Effect of Processing on the Morphology and Structure of PLGA/PVA Fibers Produced by Coaxial Electrospinning
Abstract
1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Synthesis of PLGA/PVA Core/Shell Membranes via Electrospinning
2.3. PLGA Membrane by Casting Technique
2.4. Characterizations
2.4.1. Scanning Electron Microscopy (SEM)
2.4.2. Transmission Electron Microscopy (TEM)
2.4.3. Fluorescence Microscopy
2.4.4. Fourier Transform Infrared Spectroscopy (FTIR)
2.4.5. X-Ray Diffraction (XRD)
2.4.6. Thermogravimetric Analysis (TGA)
2.4.7. Differential Scanning Calorimetry (DSC)
3. Results and Discussion
3.1. Evaluation of the Processing Parameters for the Production of Core/Shell Fibers
3.2. Physicochemical Properties Evaluation
3.3. Thermal Properties Evaluation
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
PLGA | Poly(lactic-co-glycolic acid) |
PVA | Poly(vinyl alcohol) |
SEM | Scanning Electron Microscopy |
TEM | Transmission Electron Microscopy |
FTIR | Fourier Transform Infrared Spectroscopy |
TGA | Thermogravimetric Analysis |
XRD | X-Ray Diffraction |
DSC | Differential Scanning Calorimetry |
LA:GA | Lactide:Glycolide |
Mw | Molecular weight |
DMF | N,N-dimethylformamide |
TCD | Tip to collector distance |
CHCl3 | Chloroform |
Tonset | Initial degradation temperature |
Tmax | Temperature of maximum mass loss rate |
Tg | Glass transition temperature |
Tc | Crystallization temperature |
Tm | Melting temperature |
ΔHm | Melting enthalpy |
Xc% | Degree of crystallinity |
ΔHc | Crystallization enthalpy |
Theoretical melt enthalpy | |
PLGAp | Commercial poly(lactic-co-glycolic acid) |
PLGAff | Cast film poly(lactic-co-glycolic acid) |
PLGAe | Electrospun matrix of poly(lactic-co-glycolic acid) |
PVAp | Commercial poly(vinyl alcohol) |
PVAe | Electrospun matrix of poly(vinyl alcohol) |
PLGA/PVA | Core/shell fiber of poly(lactic-co-glycolic acid)/poly(vinyl alcohol) |
PLA | Poly(lactic acid) |
DTG | Derivative thermogravimetry |
References
- Kenry; Lim, C.T. Nanofiber Technology: Current Status and Emerging Developments. Prog. Polym. Sci. 2017, 70, 1–17. [Google Scholar] [CrossRef]
- Xue, J.; Wu, T.; Dai, Y.; Xia, Y. Electrospinning and Electrospun Nanofibers: Methods, Materials, and Applications. Chem. Rev. 2019, 119, 5298–5415. [Google Scholar] [CrossRef] [PubMed]
- Wade, R.J.; Burdick, J.A. Advances in Nanofibrous Scaffolds for Biomedical Applications: From Electrospinning to Self-Assembly. Nano Today 2014, 9, 722–742. [Google Scholar] [CrossRef]
- Khorshidi, S.; Solouk, A.; Mirzadeh, H.; Mazinani, S.; Lagaron, J.M.; Sharifi, S.; Ramakrishna, S. A Review of Key Challenges of Electrospun Scaffolds for Tissue-Engineering Applications. J. Tissue Eng. Regen. Med. 2016, 10, 715–738. [Google Scholar] [CrossRef]
- Okutan, N.; Terzi, P.; Altay, F. Affecting Parameters on Electrospinning Process and Characterization of Electrospun Gelatin Nanofibers. Food Hydrocoll. 2014, 39, 19–26. [Google Scholar] [CrossRef]
- Pant, B.; Park, M.; Park, S.-J. Drug Delivery Applications of Core-Sheath Nanofibers Prepared by Coaxial Electrospinning: A Review. Pharmaceutics 2019, 11, 305. [Google Scholar] [CrossRef]
- Vonch, J.; Yarin, A.; Megaridis, C.M. Electrospinning: A Study in the Formation of Nanofibers. J. Undergrad. Res. Univ. Ill. Chic. 2007, 1, 1–5. [Google Scholar] [CrossRef]
- Braghirolli, D.I.; Steffens, D.; Pranke, P. Electrospinning for Regenerative Medicine: A Review of the Main Topics. Drug Discov. Today 2014, 19, 743–753. [Google Scholar] [CrossRef]
- Sui, T.; Ying, S.; Titov, K.; Dolbnya, I.P.; Tan, J.-C.; Korsunsky, A.M. Operando Observation of the Taylor Cone during Electrospinning by Multiple Synchrotron X-Ray Techniques. Mater. Des. 2016, 110, 933–934. [Google Scholar] [CrossRef]
- Sperling, L.E.; Reis, K.P.; Pranke, P.; Wendorff, J.H. Advantages and Challenges Offered by Biofunctional Core-Shell Fiber Systems for Tissue Engineering and Drug Delivery. Drug Discov. Today 2016, 21, 1243–1256. [Google Scholar] [CrossRef]
- Reis, K.P.; Sperling, L.E.; Teixeira, C.; Paim, Á.; Alcântara, B.; Vizcay-Barrena, G.; Fleck, R.A.; Pranke, P. Application of PLGA/FGF-2 Coaxial Microfibers in Spinal Cord Tissue Engineering: An in Vitro and in Vivo Investigation. Regen. Med. 2018, 13, 785–801. [Google Scholar] [CrossRef] [PubMed]
- Haider, A.; Haider, S.; Kang, I.-K. A Comprehensive Review Summarizing the Effect of Electrospinning Parameters and Potential Applications of Nanofibers in Biomedical and Biotechnology. Arab. J. Chem. 2018, 11, 1165–1188. [Google Scholar] [CrossRef]
- Bhardwaj, N.; Kundu, S.C. Electrospinning: A Fascinating Fiber Fabrication Technique. Biotechnol. Adv. 2010, 28, 325–347. [Google Scholar] [CrossRef] [PubMed]
- Gonçalves, R.P. Avaliação Morfológica de Nanofibras Poliméricas Com Estrutura Núcleo-Casca Obtidas Por Eletrofiação Coaxial Para Aplicações Biomédicas. Ph.D. Thesis, Federal University of Rio de Janeiro, Instituto de Macromoléculas Professora Eloísa Mano, Rio de Janeiro, Brazil, 2015. [Google Scholar]
- Haghighat, F.; Ravandi, S.A.H. Mechanical Properties and in Vitro Degradation of PLGA Suture Manufactured via Electrospinning. Fiber. Polym. 2014, 15, 71–77. [Google Scholar] [CrossRef]
- Zhang, Q.; Li, Y.; Lin, Z.Y.W.; Wong, K.K.Y.; Lin, M.; Yildirimer, L.; Zhao, X. Electrospun Polymeric Micro/Nanofibrous Scaffolds for Long-Term Drug Release and Their Biomedical Applications. Drug Discov. Today 2017, 22, 1351–1366. [Google Scholar] [CrossRef]
- Rahmani, F.; Atabaki, R.; Behrouzi, S.; Mohamadpour, F.; Kamali, H. The Recent Advancement in the PLGA-Based Thermo-Sensitive Hydrogel for Smart Drug Delivery. Int. J. Pharm. 2023, 631, 122484. [Google Scholar] [CrossRef]
- Kumar, A.; Sood, A.; Han, S.S. Poly(Vinyl Alcohol)-Alginate as Potential Matrix for Various Applications: A Focused Review. Carbohydr. Polym. 2022, 277, 118881. [Google Scholar] [CrossRef]
- Ren, W.; Yu, X.; Chen, L.; Shi, T.; Bou-Akl, T.; Markel, D.C. Osteoblastic Differentiation and Bactericidal Activity Are Enhanced by Erythromycin Released from PCL/PLGA-PVA Coaxial Nanofibers. J. Biomater. Appl. 2022, 37, 712–723. [Google Scholar] [CrossRef]
- Zhang, H.; Ji, D.; Zhao, K.; Li, Z.; Yang, S.; Wang, P.; Cao, W.; Sun, Y. Potential applications of PLGA/PVA coaxial nanofibers with controlled release for guiding tissue regeneration. Mater. Res. Express 2025, 12, 015403. [Google Scholar] [CrossRef]
- Gonçalves, R.P.; da Silva, F.F.F.; Picciani, P.H.S.; Dias, M.L. Morphology and Thermal Properties of Core-Shell PVA/PLA Ultrafine Fibers Produced by Coaxial Electrospinning. Mater. Sci. Appl. 2015, 6, 189–199. [Google Scholar] [CrossRef]
- Toledo, A.L.M.M. Desenvolvimento de Membranas e Canas de Guias Neurais Por Eletrofiação Para o Tratamento de Lesões Por Transecção de Nervo Isquiático Em Camundongos C57BL/6. Ph.D. Thesis, Federal University of Rio de Janeiro, Instituto de Macromoléculas Professora Eloísa Mano, Rio de Janeiro, Brazil, 2020. [Google Scholar]
- Chor, A.; Gonçalves, R.P.; Costa, A.M.; Farina, M.; Ponche, A.; Sirelli, L.; Schrodj, G.; Gree, S.; de Andrade, L.R.; Anselme, K.; et al. In Vitro Degradation of Electrospun Poly(Lactic-Co-Glycolic Acid) (PLGA) for Oral Mucosa Regeneration. Polymer 2020, 12, 1853. [Google Scholar] [CrossRef] [PubMed]
- Patel, A.K.; Bajpai, R.; Keller, J.M. On the Crystallinity of PVA/Palm Leaf Biocomposite Using DSC and XRD Techniques. Microsyst. Technol. 2014, 20, 41–49. [Google Scholar] [CrossRef]
- Yarin, A.L.; Kataphinan, W.; Reneker, D.H. Branching in Electrospinning of Nanofibers. J. Appl. Phys. 2005, 98, 064501. [Google Scholar] [CrossRef]
- Asmatulu, R.; Khan, W.S. Historical Background of the Electrospinning Process. In Synthesis and Applications of Electrospun Nanofibers, 1st ed.; Asmatulu, R., Khan, W.S., Eds.; Elsevier: London, UK, 2019; pp. 17–39. [Google Scholar]
- Ahmadi Bonakdar, M.; Rodrigue, D. Electrospinning: Processes, Structures, and Materials. Macromol 2024, 4, 58–103. [Google Scholar] [CrossRef]
- Long, Y.-Z.; Yan, X.; Wang, X.-X.; Zhang, J.; Yu, M. Electrospinning: The Setup and Procedure. In Electrospinning: Nanofabrication and Applications; Ding, B., Wang, X., Yu, J., Eds.; Elsevier: London, UK, 2019; pp. 21–52. [Google Scholar]
- Bakar, S.S.S.; Fong, K.C.; Eleyas, A.; Nazeri, M.F.M. Effect of Voltage and Flow Rate Electrospinning Parameters on Polyacrylonitrile Electrospun Fibers. IOP Conf. Ser. Mater. Sci. Eng. 2018, 318, 012076. [Google Scholar] [CrossRef]
- Liu, Y.; Dong, L.; Fan, J.; Wang, R.; Yu, J.-Y. Effect of Applied Voltage on Diameter and Morphology of Ultrafine Fibers in Bubble Electrospinning. J. Appl. Polym. Sci. 2011, 120, 592–598. [Google Scholar] [CrossRef]
- Garg, K.; Bowlin, G.L. Electrospinning Jets and Nanofibrous Structures. Biomicrofluidics 2011, 5, 13403. [Google Scholar] [CrossRef]
- Chowdhury, M.; Stylios, G.K. Effect of Experimental Parameters on the Morphology of Electrospun Nylon 6 Fibres. Int. J. Basic Appl. Sci. 2010, 10, 70–78. [Google Scholar]
- Lee, J.S.; Choi, K.H.; Ghim, H.D.; Kim, S.S.; Chun, D.H.; Kim, H.Y.; Lyoo, W.S. Role of Molecular Weight of Atactic Poly(Vinyl Alcohol) (PVA) in the Structure and Properties of PVA Nanofabric Prepared by Electrospinning. J. Appl. Polym. Sci. 2004, 93, 1638–1646. [Google Scholar] [CrossRef]
- Zulkifli, M.Z.A.; Nordin, D.; Shaari, N.; Kamarudin, S.K. Overview of Electrospinning for Tissue Engineering Applications. Polymers 2023, 15, 2418. [Google Scholar] [CrossRef]
- Wildy, M.; Lu, P. Electrospun Nanofibers: Shaping the Future of Controlled and Responsive Drug Delivery. Materials 2023, 16, 7062. [Google Scholar] [CrossRef] [PubMed]
- Yang, Y.; Zhang, R.; Liang, Z.; Guo, J.; Chen, B.; Zhou, S.; Yu, D. Application of Electrospun Drug-Loaded Nanofibers in Cancer Therapy. Polymers 2024, 16, 504. [Google Scholar] [CrossRef] [PubMed]
- Meng, Z.X.; Wang, Y.S.; Ma, C.; Zheng, W.; Li, L.; Zheng, Y.F. Electrospinning of PLGA/Gelatin Randomly-Oriented and Aligned Nanofibers as Potential Scaffold in Tissue Engineering. Mater. Sci. Eng. C Mater. Biol. Appl. 2010, 30, 1204–1210. [Google Scholar] [CrossRef]
- Mehrasa, M.; Asadollahi, M.A.; Ghaedi, K.; Salehi, H.; Arpanaei, A. Electrospun Aligned PLGA and PLGA/Gelatin Nanofibers Embedded with Silica Nanoparticles for Tissue Engineering. Int. J. Biol. Macromol. 2015, 79, 687–695. [Google Scholar] [CrossRef]
- Tuancharoensri, N.; Ross, G.; Punyodom, W.; Mahasaranon, S.; Jongjitwimol, J.; Topham, P.D.; Ross, S. Multifunctional Core–Shell Electrospun Nanofibrous Fabrics of Poly(Vinyl Alcohol)/Silk Sericin (Core) and Poly(Lactide-Co-glycolide) (Shell). Polym. Int. 2022, 71, 266–275. [Google Scholar] [CrossRef]
- Trifol, J.; van Drongelen, M.; Clegg, F.; Plackett, D.; Szabo, P.; Daugaard, A.E. Impact of Thermal Processing or Solvent Casting upon Crystallization of PLA Nanocellulose and/or Nanoclay Composites. J. Appl. Polym. Sci. 2019, 136, 47486. [Google Scholar] [CrossRef]
- Lim, L.-T.; Auras, R.; Rubino, M. Processing Technologies for Poly(Lactic Acid). Prog. Polym. Sci. 2008, 33, 820–852. [Google Scholar] [CrossRef]
- Udayakumar, M.; Kollár, M.; Kristály, F.; Leskó, M.; Szabó, T.; Marossy, K.; Tasnádi, I.; Németh, Z. Temperature and Time Dependence of the Solvent-Induced Crystallization of Poly(l-Lactide). Polymers 2020, 12, 1065. [Google Scholar] [CrossRef]
- Laramée, A.W.; Pellerin, C. Raman Analysis of Orientation and Crystallinity in High Tg, Low Crystallinity Electrospun Fibers. Appl. Spectrosc. 2023, 77, 1289–1299. [Google Scholar] [CrossRef]
- Salimbeigi, G.; McGuinness, G.B. Optimizing Solvent Systems for Electrospun PLGA Scaffolds: Effects on Microstructure and Mechanical Properties for Biomedical Applications. RSC Adv. 2025, 15, 3259–3272. [Google Scholar] [CrossRef]
- Enayati, M.S.; Behzad, T.; Sajkiewicz, P.; Bagheri, R.; Ghasemi-Mobarakeh, L.; Łojkowski, W.; Pahlevanneshan, Z.; Ahmadi, M. Crystallinity Study of Electrospun Poly(Vinyl Alcohol) Nanofibers: Effect of Electrospinning, Filler Incorporation, and Heat Treatment. Iran. Polym. J. 2016, 25, 647–659. [Google Scholar] [CrossRef]
- Bhattarai, R.S.; Das, A.; Alzhrani, R.M.; Kang, D.; Bhaduri, S.B.; Boddu, S.H.S. Comparison of Electrospun and Solvent Cast Polylactic Acid (PLA)/Poly(Vinyl Alcohol) (PVA) Inserts as Potential Ocular Drug Delivery Vehicles. Mater. Sci. Eng. C Mater. Biol. Appl. 2017, 77, 895–903. [Google Scholar] [CrossRef] [PubMed]
- Koosha, M.; Mirzadeh, H. Electrospinning, Mechanical Properties, and Cell Behavior Study of Chitosan/PVA Nanofibers: Study of CS/PVA Nanofibers. J. Biomed. Mater. Res. A 2015, 103, 3081–3093. [Google Scholar] [CrossRef] [PubMed]
- Peppas, N.A.; Slaughter, B.V.; Kanzelberger, M.A. Hydrogels. In Polymer Science: A Comprehensive Reference; Matyjaszewski, K., Möller, M., Eds.; Elsevier: Amsterdam, The Netherlands, 2012; pp. 385–395. [Google Scholar]
- Xia, S.; Bian, M.; Li, H.; Shi, C.; Xu, M.; Lyu, L.; Wu, Y.; Cao, F.; Wang, Y.; Li, W.; et al. Development of Poly(Lactic Acid)/Polyvinyl Alcohol-Based Temperature-Responsive Shell-Core Nanofibers: Controlled Release, Biosafety Evaluation, and Application in Raspberry Preservation. Int. J. Biol. Macromol. 2025, 307, 142084. [Google Scholar] [CrossRef]
- Tian, X.; Li, J.; Wang, K.; Fei, S.; Zhang, X.; Wu, C.; Tan, M.; Su, W. Microfluidic Fabrication of Core-Shell Fucoxanthin Nanofibers with Improved Environmental Stability for Reducing Lipid Accumulation in Vitro. Food Chem. 2024, 442, 138474. [Google Scholar] [CrossRef]
- Huang, H.-F.; Tsai, Y.-H.; Lo, C.-T. Effects of Hard and Soft Confinement on Crystal Polymorphism and Crystal Development in Electrospun Core-sheath Fibers. J. Polym. Sci. 2024, 62, 4214–4227. [Google Scholar] [CrossRef]
- Gentile, P.; Chiono, V.; Carmagnola, I.; Hatton, P.V. An Overview of Poly(Lactic-Co-Glycolic) Acid (PLGA)-Based Biomaterials for Bone Tissue Engineering. Int. J. Mol. Sci. 2014, 15, 3640–3659. [Google Scholar] [CrossRef]
- Ibrahim, H.M.; Klingner, A. A Review on Electrospun Polymeric Nanofibers: Production Parameters and Potential Applications. Polym. Test. 2020, 90, 106647. [Google Scholar] [CrossRef]
- Abd El-Latif, R.A.; Aziz, M.E.A.; El-Taweel, S.H.; El-Khair, M.T.A.; Saad, G.R. Effects of Co-Solvent on the Morphology, Physicochemical Properties, and Performance of PVDF Electrospun Membranes in Comparison to Flat-Sheet Membranes. J. Compos. Sci. 2022, 6, 253. [Google Scholar] [CrossRef]
- Tampau, A.; González-Martínez, C.; Chiralt, A. Polylactic Acid-Based Materials Encapsulating Carvacrol Obtained by Solvent Casting and Electrospinning. J. Food Sci. 2020, 85, 1177–1185. [Google Scholar] [CrossRef]
- Eickner, T.; Lange, H.; Illner, S.; Wulf, K.; Senz, V.; Grabow, N. XPS-Analysis of Solvent Residues in Different Polymeric Biomaterials. Curr. Dir. Biomed. Eng. 2022, 8, 584–587. [Google Scholar] [CrossRef]
- Islam, M.S.; Karim, M.R. Fabrication and Characterization of Poly (Vinyl Alcohol)/Alginate Blend Nanofibers by Electrospinning Method. Colloids Surf. A Physicochem. Eng. Asp. 2010, 366, 135–140. [Google Scholar] [CrossRef]
- Pedroza, O.J.O.; Dutra Filho, J.C.; Picciani, P.H.S.; Dias, M.L. Morphology and Proton Conductivity of Composite Membranes Based on Poly(Styrene Sulfonic Acid–Maleic Anhydride) Nanofibers Prepared by Electrospinning. Ionics 2015, 21, 755–764. [Google Scholar] [CrossRef]
- Freier, T.; Kunze, C.; Schmitz, K.-P. Solvent Removal from Solution-Cast Films of Biodegradable Polymers. J. Mater. Sci. Lett. 2001, 20, 1929–1931. [Google Scholar] [CrossRef]
- Manson, J.; Dixon, D. The Influence of Solvent Processing on Polyester Bioabsorbable Polymers. J. Biomater. Appl. 2012, 26, 623–634. [Google Scholar] [CrossRef]
- Murcia Valderrama, M.A.; van Putten, R.-J.; Gruter, G.-J.M. PLGA Barrier Materials from CO2. The Influence of Lactide Co-Monomer on Glycolic Acid Polyesters. ACS Appl. Polym. Mater. 2020, 2, 2706–2718. [Google Scholar] [CrossRef]
- Chen, H.; Lui, Y.S.; Zhao, J.; Xu, L.; Tan, L.P. Effect of Solvent Composition of Electrospun PLGA Fibers on Paclitaxel Release. Mater. Technol. 2018, 33, 716–722. [Google Scholar] [CrossRef]
- Longson, T.J.; Bhowmick, R.; Gu, C.; Cruden, B.A. Core–Shell Interactions in Coaxial Electrospinning and Impact on Electrospun Multiwall Carbon Nanotube Core, Poly(Methyl Methacrylate) Shell Fibers. J. Phys. Chem. C Nanomater. Interfaces 2011, 115, 12742–12750. [Google Scholar] [CrossRef]
- Sanyal, S.; Huang, H.C.; Rege, K.; Dai, L.L. Thermo-responsive core-shell composite nanoparticles synthesized via one-step Pickering emulsion polymerization for controlled drug delivery. J. Nanomed. Nanotechnol. 2011, 2, 1–7. [Google Scholar]
- Hong, C.-Y.; Li, X.; Pan, C.-Y. Smart Core−Shell Nanostructure with a Mesoporous Core and a Stimuli-Responsive Nanoshell Synthesized via Surface Reversible Addition−Fragmentation Chain Transfer Polymerization. J. Phys. Chem. C Nanomater. Interfaces 2008, 112, 15320–15324. [Google Scholar] [CrossRef]
Figure | TCD (cm) | Voltage (kV) | Avg. Diameter (nm) | Defects Observed | Performance |
---|---|---|---|---|---|
Figure 2A | 12.5 | 12.5 | 796 ± 617 | Ruptures, interdigitations, beads | Unviable |
Figure 2B | 15.0 | 1198 ± 583 | Ruptures, interdigitations, beads | Unviable | |
Figure 2C | 17.5 | 1132 ± 681 | Ruptures, interdigitations, beads | Unviable | |
Figure 2D | 20.0 | 798 ± 728 | Bimodal structure | Unviable | |
Figure 2E | 15.0 | 12.5 | 597 ± 90 | None | Optimal |
Figure 2F | 15.0 | 733 ± 356 | None * | Suboptimal | |
Figure 2G | 17.5 | 896 ± 528 | Spinneret clogging, interdigitations | Unviable | |
Figure 2H | 20.0 | 991 ± 1126 | Spinneret clogging, interdigitations | Unviable | |
Figure 2I | 17.5 | 12.5 | 593 ± 886 | Interdigitations and beads | Unviable |
Figure 2J | 15.0 | 781 ± 116 | None | Good | |
Figure 2K | 17.5 | 1125 ± 382 | Ruptures and interdigitations | Unviable | |
Figure 2L | 20.0 | 1182 ± 329 | None | Suboptimal | |
Figure 2M | 20.0 | 12.5 | 581 ± 351 | Spinneret clogging | Unviable |
Figure 2N | 15.0 | 683 ± 421 | Spinneret clogging | Unviable | |
Figure 2O | 17.5 | 693 ± 286 | Spinneret clogging | Unviable | |
Figure 2P | 20.0 | 794 ± 465 | Spinneret clogging | Unviable |
Sample | TOnset (1) °C | TOnset (2) °C | TOnset (3) °C | DTG (1) °C | DTG (2) °C | DTG (3) °C |
---|---|---|---|---|---|---|
PLGAff | 60.9 | 303.8 | - | 77.4 | 328.4 | - |
PLGAe | 304.9 | - | - | 332.6 | - | - |
PVAe | 32.9 | 284.4 | 409.2 | 44.5 | 305.2 | 443.88 |
PLGA/PVA | 254.1 | 415.4 | - | 279.8 | 432.1 | - |
Sample | 1st Heating | 2nd Heating | |||||||
---|---|---|---|---|---|---|---|---|---|
Tg (°C) | Tcc (°C) | Tm (°C) | Xc (%) | Tg (°C) | Tm (°C) | Xc (%) | |||
PLGAp | 51.2 | - | 142.9 | 27.45 | 55.7 | - | - | ||
PLGAff | 34.1 | - | 142.2 | 0.1 | 54.0 | - | - | ||
PLGAe | 59.5 | 90.6 | 147.9 | 2.45 | 55.1 | - | - | ||
PVAp | 115.3 | - | 187.6 | 11.11 | 71.7 | 153.8 | 9.28 | ||
PVAe | 91.0 | - | 193.3 | 21.21 | 73.6 | 158.8 | 7.86 | ||
PLGA/PVA | 43.2 | 52.8 | 90.1 | 147.1 | - | 52.5 | 63.6 | 148.7 | - |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Rêgo, T.R.S.; Toledo, A.L.M.M.; Dias, M.L. Effect of Processing on the Morphology and Structure of PLGA/PVA Fibers Produced by Coaxial Electrospinning. Processes 2025, 13, 1837. https://doi.org/10.3390/pr13061837
Rêgo TRS, Toledo ALMM, Dias ML. Effect of Processing on the Morphology and Structure of PLGA/PVA Fibers Produced by Coaxial Electrospinning. Processes. 2025; 13(6):1837. https://doi.org/10.3390/pr13061837
Chicago/Turabian StyleRêgo, Thalles Rafael Silva, Anna Lecticia Martinez Martinez Toledo, and Marcos Lopes Dias. 2025. "Effect of Processing on the Morphology and Structure of PLGA/PVA Fibers Produced by Coaxial Electrospinning" Processes 13, no. 6: 1837. https://doi.org/10.3390/pr13061837
APA StyleRêgo, T. R. S., Toledo, A. L. M. M., & Dias, M. L. (2025). Effect of Processing on the Morphology and Structure of PLGA/PVA Fibers Produced by Coaxial Electrospinning. Processes, 13(6), 1837. https://doi.org/10.3390/pr13061837