Solvation Structure and Interface Engineering Synergy in Low-Temperature Sodium-Ion Batteries: Advances and Prospects
Abstract
:1. Introduction
2. Failure Mechanisms
2.1. Electrolyte
2.1.1. SIB Electrolyte Types and Low-Temperature Working Characteristics
2.1.2. High Viscosity at Low Temperatures Decreases the Ionic Transport Efficiency
2.1.3. Low Temperatures Increase the Desolvation Energy Barrier
2.1.4. The Weakening of the Entropy Effect at Low Temperatures
2.2. Sodium Salts Precipitation at Low Temperature
2.3. Cathode and Anode Materials
2.3.1. Structural Stability of Cathode Materials Is Affected at Low Temperatures
2.3.2. The Lattice Instability of Anode Materials at Low Temperatures
2.4. Electrode/Electrolyte Interface
3. Strategy
3.1. Strategies for Improving the Low-Temperature Performance of SIB Electrolytes
3.1.1. Solvent Component Regulation
3.1.2. Efficient Dissociation of Sodium Salts
3.1.3. Additives
3.2. Optimization of Electrode Components and Structure
3.2.1. Cathode Modification
3.2.2. Anode Electrode Modification
3.3. Electrode/Electrolyte Interface Optimization
4. Challenges and Outlook
4.1. Challenges
4.2. Outlook
- (1)
- In the future, we can focus on developing new solvent systems with low viscosity, a low freezing point, and a wide electrochemical window. Through the introduction of ethers, fluorinated esters, and other solvents or the design of multi-component blending systems, combined with artificial intelligence-assisted molecular simulation and high-throughput screening technology, the solvent ratio can be optimized quickly to reduce the resistance to migration of sodium ions and inhibit low-temperature crystal precipitation. At the same time, we explore the strategy of ionic liquids or local high-concentration electrolytes to regulate the solvation structure at the molecular scale, balance the ionic conductivity and interfacial stability, and provide a new path for efficient ion transport at low temperature.
- (2)
- To address the dissociation kinetics and interfacial compatibility of sodium salts, we will focus on anion structure innovation in the future to enhance the low-temperature dissociation capability by weakening ion-pair interactions. At the same time, we will study the sodium salt concentration gradient electrolyte or double-salt system to widen the electrochemical window and inhibit the growth of dendrites by using the synergistic effect of anions. Combined with in situ spectroscopy to analyze the coordination behavior of sodium salt solvent, a dynamic model of “dissociation–migration–interfacial reaction” is established to guide the molecular design of sodium salt and the optimization of electrolyte formulation.
- (3)
- Cathode electrode materials will be developed towards highly stable open framework structures, and the low-temperature ion diffusion rate and electronic conductivity will be enhanced by lattice doping or surface coating. For anode materials, a combination of hard-carbon pore modulation, alloy nanosizing, and pre-sodiation strategies are needed to lower the sodium ion embedding barrier and mitigate volume expansion. In addition, machine learning will accelerate the screening of high-performance materials and combine with material genomics to build a low-temperature suitability database. In recent work on combining artificial intelligence with energy storage technologies, Chen et al. [155] constructed the Uni-Electrolyte platform through artificial intelligence, which integrates the EMolCurator (molecular design), EMolForger (synthetic pathway prediction), and EMolNetKnittor (interfacial reaction analysis) modules. This platform enables efficient design, synthetic planning, and analysis of the interfacial mechanisms of rechargeable battery electrolyte molecules. Meng et al. [156] constructed a deep learning model of the MBVGNN graph through artificial intelligence, which integrates global and geometric information to accurately predict the average voltage, formation energy, and other properties of cathode materials for SIBs. This model efficiently screened over 70,000 high-entropy and fluorine-substituted materials, providing 16 material types and more than one million element combinations for reference in experimental preparation. This approach significantly accelerates the research and development of high-performance battery materials. Together, these studies have promoted the closed-loop development mode of “theoretical prediction–experimental verification”.
- (4)
- Future interfacial optimization will focus on building thin, dense SEI/CEI membranes with high ionic conductivity. Inorganic-rich interfacial films are induced by electrolyte additives to reduce the desolvation energy barrier and inhibit the continuous decomposition of the electrolyte. Further development of atomic layer deposition (ALD) or molecular layer deposition (MLD) technology to construct an artificial interfacial layer on the electrode surface to achieve a dynamic balance between interfacial mechanical strength and ionic conductivity. At the same time, adaptive interfacial repair strategies should be developed, and functional additives should be used to repair interfacial defects dynamically during the cycling process so as to enhance the stability of low-temperature and long-cycle electrodes.
5. Summary
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Azadi, M.; Lèbre, É.; Ali, S.H.; Steen, J.; Wall, F. Future of Battery Metals Supply. Resour. Conserv. Recycl. 2022, 182, 106283. [Google Scholar] [CrossRef]
- Ferrari, S.; Falco, M.; Muñoz-García, A.B.; Bonomo, M.; Brutti, S.; Pavone, M.; Gerbaldi, C. Solid-State Post Li Metal Ion Batteries: A Sustainable Forthcoming Reality? Adv. Energy Mater. 2021, 11, 2100785. [Google Scholar] [CrossRef]
- Cui, J.; Wang, A.; Li, G.; Wang, D.; Shu, D.; Dong, A.; Zhu, G.; Luo, J.; Sun, B. Composite Sodium Metal Anodes for Practical Applications. J. Mater. Chem. A Mater. 2020, 8, 15399–15416. [Google Scholar] [CrossRef]
- Bao, C.; Wang, B.; Liu, P.; Wu, H.; Zhou, Y.; Wang, D.; Liu, H.; Dou, S. Solid Electrolyte Interphases on Sodium Metal Anodes. Adv. Funct. Mater. 2020, 30, 2004891. [Google Scholar] [CrossRef]
- Wu, Y.; Yu, Y. 2D Material as Anode for Sodium Ion Batteries: Recent Progress and Perspectives. Energy Storage Mater. 2019, 16, 323–343. [Google Scholar] [CrossRef]
- Diouf, B.; Pode, R. Potential of Lithium-Ion Batteries in Renewable Energy. Renew. Energy 2015, 76, 375–380. [Google Scholar] [CrossRef]
- Shi, K.; Guan, B.; Zhuang, Z.; Chen, J.; Chen, Y.; Ma, Z.; Zhu, C.; Hu, X.; Zhao, S.; Dang, H.; et al. Recent Progress and Prospects on Sodium-Ion Battery and All-Solid-State Sodium Battery: A Promising Choice of Future Batteries for Energy Storage. Energy Fuels 2024, 38, 9280–9319. [Google Scholar] [CrossRef]
- Yu, T.; Li, G.; Duan, Y.; Wu, Y.; Zhang, T.; Zhao, X.; Luo, M.; Liu, Y. The Research and Industrialization Progress and Prospects of Sodium Ion Battery. J. Alloys Compd. 2023, 958, 170486. [Google Scholar] [CrossRef]
- Zhao, Y.; Li, N.; Xie, K.; Wang, C.; Zhou, S.; Zhang, X.; Ye, C. Manufacturing of Lithium Battery toward Deep-Sea Environment. Int. J. Extrem. Manuf. 2025, 7, 022009. [Google Scholar] [CrossRef]
- Yang, W.; Liu, Q.; Zhao, Y.; Mu, D.; Tan, G.; Gao, H.; Li, L.; Chen, R.; Wu, F. Progress on Fe-Based Polyanionic Oxide Cathodes Materials toward Grid-Scale Energy Storage for Sodium-Ion Batteries. Small Methods 2022, 6, 2200555. [Google Scholar] [CrossRef]
- Huang, Y.; Li, J. Key Challenges for Grid-Scale Lithium-Ion Battery Energy Storage. Adv. Energy Mater. 2022, 12, 2202197. [Google Scholar] [CrossRef]
- Yang, X.; Peng, C.; Hou, M.; Zhang, D.; Yang, B.; Xue, D.; Lei, Y.; Liang, F. Rational Design of Electrolyte Solvation Structures for Modulating 2e−/4e− Transfer in Sodium–Air Batteries. Adv. Funct. Mater. 2022, 32, 2201258. [Google Scholar] [CrossRef]
- You, J.; Zhang, B.; Li, T.; Li, Y.; Wang, W. Inhibition of Sodium Dendrites by Solvent Structural Reorganization for Non-Flammable High-Performance Sodium-Metal Batteries. J. Mater. Chem. A Mater. 2024, 12, 18572–18581. [Google Scholar] [CrossRef]
- Zhou, X.; Li, Z.; Li, W.; Li, X.; Fu, J.; Wei, L.; Yang, H.; Guo, X. Regulating Na-ion Solvation in Quasi-Solid Electrolyte to Stabilize Na Metal Anode. Adv. Funct. Mater. 2023, 33, 2212866. [Google Scholar] [CrossRef]
- Wang, T.; Su, D.; Shanmukaraj, D.; Rojo, T.; Armand, M.; Wang, G. Electrode Materials for Sodium-Ion Batteries: Considerations on Crystal Structures and Sodium Storage Mechanisms. Electrochem. Energy Rev. 2018, 1, 200–237. [Google Scholar] [CrossRef]
- Lu, Y.; Li, L.; Zhang, Q.; Niu, Z.; Chen, J. Electrolyte and Interface Engineering for Solid-State Sodium Batteries. Joule 2018, 2, 1747–1770. [Google Scholar] [CrossRef]
- Yang, L.; Liao, H.; Tian, Y.; Hong, W.; Cai, P.; Liu, C.; Yang, Y.; Zou, G.; Hou, H.; Ji, X. Rod-Like Sb2MoO6: Structure Evolution and Sodium Storage for Sodium-Ion Batteries. Small Methods 2019, 3, 1800533. [Google Scholar] [CrossRef]
- Kataoka, R.; Kojima, T.; Kitta, M.; Machida, A. Sodium Insertion and De-Insertion Mechanism of Spinel-Type Sodium Titanium Oxide Studied by in Situ XRD. J. Alloys Compd. 2022, 890, 161763. [Google Scholar] [CrossRef]
- Lu, Z.; Yang, H.; Guo, Y.; Lin, H.; Shan, P.; Wu, S.; He, P.; Yang, Y.; Yang, Q.-H.; Zhou, H. Consummating Ion Desolvation in Hard Carbon Anodes for Reversible Sodium Storage. Nat. Commun. 2024, 15, 3497. [Google Scholar] [CrossRef]
- Zhou, R.; Xu, Y.; Han, C.; Li, Y.; Wang, J.; Liang, X.; Jing, T.; Liu, R.; Chen, G.; Cao, F. Constructing Anion Solvation Microenvironment Toward Durable High-Voltage Sodium-Based Batteries. Adv. Mater. 2025, 37, 2416748. [Google Scholar] [CrossRef]
- Watanabe, E.; Chung, S.; Nishimura, S.; Yamada, Y.; Okubo, M.; Sodeyama, K.; Tateyama, Y.; Yamada, A. Combined Theoretical and Experimental Studies of Sodium Battery Materials. Chem. Rec. 2019, 19, 792–798. [Google Scholar] [CrossRef]
- Liu, X.; Liang, Z.; Xiang, Y.; Lin, M.; Li, Q.; Liu, Z.; Zhong, G.; Fu, R.; Yang, Y. Solid-State NMR and MRI Spectroscopy for Li/Na Batteries: Materials, Interface, and In Situ Characterization. Adv. Mater. 2021, 33, 2005878. [Google Scholar] [CrossRef] [PubMed]
- Wang, S.; Chen, Y.; Jie, Y.; Lang, S.; Song, J.; Lei, Z.; Wang, S.; Ren, X.; Wang, D.; Li, X.; et al. Stable Sodium Metal Batteries via Manipulation of Electrolyte Solvation Structure. Small Methods 2020, 4, 1900856. [Google Scholar] [CrossRef]
- Hao, Y.; Xia, Y.; Liu, W.; Sun, G.; Feng, L.; Zhou, X.; Iqbal, S.; Tian, Z.; Zhang, Z.; Li, Y.; et al. Tuning the Solvation Structure in Water-Based Solution Enables Surface Reconstruction of Layered Oxide Cathodes toward Long Lifespan Sodium-Ion Batteries. Adv. Sci. 2024, 11, 2401514. [Google Scholar] [CrossRef] [PubMed]
- Wu, N.; Zhao, Z.; Zhang, Y.; Hua, R.; Li, J.; Liu, G.; Guo, D.; Zhao, J.; Cao, A.; Sun, G.; et al. Revealing the Fast Reaction Kinetics and Interfacial Behaviors of CuFeS2 Hollow Nanorods for Durable and High-Rate Sodium Storage. J. Colloid Interface Sci. 2025, 679, 990–1000. [Google Scholar] [CrossRef]
- Deeg, P.; Weisenberger, C.; Oehm, J.; Schmidt, D.; Csiszar, O.; Knoblauch, V. Swift Prediction of Battery Performance: Applying Machine Learning Models on Microstructural Electrode Images for Lithium-Ion Batteries. Batteries 2024, 10, 99. [Google Scholar] [CrossRef]
- Zhao, Y.; Zhang, Z.; Zheng, Y.; Luo, Y.; Jiang, X.; Wang, Y.; Wang, Z.; Wu, Y.; Zhang, Y.; Liu, X.; et al. Sodium-Ion Battery at Low Temperature: Challenges and Strategies. Nanomaterials 2024, 14, 1604. [Google Scholar] [CrossRef]
- Wang, M.; Wang, Q.; Ding, X.; Wang, Y.; Xin, Y.; Singh, P.; Wu, F.; Gao, H. The Prospect and Challenges of Sodium-ion Batteries for Low-temperature Conditions. Interdiscip. Mater. 2022, 1, 373–395. [Google Scholar] [CrossRef]
- Li, P.; Hu, N.; Wang, J.; Wang, S.; Deng, W. Recent Progress and Perspective: Na Ion Batteries Used at Low Temperatures. Nanomaterials 2022, 12, 3529. [Google Scholar] [CrossRef]
- Li, M.; Zhuo, H.; Jing, Q.; Gu, Y.; Liao, Z.; Wang, K.; Hu, J.; Geng, D.; Sun, X.; Xiao, B. Low-temperature Performance of Na-ion Batteries. Carbon. Energy 2024, 6, e546. [Google Scholar] [CrossRef]
- Qin, M.; Zeng, Z.; Cheng, S.; Xie, J. Two-Dimensional Electrolyte Design: Broadening the Horizons of Functional Electrolytes in Lithium Batteries. Acc. Chem. Res. 2024, 57, 1163–1173. [Google Scholar] [CrossRef] [PubMed]
- Cai, G.; Holoubek, J.; Xia, D.; Li, M.; Yin, Y.; Xing, X.; Liu, P.; Chen, Z. An Ester Electrolyte for Lithium–Sulfur Batteries Capable of Ultra-Low Temperature Cycling. Chem. Commun. 2020, 56, 9114–9117. [Google Scholar] [CrossRef] [PubMed]
- Liu, Y.-T.; Liang, H.-J.; Du, M.; Yang, J.-L.; Gu, Z.-Y.; Wang, X.-T.; Tang, Y.-Z.; Guo, J.-Z.; Wu, X.-L. Ester-Based Anti-Freezing Electrolyte Achieving Ultra-Low Temperature Cycling for Sodium-Ion Batteries. J. Mater. Sci. Technol. 2024, 182, 111–118. [Google Scholar] [CrossRef]
- Li, Y.; Wu, F.; Li, Y.; Liu, M.; Feng, X.; Bai, Y.; Wu, C. Ether-Based Electrolytes for Sodium Ion Batteries. Chem. Soc. Rev. 2022, 51, 4484–4536. [Google Scholar] [CrossRef]
- Tian, Z.; Zou, Y.; Liu, G.; Wang, Y.; Yin, J.; Ming, J.; Alshareef, H.N. Electrolyte Solvation Structure Design for Sodium Ion Batteries. Adv. Sci. 2022, 9, 2201207. [Google Scholar] [CrossRef]
- Holoubek, J.; Kim, K.; Yin, Y.; Wu, Z.; Liu, H.; Li, M.; Chen, A.; Gao, H.; Cai, G.; Pascal, T.A.; et al. Electrolyte Design Implications of Ion-Pairing in Low-Temperature Li Metal Batteries. Energy Environ. Sci. 2022, 15, 1647–1658. [Google Scholar] [CrossRef]
- Zheng, Y.-Q.; Sun, M.-Y.; Yu, F.-D.; Deng, L.; Xia, Y.; Jiang, Y.-S.; Que, L.-F.; Zhao, L.; Wang, Z.-B. Utilizing Weakly-Solvated Diglyme-Based Electrolyte to Achieve a 10,000-Cycles Durable Na3V2(PO4)2F3 Cathode Endured at −20 °C. Nano Energy 2022, 102, 107693. [Google Scholar] [CrossRef]
- Zhang, N.; Deng, T.; Zhang, S.; Wang, C.; Chen, L.; Wang, C.; Fan, X. Critical Review on Low-Temperature Li-Ion/Metal Batteries. Adv. Mater. 2022, 34, 2107899. [Google Scholar] [CrossRef]
- Li, Q.; Liu, G.; Cheng, H.; Sun, Q.; Zhang, J.; Ming, J. Low-Temperature Electrolyte Design for Lithium-Ion Batteries: Prospect and Challenges. Chem.–Eur. J. 2021, 27, 15842–15865. [Google Scholar] [CrossRef]
- Gu, M. Cryo-TEM Study of Solid Electrolyte Interphases in Li-Ion Batteries. Microsc. Microanal. 2021, 27, 1248. [Google Scholar] [CrossRef]
- Zhang, J.; Wang, D.; Lv, W.; Qin, L.; Niu, S.; Zhang, S.; Cao, T.; Kang, F.; Yang, Q. Ethers Illume Sodium-Based Battery Chemistry: Uniqueness, Surprise, and Challenges. Adv. Energy Mater. 2018, 8, 1801361. [Google Scholar] [CrossRef]
- Sun, N.; Li, R.; Zhao, Y.; Zhang, H.; Chen, J.; Xu, J.; Li, Z.; Fan, X.; Yao, X.; Peng, Z. Anionic Coordination Manipulation of Multilayer Solvation Structure Electrolyte for High-Rate and Low-Temperature Lithium Metal Battery. Adv. Energy Mater. 2022, 12, 2200621. [Google Scholar] [CrossRef]
- Yang, Y.; Davies, D.M.; Yin, Y.; Borodin, O.; Lee, J.Z.; Fang, C.; Olguin, M.; Zhang, Y.; Sablina, E.S.; Wang, X.; et al. High-Efficiency Lithium-Metal Anode Enabled by Liquefied Gas Electrolytes. Joule 2019, 3, 1986–2000. [Google Scholar] [CrossRef]
- Niu, Y.-B.; Yin, Y.-X.; Wang, W.-P.; Wang, P.-F.; Ling, W.; Xiao, Y.; Guo, Y.-G. In Situ Copolymerizated Gel Polymer Electrolyte with Cross-Linked Network for Sodium-Ion Batteries. CCS Chem. 2020, 2, 589–597. [Google Scholar] [CrossRef]
- Ren, X.; Zou, L.; Cao, X.; Engelhard, M.H.; Liu, W.; Burton, S.D.; Lee, H.; Niu, C.; Matthews, B.E.; Zhu, Z.; et al. Enabling High-Voltage Lithium-Metal Batteries under Practical Conditions. Joule 2019, 3, 1662–1676. [Google Scholar] [CrossRef]
- Holoubek, J.; Liu, H.; Wu, Z.; Yin, Y.; Xing, X.; Cai, G.; Yu, S.; Zhou, H.; Pascal, T.A.; Chen, Z.; et al. Tailoring Electrolyte Solvation for Li Metal Batteries Cycled at Ultra-Low Temperature. Nat. Energy 2021, 6, 303–313. [Google Scholar] [CrossRef]
- Yin, L.; Wang, M.; Xie, C.; Yang, C.; Han, J.; You, Y. High-Voltage Cyclic Ether-Based Electrolytes for Low-Temperature Sodium-Ion Batteries. ACS Appl. Mater. Interfaces 2023, 15, 9517–9523. [Google Scholar] [CrossRef]
- Nordness, O.; Brennecke, J.F. Ion Dissociation in Ionic Liquids and Ionic Liquid Solutions. Chem. Rev. 2020, 120, 12873–12902. [Google Scholar] [CrossRef]
- Généreux, S.; Dionne, E.R.; Rochefort, D. Heterogeneous electron transfer of ferrocene in acetonitrile-LiTFSI highly concentrated electrolyte. Electrochim. Acta 2024, 473, 143467. [Google Scholar] [CrossRef]
- Logan, E.R.; Tonita, E.M.; Gering, K.L.; Li, J.; Ma, X.; Beaulieu, L.Y.; Dahn, J.R. A Study of the Physical Properties of Li-Ion Battery Electrolytes Containing Esters. J. Electrochem. Soc. 2018, 165, A21–A30. [Google Scholar] [CrossRef]
- Slater, M.D.; Kim, D.; Lee, E.; Johnson, C.S. Sodium-Ion Batteries. Adv. Funct. Mater. 2013, 23, 947–958. [Google Scholar] [CrossRef]
- Yu, L.; Wang, L.P.; Liao, H.; Wang, J.; Feng, Z.; Lev, O.; Loo, J.S.C.; Sougrati, M.T.; Xu, Z.J. Understanding Fundamentals and Reaction Mechanisms of Electrode Materials for Na-Ion Batteries. Small 2018, 14, 1703338. [Google Scholar] [CrossRef] [PubMed]
- Li, E.; Liao, L.; Huang, J.; Lu, T.; Dai, B.; Zhang, K.; Tang, X.; Liu, S.; Lei, L.; Yin, D.; et al. Hierarchical do** electrolyte solvation engineering to achieve high-performance sodium-ion batteries in wide temperature. Energy Storage Mater. 2024, 73, 103805. [Google Scholar] [CrossRef]
- Li, Z.; Yang, X.; DeYonker, N.J.; Xu, X.; Guo, Z.; Zhao, C. Binding energies and interaction origins between nonclassical single-electron hydrogen, sodium and lithium bonds and neutral boron-containing radicals: A theoretical investigation. Chin. Sci. Bull. 2014, 59, 2597–2607. [Google Scholar] [CrossRef]
- Xie, B.; Zheng, C.; Lang, H.; Li, M.; Hu, Q.; Tan, X.; Zheng, Q.; Huo, Y.; Zhao, J.; Yang, J.L.; et al. Ultrastable electrolyte (>3500 hours at high current density) achieved by high-entropy solvation toward practical aqueous zinc metal batteries. Energy Environ. Sci. 2024, 17, 7281–7293. [Google Scholar] [CrossRef]
- Wang, Q.; Zhao, C.; Yao, Z.; Wang, J.; Wu, F.; Kumar, S.G.; Ganapathy, S.; Eustace, S.; Bai, X.; Li, B.; et al. Entropy-driven liquid electrolytes for lithium batteries. Adv. Mater. 2023, 35, 2210677. [Google Scholar] [CrossRef]
- Han, S.; Guo, Q.; Mao, H.; Hu, Z.; Lu, K.; Li, S.; Lu, Y.; Li, H.; Huang, X.; Chen, L.; et al. Deciphering the Interface Failure Mechanism for Aqueous Na-Ion Batteries at Low Temperatures. ACS Energy Lett. 2024, 9, 2276–2285. [Google Scholar] [CrossRef]
- Ni, Q.; Bai, Y.; Wu, F.; Wu, C. Polyanion-Type Electrode Materials for Sodium-Ion Batteries. Adv. Sci. 2017, 4, 1600275. [Google Scholar] [CrossRef]
- Senthilkumar, B.; Murugesan, C.; Sharma, L.; Lochab, S.; Barpanda, P. An Overview of Mixed Polyanionic Cathode Materials for Sodium-Ion Batteries. Small Methods 2019, 3, 1800253. [Google Scholar] [CrossRef]
- Li, H.; Xu, M.; Zhang, Z.; Lai, Y.; Ma, J. Engineering of Polyanion Type Cathode Materials for Sodium-Ion Batteries: Toward Higher Energy/Power Density. Adv. Funct. Mater. 2020, 30, 2000473. [Google Scholar] [CrossRef]
- Goikolea, E.; Palomares, V.; Wang, S.; de Larramendi, I.R.; Guo, X.; Wang, G.; Rojo, T. Na-Ion Batteries—Approaching Old and New Challenges. Adv. Energy Mater. 2020, 10, 2002055. [Google Scholar] [CrossRef]
- Ahsan, M.T.; Ali, Z.; Usman, M.; Hou, Y. Unfolding the Structural Features of NASICON Materials for Sodium-ion Full Cells. Carbon. Energy 2022, 4, 776–819. [Google Scholar] [CrossRef]
- Liu, T.; Wang, B.; Gu, X.; Wang, L.; Ling, M.; Liu, G.; Wang, D.; Zhang, S. All-Climate Sodium Ion Batteries Based on the NASICON Electrode Materials. Nano Energy 2016, 30, 756–761. [Google Scholar] [CrossRef]
- Shen, L.; Li, Y.; Hu, C.; Huang, Z.; Wang, B.; Wang, Y.; Liu, Q.; Ye, F. A High-Rate Cathode Material Based on Potassium-Doped Na3V2(PO4)3 for High/Low-Temperature Sodium-Ion Batteries. Mater. Today Chem. 2023, 30, 101506. [Google Scholar] [CrossRef]
- Zhao, C.; Wang, Q.; Yao, Z.; Wang, J.; Sánchez-Lengeling, B.; Ding, F.; Qi, X.; Lu, Y.; Bai, X.; Li, B.; et al. Rational Design of Layered Oxide Materials for Sodium-Ion Batteries. Science 2020, 370, 708–711. [Google Scholar] [CrossRef] [PubMed]
- Gao, R.-M.; Zheng, Z.-J.; Wang, P.-F.; Wang, C.-Y.; Ye, H.; Cao, F.-F. Recent Advances and Prospects of Layered Transition Metal Oxide Cathodes for Sodium-Ion Batteries. Energy Storage Mater. 2020, 30, 9–26. [Google Scholar] [CrossRef]
- Liang, X.; Sun, Y. A Novel Pentanary Metal Oxide Cathode with P2/O3 Biphasic Structure for High-Performance Sodium-Ion Batteries. Adv. Funct. Mater. 2022, 32, 2206154. [Google Scholar] [CrossRef]
- Liu, S.; Wan, J.; Ou, M.; Zhang, W.; Chang, M.; Cheng, F.; Xu, Y.; Sun, S.; Luo, C.; Yang, K.; et al. Regulating Na Occupation in P2-Type Layered Oxide Cathode for All-Climate Sodium-Ion Batteries. Adv. Energy Mater. 2023, 13, 2203521. [Google Scholar] [CrossRef]
- Hwang, J.-Y.; Oh, S.-M.; Myung, S.-T.; Chung, K.Y.; Belharouak, I.; Sun, Y.-K. Radially Aligned Hierarchical Columnar Structure as a Cathode Material for High Energy Density Sodium-Ion Batteries. Nat. Commun. 2015, 6, 6865. [Google Scholar] [CrossRef]
- Yang, X.; Rogach, A.L. Anodes and Sodium-Free Cathodes in Sodium Ion Batteries. Adv. Energy Mater. 2020, 10, 2000288. [Google Scholar] [CrossRef]
- Zhou, A.; Cheng, W.; Wang, W.; Zhao, Q.; Xie, J.; Zhang, W.; Gao, H.; Xue, L.; Li, J. Hexacyanoferrate-Type Prussian Blue Analogs: Principles and Advances Toward High-Performance Sodium and Potassium Ion Batteries. Adv. Energy Mater. 2021, 11, 2000943. [Google Scholar] [CrossRef]
- Xu, Y.; Chang, M.; Fang, C.; Liu, Y.; Qiu, Y.; Ou, M.; Peng, J.; Wei, P.; Deng, Z.; Sun, S.; et al. In Situ FTIR-Assisted Synthesis of Nickel Hexacyanoferrate Cathodes for Long-Life Sodium-Ion Batteries. ACS Appl. Mater. Interfaces 2019, 11, 29985–29992. [Google Scholar] [CrossRef] [PubMed]
- Zhang, J.; Wan, J.; Ou, M.; Liu, S.; Huang, B.; Xu, J.; Sun, S.; Xu, Y.; Lin, Y.; Fang, C.; et al. Enhanced All-Climate Sodium-Ion Batteries Performance in a Low-Defect and Na-Enriched Prussian Blue Analogue Cathode by Nickel Substitution. Energy Mater. 2023, 3, 300008. [Google Scholar]
- Liu, Q.; Xu, R.; Mu, D.; Tan, G.; Gao, H.; Li, N.; Chen, R.; Wu, F. Progress in Electrolyte and Interface of Hard Carbon and Graphite Anode for Sodium-ion Battery. Carbon. Energy 2022, 4, 458–479. [Google Scholar] [CrossRef]
- Cheng, G.; Zhang, W.; Wang, W.; Wang, H.; Wang, Y.; Shi, J.; Chen, J.; Liu, S.; Huang, M.; Mitlin, D. Sulfur and Nitrogen Codoped Cyanoethyl Cellulose-derived Carbon with Superior Gravimetric and Volumetric Capacity for Potassium Ion Storage. Carbon Energy 2022, 4, 986–1001. [Google Scholar] [CrossRef]
- Hou, B.; Wang, Y.; Ning, Q.; Li, W.; Xi, X.; Yang, X.; Liang, H.; Feng, X.; Wu, X. Self-Supporting, Flexible, Additive-Free, and Scalable Hard Carbon Paper Self-Interwoven by 1D Microbelts: Superb Room/Low-Temperature Sodium Storage and Working Mechanism. Adv. Mater. 2019, 31, 1903125. [Google Scholar] [CrossRef]
- Ponrouch, A.; Palacín, M.R. On the High and Low Temperature Performances of Na-Ion Battery Materials: Hard Carbon as a Case Study. Electrochem. Commun. 2015, 54, 51–54. [Google Scholar] [CrossRef]
- Lu, Z.; Wang, J.; Feng, W.; Yin, X.; Feng, X.; Zhao, S.; Li, C.; Wang, R.; Huang, Q.; Zhao, Y. Zinc Single-Atom-Regulated Hard Carbons for High-Rate and Low-Temperature Sodium-Ion Batteries. Adv. Mater. 2023, 35, 2211461. [Google Scholar] [CrossRef]
- Zheng, S.-M.; Tian, Y.-R.; Liu, Y.-X.; Wang, S.; Hu, C.-Q.; Wang, B.; Wang, K.-M. Alloy Anodes for Sodium-Ion Batteries. Rare Met. 2021, 40, 272–289. [Google Scholar] [CrossRef]
- Zhang, B.; Rousse, G.; Foix, D.; Dugas, R.; Corte, D.A.D.; Tarascon, J. Microsized Sn as Advanced Anodes in Glyme-Based Electrolyte for Na-Ion Batteries. Adv. Mater. 2016, 28, 9824–9830. [Google Scholar] [CrossRef]
- Mortazavi, M.; Deng, J.; Shenoy, V.B.; Medhekar, N.V. Elastic Softening of Alloy Negative Electrodes for Na-Ion Batteries. J. Power Sources 2013, 225, 207–214. [Google Scholar] [CrossRef]
- Tan, H.; Chen, D.; Rui, X.; Yu, Y. Peering into Alloy Anodes for Sodium-Ion Batteries: Current Trends, Challenges, and Opportunities. Adv. Funct. Mater. 2019, 29, 1808745. [Google Scholar] [CrossRef]
- Wang, C.; Wang, L.; Li, F.; Cheng, F.; Chen, J. Bulk Bismuth as a High-Capacity and Ultralong Cycle-Life Anode for Sodium-Ion Batteries by Coupling with Glyme-Based Electrolytes. Adv. Mater. 2017, 29, 1702212. [Google Scholar] [CrossRef]
- Huang, K.-C.; Guo, J.-Z.; Li, H.-H.; Fan, H.-H.; Liu, D.-H.; Zheng, Y.-P.; Li, W.-L.; Wu, X.-L.; Zhang, J.-P. Layer-Stacked Sb@graphene Micro/Nanocomposite with Decent Na-Storage, Full-Cell and Low-Temperature Performances. J. Alloys Compd. 2018, 731, 881–888. [Google Scholar] [CrossRef]
- Chen, B.; Qin, H.; Li, K.; Zhang, B.; Liu, E.; Zhao, N.; Shi, C.; He, C. Yolk-Shelled Sb@C Nanoconfined Nitrogen/Sulfur Co-Doped 3D Porous Carbon Microspheres for Sodium-Ion Battery Anode with Ultralong High-Rate Cycling. Nano Energy 2019, 66, 104133. [Google Scholar] [CrossRef]
- Wang, L.; Światowska, J.; Dai, S.; Cao, M.; Zhong, Z.; Shen, Y.; Wang, M. Promises and Challenges of Alloy-Type and Conversion-Type Anode Materials for Sodium–Ion Batteries. Mater. Today Energy 2019, 11, 46–60. [Google Scholar] [CrossRef]
- Huang, Z.; Hou, H.; Wang, C.; Li, S.; Zhang, Y.; Ji, X. Molybdenum Phosphide: A Conversion-Type Anode for Ultralong-Life Sodium-Ion Batteries. Chem. Mater. 2017, 29, 7313–7322. [Google Scholar] [CrossRef]
- Wei, X.; Wang, X.; Tan, X.; An, Q.; Mai, L. Nanostructured Conversion-Type Negative Electrode Materials for Low-Cost and High-Performance Sodium-Ion Batteries. Adv. Funct. Mater. 2018, 28, 1804458. [Google Scholar] [CrossRef]
- Jiang, Y.; Hu, M.; Zhang, D.; Yuan, T.; Sun, W.; Xu, B.; Yan, M. Transition Metal Oxides for High Performance Sodium Ion Battery Anodes. Nano Energy 2014, 5, 60–66. [Google Scholar] [CrossRef]
- Fang, L.; Bahlawane, N.; Sun, W.; Pan, H.; Xu, B.B.; Yan, M.; Jiang, Y. Conversion-Alloying Anode Materials for Sodium Ion Batteries. Small 2021, 17, 2101137. [Google Scholar] [CrossRef]
- Jiang, M.; Hu, Y.; Mao, B.; Wang, Y.; Yang, Z.; Meng, T.; Wang, X.; Cao, M. Strain-Regulated Gibbs Free Energy Enables Reversible Redox Chemistry of Chalcogenides for Sodium Ion Batteries. Nat. Commun. 2022, 13, 5588. [Google Scholar] [CrossRef] [PubMed]
- Fan, H.-H.; Li, H.-H.; Guo, J.-Z.; Zheng, Y.-P.; Huang, K.-C.; Fan, C.-Y.; Sun, H.-Z.; Li, X.-F.; Wu, X.-L.; Zhang, J.-P. Target Construction of Ultrathin Graphitic Carbon Encapsulated FeS Hierarchical Microspheres Featuring Superior Low-Temperature Lithium/Sodium Storage Properties. J. Mater. Chem. A Mater. 2018, 6, 7997–8005. [Google Scholar] [CrossRef]
- Zhou, L.-F.; Gao, X.-W.; Du, T.; Gong, H.; Liu, L.-Y.; Luo, W.-B. Two-Dimensional NbSSe as Anode Material for Low-Temperature Sodium-Ion Batteries. Chem. Eng. J. 2022, 435, 134838. [Google Scholar] [CrossRef]
- Fan, H.-N.; Zhang, Q.; Gu, Q.-F.; Li, Y.; Luo, W.-B.; Liu, H.-K. Exploration of the Sodium Ion Ordered Transfer Mechanism in a MoSe2 @Graphene Composite for Superior Rate and Lifespan Performance. J. Mater. Chem. A Mater. 2019, 7, 13736–13742. [Google Scholar] [CrossRef]
- Cui, Y.; Ni, Y.; Wang, Y.; Wang, L.; Yang, W.; Wu, S.; Xie, W.; Zhang, K.; Yan, Z.; Chen, J. A Temperature-Adapted Ultraweakly Solvating Electrolyte for Cold-Resistant Sodium-Ion Batteries. Adv. Energy Mater. 2025, 2405363, early view. [Google Scholar] [CrossRef]
- Shi, T.; Hou, R.; Zheng, L.; Lu, H.; Xu, C.; Sun, X.; He, P.; Li, S.; Zhou, H.; Guo, S. Modulating Double-Layer Solvation Structure via Dual-Weak-Interaction for Stable Sodium-Metal Batteries. Adv. Energy Mater. 2025, 2405803, early view. [Google Scholar] [CrossRef]
- Yang, J.; Wang, M.; Ruan, J.; Li, Q.; Ding, J.; Fang, F.; Wang, F. Research Progress in Non-Aqueous Low-Temperature Electrolytes for Sodium-Based Batteries. Sci. China Chem. 2024, 67, 4063–4084. [Google Scholar] [CrossRef]
- Zhang, Y.; Wu, Z.; Wang, Y.; Chen, G.; Yang, K.; Li, L.; Liu, X.; Ma, Z.; Chen, L. Revisiting Interfacial Enhancement Effects of Fluorinated Cyclophosphazene in Practical Sodium-Ion Batteries. ACS Appl. Mater. Interfaces 2025, 17, 31553–31560. [Google Scholar] [CrossRef]
- Deng, L.; Goh, K.; Yu, F.D.; Xia, Y.; Jiang, Y.S.; Ke, W.; Han, Y.; Que, L.F.; Zhou, J.; Wang, Z.B. Self-optimizing weak solvation effects achieving faster low-temperature charge transfer kinetics for high-voltage Na3V2(PO4)2F3 cathode. Energy Storage Mater. 2022, 44, 82–92. [Google Scholar] [CrossRef]
- Qiu, X.; Chen, Y.; Sun, Y.; Wang, Y.; Liang, Z.; Zhou, G.; Xue, Y.; Shi, L.; Jiang, J.; Kong, X.; et al. Research on Low-Temperature Sodium-Ion Batteries: Challenges, Strategies and Prospect. Energy Storage Mater. 2024, 72, 103760. [Google Scholar] [CrossRef]
- Wang, Y.; Duan, J.; Zhu, Z.; Li, X.; Cheng, Q.; Yang, Y.; Zhang, S.; Cao, Y.; Hou, S. Electrolyte Solvation Structure Regulation for Low-Temperature Sodium-Ion Battery. ACS Appl. Mater. Interfaces 2025, 17, 30885–30894. [Google Scholar] [CrossRef] [PubMed]
- Zhang, H.; Zeng, Z.; Liu, M.; Ma, F.; Qin, M.; Wang, X.; Wu, Y.; Lei, S.; Cheng, S.; Xie, J. A “Tug-of-War” Effect Tunes Li-Ion Transport and Enhances the Rate Capability of Lithium Metal Batteries. Chem. Sci. 2023, 14, 2745–2754. [Google Scholar] [CrossRef] [PubMed]
- Yang, C.; Liu, X.; Lin, Y.; Yin, L.; Lu, J.; You, Y. Entropy-Driven Solvation toward Low-Temperature Sodium-Ion Batteries with Temperature-Adaptive Feature. Adv. Mater. 2023, 35, 2301817. [Google Scholar] [CrossRef]
- Huang, Z.; Xiao, Z.; Zhang, H.; Zhang, Q.; Cui, J.; Luo, J.; Tang, W.; Wu, Y. Temperature-Robust Solvation Enabled by Solvent Interactions for Low-Temperature Sodium Metal Batteries. J. Am. Chem. Soc. 2025, 147, 5162–5171. [Google Scholar] [CrossRef] [PubMed]
- Wang, Z.; Zheng, T.; Wang, S.; Zhang, X.-G.; Gu, Y.; Tang, S.; Fu, Y. Topological Design of Highly Conductive Weakly Solvating Electrolytes for Ultrastable Sodium Metal Batteries Operating at −60 °C and Below. J. Am. Chem. Soc. 2025, 147, 5962–5970. [Google Scholar] [CrossRef] [PubMed]
- Tian, R.; Zhao, S.; Lv, Z.; Lu, G.; Fu, M.; Chen, J.; Wang, D.; Dong, C.; Mao, Z. Topological Proton Regulation of Interlayered Local Structure in Sodium Titanite for Wide-temperature Sodium Storage. Carbon. Energy 2024, 6, e560. [Google Scholar] [CrossRef]
- Fang, H.; Huang, Y.; Hu, W.; Song, Z.; Wei, X.; Geng, J.; Jiang, Z.; Qu, H.; Chen, J.; Li, F. Regulating Ion-Dipole Interactions in Weakly Solvating Electrolyte towards Ultra-Low Temperature Sodium-Ion Batteries. Angew. Chem. 2024, 136, e202400539. [Google Scholar] [CrossRef]
- Mo, Y.; Liu, G.; Yin, Y.; Tao, M.; Chen, J.; Peng, Y.; Wang, Y.; Yang, Y.; Wang, C.; Dong, X.; et al. Fluorinated Solvent Molecule Tuning Enables Fast-Charging and Low-Temperature Lithium-Ion Batteries. Adv. Energy Mater. 2023, 13, 2301285. [Google Scholar] [CrossRef]
- Gao, X.; Piao, N.; Yan, Y.; Wang, J.; Zou, H.; Guan, S.; Zeng, L.; Sun, Z.; Hu, G.; Li, F. Synergistic Fluorinated and Non-Fluorinated Solvents for Electrolytes of Lithium-Ion Batteries at Low Temperatures. Chin. Chem. Lett. 2024, 110591, in press. [Google Scholar] [CrossRef]
- Yang, J.; Long, K.; Guo, Z.; Cui, Y.; Ling, C.; Wu, Z.; Wu, F.; Wei, W.; Chen, Y.; Ji, X.; et al. Synergetic Modulation on Solvation Structure and Electrode Interface to Achieve Lithium-Ion Batteries Cycled at Ultra-Low Temperature. Chem. Eng. J. 2023, 473, 145455. [Google Scholar] [CrossRef]
- Gui, Q.; Li, Y.; Liu, J. Bendable quasi-solid-state aqueous sodium-ion batteries operated at−30 °C. J. Colloid Interface Sci. 2024, 662, 119–128. [Google Scholar] [CrossRef]
- Guo, D.; Wang, J.; Cui, Z.; Shi, Z.; Henkelman, G.; Alshareef, H.N.; Manthiram, A. Low-Temperature Sodium–Sulfur Batteries Enabled by Ionic Liquid in Localized High Concentration Electrolytes. Adv. Funct. Mater. 2024, 34, 2409494. [Google Scholar] [CrossRef]
- Eshetu, G.G.; Grugeon, S.; Kim, H.; Jeong, S.; Wu, L.; Gachot, G.; Laruelle, S.; Armand, M.; Passerini, S. Comprehensive Insights into the Reactivity of Electrolytes Based on Sodium Ions. ChemSusChem 2016, 9, 462–471. [Google Scholar] [CrossRef] [PubMed]
- Cheng, F.; Cao, M.; Li, Q.; Fang, C.; Han, J.; Huang, Y. Electrolyte Salts for Sodium-Ion Batteries: NaPF6 or NaClO4? ACS Nano 2023, 17, 18608–18615. [Google Scholar] [CrossRef] [PubMed]
- Hu, R.; Yang, L.; Zhang, C.; Chen, B.; Hong, H.; Shen, H.; Mao, C.; Yang, Z.; Zhang, S.; Huang, Q.; et al. Bifunctional Sodium Tetrakis [3,5-Bis(Trifluoromethyl)Phenyl] Borate Additive for Long-Lifespan Sodium-Ion Batteries with NaNi0.33Fe0.33Mn0.33O2 Cathode. Chem. Eng. J. 2025, 512, 162144. [Google Scholar] [CrossRef]
- Miao, Y.; Yu, P.; Yang, F.; Zhao, Y.; Xu, H.; Wang, J. Effects of Cosolvent and Nonsolvating Solvent on the Structural Dynamics of Organic Electrolytes in Sodium-Ion Batteries. ACS Appl. Mater. Interfaces 2025, 17, 1064–1076. [Google Scholar] [CrossRef]
- Zhou, X.; Huang, Y.; Wen, B.; Yang, Z.; Hao, Z.; Li, L.; Chou, S.-L.; Li, F. Regulation of Anion–Na+ Coordination Chemistry in Electrolyte Solvates for Low-Temperature Sodium-Ion Batteries. Proc. Natl. Acad. Sci. USA 2024, 121, e2316914121. [Google Scholar] [CrossRef]
- Yang, Y.; Yang, Y.; Yang, S.; Yao, Y.; Yang, Y.; Liu, L.; Rui, X.; Yu, Y. Dual-Salt Low-Concentration Electrolyte for Low-Temperature Sodium Metal Batteries. ACS Appl. Mater. Interfaces 2025, 17, 22624–22632. [Google Scholar] [CrossRef]
- Wang, Y.; Cao, Z.; Ma, Z.; Liu, G.; Cheng, H.; Zou, Y.; Cavallo, L.; Li, Q.; Ming, J. Weak Solvent–Solvent Interaction Enables High Stability of Battery Electrolyte. ACS Energy Lett. 2023, 8, 1477–1484. [Google Scholar] [CrossRef]
- Xia, M.; Chen, H.; Zheng, Z.; Meng, Q.; Zhao, A.; Chen, X.; Ai, X.; Fang, Y.; Cao, Y. Sodium-Difluoro(Oxalato)Borate-Based Electrolytes for Long-Term Cycle Life and Enhanced Low-Temperature Sodium-Ion Batteries. Adv. Energy Mater. 2025, 15, 2403306. [Google Scholar] [CrossRef]
- Lin, S.; Hua, H.; Lai, P.; Zhao, J. A Multifunctional Dual-Salt Localized High-Concentration Electrolyte for Fast Dynamic High-Voltage Lithium Battery in Wide Temperature Range. Adv. Energy Mater. 2021, 11, 36. [Google Scholar] [CrossRef]
- Zhou, X.; Zhang, Q.; Zhu, Z.; Cai, Y.; Li, H.; Li, F. Anion-Reinforced Solvation for a Gradient Inorganic-Rich Interphase Enables High-Rate and Stable Sodium Batteries. Angew. Chem. Int. Ed. 2022, 61, e202205045. [Google Scholar] [CrossRef]
- Qu, K.; Lu, X.; Jiang, N.; Wang, J.; Tao, Z.; He, G.; Yang, Q.; Qiu, J. Eutectic Electrolytes Convoying Low-Temperature Metal-Ion Batteries. ACS Energy Lett. 2024, 9, 1192–1209. [Google Scholar]
- Wang, Y.; Liu, F.; Fan, G.; Qiu, X.; Liu, J.; Yan, Z.; Zhang, K.; Cheng, F.; Chen, J. Electroless Formation of a Fluorinated Li/Na Hybrid Interphase for Robust Lithium Anodes. J. Am. Chem. Soc. 2021, 143, 2829–2837. [Google Scholar]
- Yuan, H.; Luan, J.; Yang, Z.; Zhang, J.; Wu, Y.; Lu, Z.; Liu, H. Single Lithium-Ion Conducting Solid Polymer Electrolyte with Superior Electrochemical Stability and Interfacial Compatibility for Solid-State Lithium Metal Batteries. ACS Appl. Mater. Interfaces 2020, 12, 7249–7256. [Google Scholar] [CrossRef] [PubMed]
- Martin, T.R.; Teeter, G.; Jiang, C.; Park, K. Sulfur Polymers as Flexible Interfacial Additives for Low Stack-Pressure Solid-State Lithium-Ion Batteries. Batter. Supercaps 2023, 6, e202300255. [Google Scholar]
- Nan, Y.; Li, S.; Zhu, M.; Li, B.; Yang, S. Endowing the Lithium Metal Surface with Self-Healing Property via an in Situ Gas–Solid Reaction for High-Performance Lithium Metal Batteries. ACS Appl. Mater. Interfaces 2019, 11, 28878–28884. [Google Scholar]
- Liu, Y.; Jiang, R.; Xiang, H.; Huang, Z.; Yu, Y. 3-Trimethylsilyl-2-Oxazolidinone, as a Multifunctional Additive to Stabilize FEC-Containing Electrolyte for Sodium Metal Batteries. Electrochim. Acta 2022, 425, 140746. [Google Scholar] [CrossRef]
- Zhu, K.; Li, Z.; Sun, Z.; Liu, P.; Jin, T.; Chen, X.; Li, H.; Lu, W.; Jiao, L. Inorganic Electrolyte for Low-Temperature Aqueous Sodium Ion Batteries. Small 2022, 18, 2107662. [Google Scholar]
- Zhong, S.; Yu, Y.; Yang, Y.; Yao, Y.; Wang, L.; He, S.; Yang, Y.; Liu, L.; Sun, W.; Feng, Y.; et al. Molecular Engineering on Solvation Structure of Carbonate Electrolyte toward Durable Sodium Metal Battery at −40 °C. Angew. Chem. Int. Ed. 2023, 62, e202301169. [Google Scholar] [CrossRef]
- Yang, Z.; Jiang, H.; Li, X.; Liang, X.; Wei, J.; Xie, Z.; Tang, B.; Zhang, Y.; Zhou, Z. Fabricating Wide-Temperature-Range Quasi-Solid Sodium Batteries with Fast Ion Transport via Tin Additives. Adv. Funct. Mater. 2024, 34, 2407713. [Google Scholar] [CrossRef]
- Ge, B.; Deng, J.; Wang, Z.; Liang, Q.; Hu, L.; Ren, X.; Li, R.; Lin, Y.; Li, Y.; Wang, Q.; et al. Aggregate-Dominated Dilute Electrolytes with Low-Temperature-Resistant Ion-Conducting Channels for Highly Reversible Na Plating/Stripping. Adv. Mater. 2024, 36, 2408161. [Google Scholar] [CrossRef]
- Jiang, J.; Li, M.; Liu, X.; Yi, J.; Jiang, Y.; Wu, C.; Liu, H.; Zhao, B.; Li, W.; Sun, X.; et al. Multifunctional Additives to Realize Dendrite-Free Lithium Deposition in Carbonate Electrolytes toward Low-Temperature Li Metal Batteries. Adv. Energy Mater. 2024, 14, 2400365. [Google Scholar] [CrossRef]
- He, Z.; Tu, H.; Sun, G.; Sun, A.; Wang, Y.; Sun, J.; Wu, G.; Li, W.; Xu, J.; Liu, M. High Ion-Conductive Interphase Enabled by Nitrate-Ionic Liquid Additive for Low-Temperature Lithium Metal Batteries. Adv. Funct. Mater. 2025, 35, 2414569. [Google Scholar] [CrossRef]
- Zhang, W.; Lu, Y.; Feng, Q.; Wang, H.; Cheng, G.; Liu, H.; Cao, Q.; Luo, Z.; Zhou, P.; Xia, Y.; et al. Multifunctional Electrolyte Additive for High Power Lithium Metal Batteries at Ultra-Low Temperatures. Nat. Commun. 2025, 16, 3344. [Google Scholar] [CrossRef]
- Zeng, Z.; Abulikemu, A.; Zhang, J.; Peng, Z.; Zhang, Y.; Uchimoto, Y.; Han, J.; Wang, Q.-C. High-Entropy O3-Type Cathode Enabling Low-Temperature Performance for Sodium-Ion Batteries. Nano Energy 2024, 128, 109813. [Google Scholar] [CrossRef]
- Zhao, H.; Hao, Y.; Zhang, Y.; Gu, Y. The Low-Temperature Performance of Sodium-Ion Batteries Featuring Cs+/Zn2+ Co-Doped Prussian Blue Analogues as Cathode Materials. J. Power Sources 2025, 630, 236075. [Google Scholar] [CrossRef]
- Dong, P.; Peng, F.; Zhang, Q.; Wang, H.; Chu, Y.; Chen, C.; Yang, C. High Entropy Boosts the Low Temperature Na+-Storage Performance of Na4Fe3(PO4)2P2O7. Angew. Chem. Int. Ed. 2025, 64, e202502693. [Google Scholar] [CrossRef]
- Lv, Y.; Huang, S.; Zhang, J.; Kang, G.; Liu, Y.; Li, N.; Liang, Y.; Zhong, X.; Jia, T.; Ouyang, Y.; et al. Antimony Doping Enabled Radially Aligned Microstructure in LiNi0.91Co0.06Al0.03O2 Cathode for High-Voltage and Low-Temperature Lithium Battery. Adv. Funct. Mater. 2024, 34, 2312284. [Google Scholar] [CrossRef]
- Tong, J.; Su, A.; Ma, T.; Ba, J.; Wang, L.; Zhang, Z.; Qiu, J.; Chen, X.; Wang, Y.; Wei, Y. Boosting Low Temperature Performance of Lithium Ion Batteries at −40 °C Using a Binary Surface Coated Li3V2(PO4)3 Cathode Material. Adv. Funct. Mater. 2024, 34, 2310934. [Google Scholar] [CrossRef]
- Xu, S.; Yang, S.; Liu, C.; Yao, Y.; Yang, Y.; Rui, X.; Yu, Y. Solid State Self-Assembly of Flaky Na3V2(PO4)3@ Carbon into Spherical Superstructures: Large Production and Boosted Low-Temperature Na Storage Capability. Small 2025, 2407285, early view. [Google Scholar] [CrossRef] [PubMed]
- Zhao, M.; Zhang, X.; Li, Z.; Sun, X.; Cheng, S.; Li, H. Enhancing the Low-Temperature Performance of Sodium-Ion Battery by Introducing Nanodiamonds in Anode Prepared from Cattail Grass. Small 2025, 21, 2410866. [Google Scholar] [CrossRef]
- Issatayev, N.; Tassybay, K.; Wu, N.-L.; Nurpeissova, A.; Bakenov, Z.; Kalimuldina, G. LiF Modified Hard Carbon from Date Seeds as an Anode Material for Enhanced Low-Temperature Lithium-Ion Batteries. Carbon 2024, 229, 119479. [Google Scholar] [CrossRef]
- Liu, Y.; Hu, Q.; Shi, Q.; Zhao, S.; Hu, X.; Feng, W.; Xu, J.; Zhang, J.; Zhao, Y. Green Synthesis of Cu3P to Achieve Low-Temperature and High Initial Coulombic Efficiency Sodium Ion Storage. Adv. Energy Mater. 2025, 2500723, early view. [Google Scholar] [CrossRef]
- Zhao, J.; Li, T.; Gao, S.; Wei, Z.; Han, X.; Yang, J.; Xia, S.; Ji, Q.; Xiao, H.; Du, F. Cubic Crystal-Structured Ge2Sb2Te5 with Cation Vacancies for Enhanced Lithium/Sodium Ion Storage. J. Mater. Sci. Technol. 2025, 231, 125–133. [Google Scholar] [CrossRef]
- Jiang, L.; Han, N.; Luo, T.; Zhang, Z.; Liang, F.; Wu, D.; Li, X.; Liu, F.; Rui, Y.; Zhang, W.; et al. Novel Supported Low-Temperature Solid Molten Salt (SMS) Anode Materials for Li-Ion Batteries. Chem. Eng. J. 2023, 458, 141451. [Google Scholar] [CrossRef]
- Pogue, E.A.; Langevin, S.A.; Hamann, T.; Rao, K.K.; Schroeder, M.A.; Le, N.Q.; McHale, C.; Burchfield, Z.; Ko, J.S. Enhancing Low-Temperature Lithium-Ion Battery Performance under High-Rate Conditions with Niobium Oxides. Mater. Today Energy 2024, 45, 101663. [Google Scholar] [CrossRef]
- Feng, Y.; Liu, M.; Wu, J.; Yang, C.; Liu, Q.; Tang, Y.; Zhu, X.; Wei, G.; Dong, H.; Fan, X.; et al. Monolithic Interphase Enables Fast Kinetics for High-Performance Sodium-Ion Batteries at Subzero Temperature. Angew. Chem. Int. Ed. 2024, 63, e202403585. [Google Scholar] [CrossRef]
- Liu, Y.; Zhu, L.; Wang, E.; An, Y.; Liu, Y.; Shen, K.; He, M.; Jia, Y.; Ye, G.; Xiao, Z.; et al. Electrolyte Engineering with Tamed Electrode Interphases for High-Voltage Sodium-Ion Batteries. Adv. Mater. 2024, 36, 2310051. [Google Scholar] [CrossRef]
- Huang, X.; Sun, H.; Li, X.; Zhu, W.; Chen, L.; Ma, T.; Ding, S.; Ma, T.; Dong, Y.; Zhang, K.; et al. Eliminating Charge Transfer at Cathode-Electrolyte Interface for Ultrafast Kinetics in Na-Ion Batteries. J. Am. Chem. Soc. 2024, 146, 29391–29401. [Google Scholar] [CrossRef] [PubMed]
- Xia, X.; Xu, S.; Tang, F.; Yao, Y.; Wang, L.; Liu, L.; He, S.; Yang, Y.; Sun, W.; Xu, C.; et al. A Multifunctional Interphase Layer Enabling Superior Sodium-Metal Batteries under Ambient Temperature and −40 °C. Adv. Mater. 2023, 35, 2209511. [Google Scholar] [CrossRef] [PubMed]
- Liang, H.J.; Qian, W.Y.; Liu, H.H.; Wang, X.T.; Gu, Z.Y.; Dong, F.; Deng, Y.; Tang, Y.Z.; Zhang, J.; Zhao, J.; et al. Sulfite-Based Electrolyte Chemistry with Ion–Dipole Interactions and Robust Interphase Achieves Wide-Temperature Sodium-Ion Batteries. J. Am. Chem. Soc. 2025, 147, 17860–17870. [Google Scholar] [CrossRef] [PubMed]
- Liang, J.; Zhang, Y.; Xin, S.; Tan, S.; Meng, X.; Wang, W.; Shi, J.; Wang, Z.; Wang, F.; Wan, L.; et al. Mitigating Swelling of the Solid Electrolyte Interphase Using an Inorganic Anion Switch for Low-temperature Lithium-ion Batteries. Angew. Chem. Int. Ed. 2023, 62, e202300384. [Google Scholar] [CrossRef] [PubMed]
- Min, X.; Wang, L.; Wu, Y.; Zhang, Z.; Xu, H.; He, X. Overcoming Low-Temperature Challenges in LIBs: The Role of Anion-Rich Solvation Sheath in Strong Solvents. J. Energy Chem. 2025, 106, 63–70. [Google Scholar] [CrossRef]
- Chen, X.; Liu, M.; Yin, S.; Gao, Y.C.; Yao, N.; Zhang, Q. Uni-Electrolyte: An Artificial Intelligence Platform for Designing Electrolyte Molecules for Rechargeable Batteries. Angew. Chem. 2024, e202503105, early view. [Google Scholar]
- Meng, K.; Bai, K.; Sun, S. Artificial intelligence driven design of cathode materials for sodium-ion batteries using graph deep learning method. J. Energy Storage 2024, 101, 113809. [Google Scholar] [CrossRef]
Category | Key Factors | Observed Phenomena/Issues | Consequences |
---|---|---|---|
Electrolyte | Increased viscosity | Reduced ionic conductivity; slower ion transport; electrolyte freezing/salt precipitation | Difficult desolvation process; degraded battery kinetics; performance deterioration |
Cathode Materials | Slowed ion diffusion | Reduced Na+ diffusion rate in cathode bulk | Compromised structural stability |
Anode Materials | Interfacial instability | Sodium metal deposition; unstable solid electrolyte interphase (SEI) film | Disrupted electrical contact; performance degradation |
Electrode/Electrolyte Interface | Reduced compatibility | Poor electrolyte/electrode compatibility; increased charge transfer resistance | Severe polarization during cycling; reduced efficiency/cycle stability; capacity fade |
Overall Failure Mechanism | Coupled multi-factor effects | Blocked Na+ diffusion (bulk, electrolyte, SEI); inefficient interfacial charge transfer | Comprehensive kinetic decline; significant capacity/lifetime reduction |
Performance Metrics | Polyanionic Materials | Layered Transition Metal Oxides | Prussian Blue Analogs |
---|---|---|---|
Cycling Stability | Na3MnTi(PO4)3@rGO-KB: 111.4 mAh/g at −30 °C; Na-rich Na4V2(PO4)3 full-cell: 55.1 mAh/g at −30 °C. | Modified LiCoO2 (Li-ion battery): 179.2 mAh/g at −25 °C, but low-temperature data for Na-ion TMOs are limited. | FeVO-PBA maintains high capacity across −60–80 °C (exact values unspecified); Ba2+-embedded PBA: 83.41 mAh/g at 6C (temperature unspecified). |
Rate Performance | Na3MnTi(PO4)3@rGO-KB: 85.3% capacity retention after 1000 cycles at −30 °C; K/Co co-doped NVP: 70.41% retention after 500 cycles. | Modified LiCoO2: 91% capacity retention after 300 cycles at −25 °C. | FeVO-PBA: stable over 30,000 cycles; Ba2+-embedded PBA: 96.6% retention after 150 cycles. |
Structural Stability | NMTP@rGO-KB exhibits high-rate capability at −30 °C (specific values unspecified). | No data on low-temperature rate performance for Na-ion TMOs. | FeVO-PBA: 56.1 mAh/g at 100C; Ba2+-embedded PBA: 83.41 mAh/g at 6C |
Energy Density | High stability due to NASICON framework; enhanced by carbon coating/doping. | Prone to interfacial side reactions and cracks; stabilized by surface coatings. | Open 3D framework may retain crystal water; stabilized by cation intercalation. |
Energy Density | Relatively low energy density. | High energy density (e.g., LiCoO2: >250 Wh/kg). | FeVO-PBA full-cell: 259.7 Wh/kg. |
Low-Temperature Adaptability | Modified NVP operates at −50–80 °C. | Modified TMOs perform well at −25 °C, but Na-ion system data are limited. | PBAs function across −60–80 °C. |
Additive Category | Specific Name | Role/Mechanism | Performance Enhancement | Research Team |
---|---|---|---|---|
Solvent-based additives | CaCl2 | Reduce the freezing point of the electrolyte and improve ionic conductivity at low temperatures. | Ionic conductivity of 7.13 mS cm−1 at −50 °C; capacity retention of 86.7% after 1000 cycles of full battery at −30 °C. | Zhu [129] |
Film-forming additives | ES | Optimization of Na+ solvation structure to reduce desolvation energy and interfacial impedance. | Capacity retention of 88.2% for 200 cycles at 0.1 C. | Zhong [130] |
Film-forming additives | FEC + Sn(OTf)2 | Catalyzes the PC ring-opening reaction and enhances sodium ion migration. | QSPE ionic conductivity 0.42 mS cm−1; cycling stability of soft pack battery at −20 °C. | Yang [131] |
Conductivity-enhancing additives | MeTHF | Induced anion/π-dominated solvation structures stabilize ion transport channels. | Coulomb efficiencies exceed 99% at −25 °C and −40 °C. | Ge [132] |
Stabilizing additives | HFT + LiNO3 | Synergistic dissolution of LiNO3 to form a Li3N/LiF-rich SEI layer. | Enhanced low-temperature interfacial stability of lithium systems. | Jang [133] |
Stabilizing additives | [Li(15-crown-5)]NO3 | In situ generation of highly ion-conducting Li3N interfacial layers. | No capacity degradation for 250 cycles of Li||LiCoO2 cells at −20 °C. | He [134] |
Stabilizing additives | PQA-NO3 | Cations build inorganic SEIs, and anions form low-solvation structures. | At −85 °C, a soft-pack battery retains 48.1% room temperature capacity; 3.0 C-multiplier high-rate discharge at −50 °C. | Zhang [135] |
Strategy Category | Specific Approach | Initial Capacity (mAh g−1) | Capacity Retention | Operating Temperature (°C) | Cycle Life (Cycles) | References |
---|---|---|---|---|---|---|
Electrolyte Optimization | ||||||
Solvent Regulation | Methyl propionate (MP)-FEC electrolyte | 109.6 (0.1C) | 89% | −25 | 500 | Liu et al. [33] |
THF-TPP mixed ether electrolyte | N/A | 94.1% | −40 | 100 | Yin et al. [47] | |
Sodium Salt Engineering | NaTFPB additive in diglyme | N/A | N/A | −20 | N/A | Hu et al. [115] |
Additives | Ethylene sulfate in carbonate electrolyte | N/A | 88.2% | −40 | 200 | Zhong’s team [130] |
Cathode Materials | ||||||
Polyanionic (NASICON) | K-doped Na3V2(PO4)3 (NVP-K0.05) | 72 (2C) | N/A | −25 | N/A | Shen et al. [64] |
Layered Oxide | P2-type Na0.696Ni0.329Mn0.671O2 | N/A | N/A | −30 | N/A | Liu et al. [68] |
Prussian Blue Analogs | Co0.7Ni0.3-PBA | 109 | N/A | −30 | N/A | Zhang et al. [73] |
Anode Materials | ||||||
Hard Carbon (HC) | Zn-doped HC | 443 | 85% | −40 | 400 | Lu et al. [78] |
Alloy-Based | Sb@graphene composites | 265 | 63.7% | −20 | 100 | Huang et al. [84] |
Conversion-Type | FeS@graphitic carbon | 311 | N/A | −25 | 80 | Fan et al. [92] |
Interface Engineering | ||||||
SEI/CEI Modification | Na2Se/V heterointerface layer | N/A | 86.5% | −40 | 700 | Xia et al. [151] |
Fluorinated cyclophosphazene (PFPN) additive | N/A | ~85% | 0 | 450 | Zhang et al. [98] | |
Solvation Structure | Weakly solvated ether (MeTHF) electrolyte | 243.2 (HC) | N/A | −60 | N/A | Fang et al. [107] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Huang, S.; Liu, L.; Han, C.; Tian, C.; Wang, Y.; Li, T.; Zhao, D.; Sui, Y. Solvation Structure and Interface Engineering Synergy in Low-Temperature Sodium-Ion Batteries: Advances and Prospects. Nanomaterials 2025, 15, 820. https://doi.org/10.3390/nano15110820
Huang S, Liu L, Han C, Tian C, Wang Y, Li T, Zhao D, Sui Y. Solvation Structure and Interface Engineering Synergy in Low-Temperature Sodium-Ion Batteries: Advances and Prospects. Nanomaterials. 2025; 15(11):820. https://doi.org/10.3390/nano15110820
Chicago/Turabian StyleHuang, Shengchen, Lin Liu, Chenchen Han, Chao Tian, Yongjian Wang, Tianlin Li, Danyang Zhao, and Yanwei Sui. 2025. "Solvation Structure and Interface Engineering Synergy in Low-Temperature Sodium-Ion Batteries: Advances and Prospects" Nanomaterials 15, no. 11: 820. https://doi.org/10.3390/nano15110820
APA StyleHuang, S., Liu, L., Han, C., Tian, C., Wang, Y., Li, T., Zhao, D., & Sui, Y. (2025). Solvation Structure and Interface Engineering Synergy in Low-Temperature Sodium-Ion Batteries: Advances and Prospects. Nanomaterials, 15(11), 820. https://doi.org/10.3390/nano15110820