17(12), 1697; https://doi.org/10.3390/polym17121697 - 18 Jun 2025
Viewed by 633
Abstract
Expandable films represent a promising gastroretentive drug delivery system, offering prolonged gastric retention and sustained drug release features particularly advantageous for obesity treatment. This study developed high-expansion films using konjac and various low glycemic index starches, including purple potato, brown rice, resistant, and [...] Read more.
Expandable films represent a promising gastroretentive drug delivery system, offering prolonged gastric retention and sustained drug release features particularly advantageous for obesity treatment. This study developed high-expansion films using konjac and various low glycemic index starches, including purple potato, brown rice, resistant, and red jasmine rice starches, in combination with chitosan and hydroxypropyl methylcellulose (HPMC) E15. Garcinia extract was incorporated into the films using the solvent casting technique. Among 27 formulations, all demonstrated rapid unfolding (within 15 min) and significant expansion (2-4 folds). Hydroxycitric acid (HCA), the active component, was encapsulated at efficiencies exceeding 80% w/w. The konjac-based films exhibited favorable mechanical properties, expansion capacity, and drug content uniformity. Notably, the CK3-H1 formulation (2% w/v chitosan, 3% w/v konjac, 1% w/v HPMC E15) provided sustained HCA release over 8 h via diffusion. Cytotoxicity tests showed no toxic effects on RAW 264.7 macrophages at concentrations up to 400 μg/mL. Furthermore, CK3-H1 achieved notable nitric oxide inhibition (35.80 ± 1.21%) and the highest reduction in lipid accumulation (31.09 ± 3.15%) in 3T3-L1 adipocytes, outperforming pure HCA and garcinia extract. These results suggest that expandable konjac-based films are a viable and effective delivery system for herbal anti-obesity agents. Full article
(This article belongs to the Special Issue Advanced Polymeric Materials for Medical Applications)
Show Figures

Graphical abstract

18 pages, 1628 KiB  
Article
A More Environmentally Friendly Method for Pulp Processing Using DES-like Mixtures: Comparison of Physical Properties with Oxygen Bleached Pulp
by Lota Chrvalová, Veronika Jančíková, Ida Skotnicová, Michal Jablonský and Štefan Šutý
Processes 2025, 13(6), 1930; https://doi.org/10.3390/pr13061930 - 18 Jun 2025
Viewed by 1959
Abstract
The traditional papermaking process uses petroleum-based additives, which raise environmental concerns. As a result, these concerns have attracted the scientific community to explore green additives by introducing environmentally friendly cellulose modifications as additives to the papermaking process. A promising way to process pulp [...] Read more.
The traditional papermaking process uses petroleum-based additives, which raise environmental concerns. As a result, these concerns have attracted the scientific community to explore green additives by introducing environmentally friendly cellulose modifications as additives to the papermaking process. A promising way to process pulp is the application of deep eutectic solvent-like mixtures, which expand new possibilities for delignification processes. This article aims to characterize the physical properties of pulps modified with deep eutectic solvent-like mixtures and to compare these properties to untreated softwood kraft pulp and pulp obtained after oxygen delignification (commercially available pulp; obtained from Mondi Štětí a.s.). The physical properties (mechanical and optical) of the original pulp and delignified pulps were evaluated based on the degree of beating (Schopper–Riegler degree), zeta potential, water retention value, tensile strength, modulus of elasticity, and whiteness. Technology employing deep eutectic solvent-like mixtures shows great promise for sustainable pulp production; however, its full-scale adoption will require further research focused on process optimization, solvent recovery, and economic cost reduction. Full article
(This article belongs to the Special Issue Circular Economy on Production Processes and Systems Engineering)
Show Figures

Graphical abstract

18 pages, 3628 KiB  
Article
Processing Suitability of Physical Modified Non-GMO High-Amylose Wheat Flour as a Resistant Starch Ingredient in Cookies
by Yujin Moon and Meera Kweon
Molecules 2025, 30(12), 2619; https://doi.org/10.3390/molecules30122619 - 17 Jun 2025
Viewed by 351
Abstract
High-amylose wheat (HAW), developed through non-genetic modification, addresses the growing demand for clean-label and nutritionally enhanced food products. This study systematically investigated the effects of heat-moisture treatment (HMT; 20% and 25% moisture levels) on the physicochemical properties and cookie-making performance of HAW flour [...] Read more.
High-amylose wheat (HAW), developed through non-genetic modification, addresses the growing demand for clean-label and nutritionally enhanced food products. This study systematically investigated the effects of heat-moisture treatment (HMT; 20% and 25% moisture levels) on the physicochemical properties and cookie-making performance of HAW flour (HAWF) and soft wheat flour (SWF). HMT promoted moisture-induced agglomeration, leading to increased particle size, reduced damaged starch content, and enhanced water and sucrose solvent retention capacities. Although the amylose content remained largely unchanged, pasting behavior was differentially affected, with increased viscosities in SWF and slight decreases in HAWF. Thermal analyses demonstrated elevated gelatinization temperatures, indicating improved thermal stability, while X-ray diffraction revealed alterations in starch crystallinity. Furthermore, HMT weakened gluten strength and modified dough rheology, effects more pronounced in HAWF. Cookies prepared from HMT-treated flours exhibited larger diameters, greater spread ratios, and reduced heights. In vitro digestibility assays showed a marked reduction in rapidly digestible starch and increases in slowly digestible and resistant starch fractions, particularly in HAWF cookies. Collectively, these findings establish HMT as an effective strategy for modulating flour functionality and enhancing cookie quality, while concurrently improving the nutritional profile through the alteration of starch digestibility characteristics. Full article
(This article belongs to the Section Food Chemistry)
Show Figures

Figure 1

13 pages, 2207 KiB  
Article
Electrostatic Dual-Layer Solvent-Free Cathodes for High-Performance Lithium-Ion Batteries
by Haojin Guo, Chengrui Zhang, Yujie Ma, Ning Liu and Zhifeng Wang
Energies 2025, 18(12), 3112; https://doi.org/10.3390/en18123112 - 12 Jun 2025
Viewed by 688
Abstract
Slurry-cast (SLC) electrode manufacturing faces problems such as thickness limitation and material stratification, which are caused by applying toxic organic solvents. Solvent-free electrode technology, as a sustainable alternative, could get rid of issues generated by solvents. In this study, dual-layer NCM811 solvent-free electrodes [...] Read more.
Slurry-cast (SLC) electrode manufacturing faces problems such as thickness limitation and material stratification, which are caused by applying toxic organic solvents. Solvent-free electrode technology, as a sustainable alternative, could get rid of issues generated by solvents. In this study, dual-layer NCM811 solvent-free electrodes (DLEs) are fabricated via an electrostatic powder deposition method with an active material-rich upper layer to provide high energy output, while the more binder–conductor content base layer improves conductivity and contact with current collectors. The dual-layered structure overwhelms the single-layer electrode (SE) with stable cycling performance caused by more regulated pore structures. DLE maintains 74% capacity retention after 100 cycles at 0.3 C, while the SLC shows only 60% capacity retention. Additionally, DLE shows excellent rate performance at various rates, with 207.3 mAh g−1, 193.9 mAh g−1, 173.9 mAh g−1, 157.3 mAh g−1, and 120.4 mAh g−1 at 0.1 C, 0.2 C, 0.5 C, 1.0 C, and 2.0 C, respectively. The well-designed DLE cathodes exhibit superior discharge-specific capacities, rate performance, and improved cycling stability than traditional SLC cathodes. It enlightens the path toward new structure innovations of solvent-free electrodes. Full article
Show Figures

Graphical abstract

28 pages, 7841 KiB  
Article
Investigation of the Effect of Exposure to Liquid Chemicals on the Strength Performance of 3D-Printed Parts from Different Filament Types
by Arslan Kaptan
Polymers 2025, 17(12), 1637; https://doi.org/10.3390/polym17121637 - 12 Jun 2025
Viewed by 1138
Abstract
Additive manufacturing (AM), particularly fused deposition modeling (FDM) 3D printing, has emerged as a versatile and accessible technology for prototyping and functional part production across a wide range of industrial applications. One of the critical performance-limiting factors in AM is the chemical resistance [...] Read more.
Additive manufacturing (AM), particularly fused deposition modeling (FDM) 3D printing, has emerged as a versatile and accessible technology for prototyping and functional part production across a wide range of industrial applications. One of the critical performance-limiting factors in AM is the chemical resistance of thermoplastic materials, which directly influences their structural integrity, durability, and suitability in chemically aggressive environments. This study systematically investigates the chemical resistance of eight different widely utilized FDM filaments—acrylonitrile butadiene styrene (ABS), acrylonitrile styrene acrylate (ASA), polyamide (PA, Nylon), polycarbonate (PC), polyethylene terephthalate glycol (PETG), polylactic acid (PLA), polypropylene (PP), and polyvinyl butyral (PVB)—by examining their tensile strength and impact resistance after immersion in representative chemical agents: distilled water, ethanol (99.5%), isopropyl alcohol (75% and 99%), acetic acid (8%), hydrochloric acid (37%), hydrogen peroxide (30%), and acetone (99.5%). Quantitative mechanical testing was conducted in accordance with ASTM D638 and ASTM D256 standards, and statistical variability was accounted for using triplicate measurements with standard deviation analysis. The results reveal that PP exhibits the highest chemical resilience, retaining over 97% of its mechanical properties even after 7 days of immersion in aggressive solvents like acetone. PETG and ASA also demonstrated quite successful stability (>90% retention) in mildly corrosive environments such as alcohols and weak acids. In contrast, PLA, due to its low crystallinity and polar ester backbone, and PVB, due to its high amorphous content, showed substantial degradation: tensile strength losses exceeding 70% and impact resistance dropping below 20% in acetone. Moderate resistance was observed in ABS and PC, which maintained structural properties in neutral or weakly reactive conditions but suffered mechanical deterioration (>50% loss) in solvent-rich media. A strong correlation (r > 0.95) between tensile and impact strength reduction was found for most materials, indicating that chemical attack affects both static and dynamic mechanical performance uniformly. The findings of this study provide a robust framework for selecting appropriate 3D printing materials in applications exposed to solvents, acids, or oxidizing agents. PP is recommended for harsh chemical environments; PETG and ASA are suitable for moderate exposure scenarios, whereas PLA and PVB should be limited to low-risk, esthetic, or disposable applications. Full article
(This article belongs to the Special Issue Polymer Mechanochemistry: From Fundamentals to Applications)
Show Figures

Figure 1

18 pages, 4167 KiB  
Article
Effect of Processing on the Morphology and Structure of PLGA/PVA Fibers Produced by Coaxial Electrospinning
by Thalles Rafael Silva Rêgo, Anna Lecticia Martinez Martinez Toledo and Marcos Lopes Dias
Processes 2025, 13(6), 1837; https://doi.org/10.3390/pr13061837 - 10 Jun 2025
Viewed by 615
Abstract
The electrospinning technique can produce multifunctional polymeric devices by forming solid fibers from polymer solutions under a high-voltage electric field. Variations such as concentric needles yield core/shell fibers. This study evaluates the effects of applied voltage (12.5–20 kV) and tip-to-collector distance (12.5–20 cm) [...] Read more.
The electrospinning technique can produce multifunctional polymeric devices by forming solid fibers from polymer solutions under a high-voltage electric field. Variations such as concentric needles yield core/shell fibers. This study evaluates the effects of applied voltage (12.5–20 kV) and tip-to-collector distance (12.5–20 cm) on the morphology and thermochemical behavior of PLGA/PVA fibers made by coaxial electrospinning compared with casting-produced membranes and monolithic fibers. Optimal coaxial fibers (597 ± 90 nm diameter) were produced at 15 cm/12.5 kV, exhibiting a well-defined core/shell structure (PVA core: ~100 nm; PLGA shell: ~50 nm) confirmed by laser scanning confocal (core solution labeled with fluorescein) and TEM. FTIR and TGA demonstrated nearly complete solvent removal in electrospun samples versus ~10% solvent retention in cast films. XRD analysis indicated that cast films (PLGAff) exhibited minimal crystallinity (Xc ≈ 0.1%), while electrospun PLGA (PLGAe) showed cold crystallization and higher crystallinity (Tcc ≈ 90.6 °C; Xc ≈ 2.45%). DSC detected two different Tg (≈43.2 °C and 52.8 °C) in the coaxial fibers, confirming distinct polymer domains with interfacial interactions. These results establish precise processing/structure relationships for defect-free coaxial fibers and provide fundamental design principles for hybrid systems in controlled drug delivery and tissue engineering applications. Full article
(This article belongs to the Special Issue Polymer Nanocomposites for Smart Applications)
Show Figures

Figure 1

19 pages, 1276 KiB  
Article
Design and Production of an Instant Coffee Product Based on Greek Coffee Oil: Study of the Effect of Storage Conditions on Product Aroma and Quality
by Efimia Dermesonlouoglou, Vassiliki Palaioxari-Kampisiouli, Dimitrios Tsimogiannis and Petros Taoukis
Beverages 2025, 11(3), 88; https://doi.org/10.3390/beverages11030088 - 9 Jun 2025
Viewed by 922
Abstract
The objective of this study was to obtain and evaluate a coffee aroma extract/oil with sensorial attributes close to the original brew of Greek coffee for use in an instant Greek coffee powder. The oil was obtained directly from commercial Greek coffee by [...] Read more.
The objective of this study was to obtain and evaluate a coffee aroma extract/oil with sensorial attributes close to the original brew of Greek coffee for use in an instant Greek coffee powder. The oil was obtained directly from commercial Greek coffee by solid-liquid extraction using hexane as a solvent and treated with a series of hexane-ethanol mixtures (0:10, 1:4, 1:9) to remove the intense roasted flavor of the crude coffee oil obtained by hexane; the de-oiled coffee was used for the recovery of water-soluble compounds, and the produced water extract was freeze-dried. The aromatic volatiles of the coffee oil samples were analyzed by using a purge-and-trap device coupled to GC-MS, as well as sensory analysis. The instant Greek coffee powder was produced by mixing the freeze-dried base (74.4%) with the extract derived after treatment of the crude oil with hexane-ethanol mixture 1:4 (18.2%) and foaming agent (7.4%). Two different materials were studied as bases: instant coffee (F3Gr-D) and ground Greek coffee (reference sample, CGr). The shelf-life stability of the produced powders was examined at three storage temperatures (25, 45, 60 °C). Instrumental analysis (purge-and-trap GC-MS) of aroma and sensory analysis (aroma, taste, staling, total sensory quality on a 1–9 hedonic scale) was conducted. Aroma loss (furfuryl alcohol, furfural, dimethyl pyrazines, ethyl methyl pyrazines) and scores for sensory attributes during storage were modeled using 1st and 0-order reaction kinetics, respectively. The storage temperature effect was expressed by the Arrhenius model (activation energy Ea). According to the results, the developed instant coffee powder presented satisfactorily the aroma characteristics of regular Greek coffee. The shelf life for the instant Greek coffee powder was estimated as 80 days (air packed) (based on 20% retention of furfuryl alcohol that was the most abundant aromatic volatile of Greek coffee aroma, ground as well as extract oil). Full article
(This article belongs to the Special Issue New Insights into Artisanal and Traditional Beverages)
Show Figures

Figure 1

18 pages, 3417 KiB  
Article
Design and Preparation of Inherently Photostable Poly(Butylene Adipate-Co-Terephthalate) by Chemically Bonding UV-Stabilizing Moieties in Molecular Chains
by Xinpeng Zhang, Yan Ye, Yaqiao Wang, Hongli Bian, Jing Yuan, Jianping Ding, Wanli Li, Jun Xu and Baohua Guo
Polymers 2025, 17(11), 1567; https://doi.org/10.3390/polym17111567 - 4 Jun 2025
Viewed by 525
Abstract
Poly(butylene adipate-co-terephthalate) (PBAT) is a promising biodegradable polymer with balanced mechanical properties and excellent degradability, making it an ideal material to reduce plastic pollution. However, its susceptibility to ultraviolet (UV) degradation, due to photosensitive aromatic rings and carbonyl groups in its structure, limits [...] Read more.
Poly(butylene adipate-co-terephthalate) (PBAT) is a promising biodegradable polymer with balanced mechanical properties and excellent degradability, making it an ideal material to reduce plastic pollution. However, its susceptibility to ultraviolet (UV) degradation, due to photosensitive aromatic rings and carbonyl groups in its structure, limits its use in outdoor settings like mulch films. Conventional methods of incorporating small-molecule UV stabilizers face challenges such as poor compatibility, uneven dispersion, and migration under environmental conditions, reducing their effectiveness over time. This study developed a novel strategy to enhance PBAT’s UV resistance by chemically bonding UV-stabilizing moieties directly into its molecular chains to address these limitations. A novel UV absorber containing a polymerizable group was synthesized and copolymerized with PBAT’s main chain, creating an intrinsically UV-stable PBAT. The UV-stable PBAT was evaluated for UV resistance, mechanical performance, and durability through accelerated aging and solvent extraction tests. The results demonstrated that UV-stable PBAT exhibited exceptional light stabilization effects, with no detectable UV absorber leaching in ethanol even after 114 h, whereas PBAT blends lost nearly 90% of UV-0 within 24 h. Furthermore, UV-stable PBAT maintained 67.1% tensile strength and 48.8% elongation at break after aging, which exhibited the best mechanical retention performance. Even when subjected to solvent extraction, the 42.6% tensile strength retention outperformed the PBAT blends. This innovative chemical modification overcomes the limitations of additive-based stabilization, offering improved durability, compatibility, and performance in outdoor applications. Our research provides key insights into the fundamental properties of PBAT films for UV resistance, demonstrating their potential for use in demanding fields such as agricultural films. Full article
(This article belongs to the Section Polymer Applications)
Show Figures

Figure 1

16 pages, 1259 KiB  
Article
Enhancement in Lithium Recovery from Spent Lithium Batteries by Nanofiltration Membranes
by Giuseppe Prenesti, Antonio Tagarelli, Rosangela Elliani, Anna Napoli, Alessio Caravella, Elena Tocci, Gregorio Cappuccino and Alfredo Cassano
Environments 2025, 12(6), 186; https://doi.org/10.3390/environments12060186 - 1 Jun 2025
Viewed by 739
Abstract
The recovery of lithium from extracts obtained from a black mass of spent lithium-ion batteries treated with a ternary solvent system at acidic pH was investigated using flat-sheet nanofiltration (NF) membranes operated according to a dead-end configuration. Specifically, four samples obtained at different [...] Read more.
The recovery of lithium from extracts obtained from a black mass of spent lithium-ion batteries treated with a ternary solvent system at acidic pH was investigated using flat-sheet nanofiltration (NF) membranes operated according to a dead-end configuration. Specifically, four samples obtained at different pH values (2.5 and 5) and extraction times (48, 96 and 168 h) were treated in selected operating conditions by using two commercial polymeric membranes (denoted DK and HL, with an approximate molecular weight cut-off of 150–300 Da) up to a volume reduction factor (VRF) of 4. Membrane performance was assessed in terms of productivity and selectivity towards specific ions, including lithium. For most treated samples, the HL membrane exhibited higher permeate fluxes in comparison to the DK membrane. However, the DK membrane performed better in terms of lithium rejection than the HL membrane, with a negative rejection at VRF 4 observed for all treated samples. More than 90% of multivalent ions were rejected by both membranes independently of the VRF. The membrane ability to retain multivalent ions led to their progressive concentration in the retentate as the VRF increased. The extraction time did not impact the NF performance of both membranes in terms of ion rejection. For the DK membrane conditions of extraction of 96 h and pH 5 represented the best trade-off between flux, ion rejection, and total lithium recovery. Full article
Show Figures

Figure 1

18 pages, 2229 KiB  
Article
The Puzzle of the New Type of Intermediate in the Course of [2 + 2] Cycloaddition with the Participation of Conjugated Nitroalkenes: MEDT Computational Study
by Radomir Jasiński and Agnieszka Kącka-Zych
Molecules 2025, 30(11), 2410; https://doi.org/10.3390/molecules30112410 - 30 May 2025
Viewed by 691
Abstract
The phenomena of regio- and stereoselectivity and the molecular mechanism of the [2 + 2] cycloaddition reaction between (E)-2-arylnitroethenes and the ynamine molecular system were analyzed using wb97xd/6-311 + G(d) (PCM) quantumchemical calculations. It was found that, independently of the stepwise nature of [...] Read more.
The phenomena of regio- and stereoselectivity and the molecular mechanism of the [2 + 2] cycloaddition reaction between (E)-2-arylnitroethenes and the ynamine molecular system were analyzed using wb97xd/6-311 + G(d) (PCM) quantumchemical calculations. It was found that, independently of the stepwise nature of the cycloaddition, the full retention of the stereoconfiguration of the nitroalkene can be interpreted and explained. Next, the analysis of the electronic properties of the localized reaction intermediate suggests its possible zwitterionic nature. Additionally, the solvent and the substituent effect on the reaction course were also evaluated. In consequence, the proposed mechanism can be treated as general for some groups of [2 + 2] cycloaddition processes. Lastly, for the model process, the full Bonding Evolution Theory (BET) analysis along the reaction coordinate was performed. It was found that the [2 + 2] cycloaddition reaction between (E)-2-phenylonitroethene and ynamine begins with the formation of two pseudoradical centers at the C2 and C3 atoms. First, a C2-C3 single bond is formed in phase V by combining two pseudoradical centers, while the formation of a second C4-C1 single bond begins at the last, eleventh phase of the reaction path. A BET analysis of intermediate (I) allows it to be classified as a compound with a pseudoradical structure. Next to zwitterions and biradicals, it is evidently new type of intermediate on the path of the [2 + 2] cycloaddition reaction. Full article
(This article belongs to the Section Organic Chemistry)
Show Figures

Figure 1

53 pages, 13476 KiB  
Review
Solvation Structure and Interface Engineering Synergy in Low-Temperature Sodium-Ion Batteries: Advances and Prospects
by Shengchen Huang, Lin Liu, Chenchen Han, Chao Tian, Yongjian Wang, Tianlin Li, Danyang Zhao and Yanwei Sui
Nanomaterials 2025, 15(11), 820; https://doi.org/10.3390/nano15110820 - 29 May 2025
Viewed by 808
Abstract
The performance degradation of sodium-ion batteries (SIBs) in extremely low-temperature conditions has faced significant challenges for energy storage applications in extreme environments. This review systematically establishes failure mechanisms that govern the performance of low-temperature SIBs, including significantly increased electrolyte viscosity, lattice distortion and [...] Read more.
The performance degradation of sodium-ion batteries (SIBs) in extremely low-temperature conditions has faced significant challenges for energy storage applications in extreme environments. This review systematically establishes failure mechanisms that govern the performance of low-temperature SIBs, including significantly increased electrolyte viscosity, lattice distortion and adverse phase transitions in electrodes, and sluggish desolvation kinetics at the solid electrolyte interface. Herein, we specifically summarize a series of multi-scale optimization strategies to address these low-temperature challenges: (1) optimizing low-freezing-point solvent components and regulating solvation structures to increase ionic diffusion conductivity; (2) enhancing the hierarchical structure of electrodes and optimizing electron distribution density to improve structural stability and capacity retention at low temperatures; and (3) constructing an inorganic-rich solid electrolyte interphase to induce uniform ion deposition, reduce the desolvation barrier, and inhibit side reactions. This review provides a comprehensive overview of low-temperature SIB applications coupled with advanced characterization and first-principles simulations. Furthermore, we highlight solvation-shell dynamics, charge transfer kinetics, and metastable-phase evolution at the atomic scale, along with the critical pathways for overcoming low-temperature limitations. This review aims to establish fundamental principles and technological guidelines for deploying advanced SIBs in extreme low-temperature environments. Full article
Show Figures

Figure 1

Back to TopTop