Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (64)

Search Parameters:
Keywords = solution blow spinning

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
20 pages, 4236 KiB  
Article
Study of PVP and PLA Systems and Fibers Obtained by Solution Blow Spinning for Chlorhexidine Release
by Oliver Rosas, Manuel Acevedo and Itziar Vélaz
Polymers 2025, 17(13), 1839; https://doi.org/10.3390/polym17131839 - 30 Jun 2025
Viewed by 345
Abstract
Antimicrobial resistance arises from treatment non-adherence and ineffective delivery systems. Optimal wound dressings combine localized drug release, exudate management, and bacterial encapsulation through hydrogel-forming nanofibers for enhanced therapy. In this work, polylactic acid (PLA) and polyvinylpyrrolidone (PVP) fibers loaded with chlorhexidine (CHX) were [...] Read more.
Antimicrobial resistance arises from treatment non-adherence and ineffective delivery systems. Optimal wound dressings combine localized drug release, exudate management, and bacterial encapsulation through hydrogel-forming nanofibers for enhanced therapy. In this work, polylactic acid (PLA) and polyvinylpyrrolidone (PVP) fibers loaded with chlorhexidine (CHX) were developed using Solution Blow Spinning (SBS), a scalable electrospinning alternative that enables in situ deposition. Molecular interactions between CHX and polymers in solution (by UV-Vis and fluorescence spectroscopy) and in solid state (by FTIR, XRD and thermal analysis) were studied. The morphology of the polymeric fibers was determined by optical microscopy, showing that PVP fibers are thinner (1625 nm) and more uniform than those of PLA (2237 nm). Finally, drug release from single-polymer fibers discs, overlapping fibers discs (PLA/PVP/PLA and PVP/PLA/PVP), and solid dispersions was determined by UV-Vis spectrometry. PVP-based fibers exhibited faster CHX release due to their hydrophilic nature, while PLA fibers proved sustained release, attributed to their hydrophobic matrix. This study highlights the potential of PLA/PVP-CHX fibers made from SBS as advanced wound dressings, combining biocompatibility and personalized drug delivery, offering a promising platform for localized and controlled antibiotic delivery. Full article
Show Figures

Figure 1

15 pages, 4002 KiB  
Article
Preparation of Composite Nanofiber Membranes via Solution Blow Spinning and Solution Impregnation Method for CO2 Capture
by Kaiwen Yang, Yun Wang, Changshun Zhu, Weiguang Wu and Xuefei Fan
Materials 2025, 18(10), 2303; https://doi.org/10.3390/ma18102303 - 15 May 2025
Viewed by 444
Abstract
Carbon dioxide (CO2) capture is a pivotal technology for achieving the goal of carbon neutrality. This paper proposes a novel process, SBS + SI, which integrates Solution Blow Spinning (SBS) and Solution Impregnation Method (SI), using polyamide 66 (PA66) as the [...] Read more.
Carbon dioxide (CO2) capture is a pivotal technology for achieving the goal of carbon neutrality. This paper proposes a novel process, SBS + SI, which integrates Solution Blow Spinning (SBS) and Solution Impregnation Method (SI), using polyamide 66 (PA66) as the carrier material and high-purity tetraethylenepentamine (TEPA) as the modifier, to fabricate nanofiber adsorption membranes with varying carrier structures and modifier component loadings. The CO2 adsorption performance and pore structure of the adsorbents were investigated using characterization techniques, such as Scanning Electron Microscopy (SEM), Thermogravimetric Analysis (TGA), Brunauer-Emmett-Teller (BET) surface area and pore size analysis, and Fourier Transform Infrared Spectroscopy (FT-IR). The results indicate that as the mass fraction of TEPA increases, the pores in the nanofiber membranes gradually decrease, while the CO2 adsorption capacity significantly increases. The PA66 nanofiber membrane achieves peak CO2 capture performance (44.7 mg/g at 25 °C) at 15% TEPA loading. Meanwhile, the composite nanofiber membranes also exhibit outstanding CO2/N2 selectivity with a separation factor reaching 28. Thermal regeneration tests at 90 °C confirm the composite’s outstanding cyclic stability and regenerability, demonstrating its potential for practical carbon capture applications. These findings suggest that the nanofiber adsorbents prepared by the SBS + SI process have broad application prospects in the field of CO2 capture. Full article
(This article belongs to the Section Advanced Composites)
Show Figures

Graphical abstract

14 pages, 5342 KiB  
Article
Hot-Air Spinning Technology Enables the High-Efficiency Production of Nanofiber
by Guo-Dong Zhang, Yuan Gao, Pi-Hang Yu, Chao Zhang, Chuan-Hui Guo, Seeram Ramakrishna, Yun-Ze Long and Jun Zhang
Nanomaterials 2025, 15(8), 578; https://doi.org/10.3390/nano15080578 - 11 Apr 2025
Viewed by 510
Abstract
Water is the most environmentally friendly solvent; however, conventional solution spinning using water as a solvent is challenging due to its low evaporation rate. We developed a double-pronged solution blow spinning (DP-SBS) system. This spinning technique significantly enhances solvent evaporation, and the designed [...] Read more.
Water is the most environmentally friendly solvent; however, conventional solution spinning using water as a solvent is challenging due to its low evaporation rate. We developed a double-pronged solution blow spinning (DP-SBS) system. This spinning technique significantly enhances solvent evaporation, and the designed structure (double-pronged) avoids the common problem of needle clogging caused by heating. DP-SBS enables high-yield production of water-soluble polymer nanofibers, with a production rate of up to 5.94 g/h, which far exceeds what can be achieved with traditional electrospinning or solution blow spinning. This method is also highly efficient for producing non-water-soluble polymer nanofibers, achieving a production rate of up to 7.91 g/h, the highest reported value to date. Additionally, this approach can be used to produce not only common two-dimensional fiber membranes but also fiber sponges in a single step using the double-pronged airflow system. For the first time, chitosan nanofiber sponges were successfully produced and demonstrated to have excellent hemostatic properties in medical hemostasis. This method can also be extended to the production of other 3D nanomaterials, such as mullite nanofiber sponges, which exhibit outstanding thermal insulation performance at high temperatures. Full article
Show Figures

Figure 1

20 pages, 6578 KiB  
Article
Hydrotalcite Supported on Polycaprolactone:Poly(methyl methacrylate) Fiber Membranes for Chlorogenic Acid Removal
by Andressa Cristina de Almeida Nascimento, João Otávio Donizette Malafatti, Maria Luiza Lopes Sierra e Silva, Ailton José Moreira, Adriana Coatrini Thomazi, Simone Quaranta and Elaine Cristina Paris
Water 2025, 17(7), 931; https://doi.org/10.3390/w17070931 - 22 Mar 2025
Viewed by 568
Abstract
Polyphenols are organic molecules extracted from various fruits, such as coffee and citrus, that possess biological activity and antioxidant properties. However, the presence of polyphenols in the environment is hazardous to water quality and living health. Among a variety of water remediation methods, [...] Read more.
Polyphenols are organic molecules extracted from various fruits, such as coffee and citrus, that possess biological activity and antioxidant properties. However, the presence of polyphenols in the environment is hazardous to water quality and living health. Among a variety of water remediation methods, adsorption remains a staple in the field. Therefore, this work aims to develop porous polycaprolactone: poly(methyl methacrylate) (PCL:PMMA) membranes as a support for hydrotalcite immobilization for the removal of chlorogenic acid polyphenol (CGA) from aqueous solutions. Due to the hydrophilic nature of hydrotalcite, the adsorbent was functionalized with hexadecyltrimethylammonium bromide (CTAB) to increase its affinity for CGA, resulting in a removal efficiency of approximately 96%. Composite fiber membranes were prepared by solution-blowing spinning with specific amounts of hydrotalcite added (i.e., 1 to 60 wt%). A 3:1 PCL:PMMA blend resulted in superior mechanical traction (0.8 MPa) and stress deformation (70%) compared to pure PCL (0.7 MPa and 37%) and PMMA (0.1 MPa and 5%) fibers. PCL:PMMA membranes with 60% LDH-CTAB exhibited CGA removal rates equal to 55% in the first cycle while maintaining the capacity to remove 30% of the polyphenol after five consecutive reuses. Removal rates up to 90% could also be achieved with an appropriate adsorbent dose (2 g L−1). Adsorption was found to follow pseudo-second-order kinetics and was adequately described by the Langmuir model, saturating LDH-CTAB active sites in four hours. PCL:PMMA:LDH-CTAB composites can be considered a potential alternative to support adsorbents for water remediation. Full article
Show Figures

Graphical abstract

33 pages, 12074 KiB  
Article
PVP as an Oxygen Vacancy-Inducing Agent in the Development of Black 45S5 Bioactive Glass Fibrous Scaffolds Doped with Zn and Mg Using A-HSBS
by Keila C. Costa, Maria Geórgia da S. Andrade, Rondinele N. de Araujo, Adegildo R. de Abreu Junior, Marianna V. Sobral, Juan Carlos R. Gonçalves, Bianca V. Sousa, Gelmires A. Neves and Romualdo R. Menezes
Materials 2025, 18(6), 1340; https://doi.org/10.3390/ma18061340 - 18 Mar 2025
Cited by 1 | Viewed by 715
Abstract
Currently, there is an increasing demand for advanced materials that can address the needs of tissue engineering and have the potential for use in treatments targeting tumor cells, such as black bioactive materials in photothermal therapy. Thus, 3D fibrous scaffolds of black 45S5 [...] Read more.
Currently, there is an increasing demand for advanced materials that can address the needs of tissue engineering and have the potential for use in treatments targeting tumor cells, such as black bioactive materials in photothermal therapy. Thus, 3D fibrous scaffolds of black 45S5 bioactive glass were produced using the air-heated solution blow spinning (A-HSBS) technique, with polyvinylpyrrolidone (PVP) serving as a spinning aid and an oxygen vacancy-inducing agent. Glass powder with the same composition was synthesized via the sol-gel route for comparison. The samples were characterized using thermogravimetric analysis, X-ray diffraction, FTIR spectroscopy, and scanning electron microscopy, along with in vitro tests using simulated body fluid (SBF), phosphate-buffered saline (PBS), and TRIS solution. The results showed that PVP enhanced oxygen vacancy formation and stabilized the scaffolds at 600 °C. Doping with Zn and Mg ions reduced crystallization while significantly increasing the fiber diameters. Scaffolds doped with Zn exhibited lower degradation rates, delayed apatite formation, and hindered ionic release. Conversely, Mg ions facilitated greater interaction with the medium and rapid apatite formation, completely covering the fibers. The scaffolds showed no cytotoxicity in the MTT assay at concentrations of up to 200 µg/mL for HaCat cells and 0.8 mg/mL for L929 cells. This study demonstrated the effectiveness of using PVP in the production of black bioactive glass scaffolds, highlighting their potential for bone regeneration. Full article
(This article belongs to the Special Issue Materials for Drug Delivery and Medical Engineering)
Show Figures

Figure 1

17 pages, 3668 KiB  
Article
High-Efficiency Adsorption Removal of Congo Red Dye from Water Using Magnetic NiFe2O4 Nanofibers: An Efficient Adsorbent
by Hellen C. T. Firmino, Emanuel P. Nascimento, Keila C. Costa, Luis C. C. Arzuza, Rondinele N. Araujo, Bianca V. Sousa, Gelmires A. Neves, Marco A. Morales and Romualdo R. Menezes
Materials 2025, 18(4), 754; https://doi.org/10.3390/ma18040754 - 8 Feb 2025
Cited by 4 | Viewed by 1100 | Correction
Abstract
The pollution caused by organic dyes in water bodies has become a major environmental issue, and removing such pernicious dyes presents an immense challenge for the scientific community and governments. In this study, a sorbent based on nickel ferrite (NiFe2O4 [...] Read more.
The pollution caused by organic dyes in water bodies has become a major environmental issue, and removing such pernicious dyes presents an immense challenge for the scientific community and governments. In this study, a sorbent based on nickel ferrite (NiFe2O4) fibers was fabricated by the solution blow spinning (SBS) method for the adsorptive removal of anionic Cong red (CR) dye. The cubic–spinel structure and the magnetic and porous nature of NiFe2O4 were confirmed by XRD, magnetometry, BET, and SEM analyses. The saturation magnetization confirmed the magnetic nature of the fibers, which favorably respond to an external magnetic field, facilitating separation from a treated solution. The sorption kinetics of CR on NiFe2O4 were best described by the pseudo-second-order model, while sorption equilibrium agreed best with the Freundlich, Langmuir, Sips, and Temkin isotherm models, suggesting a complex mechanism involving chemisorption, monolayer coverage, and heterogeneous adsorption. The NiFe2O4 fibers annealed at 500 °C showed a high CR removal efficiency of ~97% after only 30 min. The sorbent’s porous structure and high specific surface area were responsible for the improved removal efficiency. Finally, the results indicated the potential of the NiFe2O4 fibers in the remediation of water contaminated with Congo red dye. Full article
(This article belongs to the Special Issue Nanoarchitectonics in Materials Science, Second Edition)
Show Figures

Figure 1

14 pages, 5236 KiB  
Article
High-Efficiency and Low-Resistance Melt-Blown/Electrospun PLA Composites for Air Filtration
by Yongmei Guo, Mingzhu Wu, Xiaojian Ye, Shengchao Wei, Luming Huang and Hailing Guo
Polymers 2025, 17(3), 424; https://doi.org/10.3390/polym17030424 - 6 Feb 2025
Cited by 2 | Viewed by 1328
Abstract
Biodegradable polylactic acid (PLA) was used to fabricate nonwoven fabrics via the melt blowing process, followed by electrospinning to deposit a nanofiber membrane. This composite process yielded PLA melt-blown/electrospun composite materials with excellent filtration performance. The effects of the solution concentration and spinning [...] Read more.
Biodegradable polylactic acid (PLA) was used to fabricate nonwoven fabrics via the melt blowing process, followed by electrospinning to deposit a nanofiber membrane. This composite process yielded PLA melt-blown/electrospun composite materials with excellent filtration performance. The effects of the solution concentration and spinning duration on the composite structure and material performance were investigated. The optimal composite was produced using a 10 wt.% PLA spinning solution prepared with a solvent mixture of dichloromethane (DCM) and N, N-dimethylformamide (DMF) in a 75/25 weight ratio. The process parameters included a spinning duration of 5 h, 18 kV voltage, 1.5 mL/h flow rate, and 12 cm collection distance. The resulting composite achieved a filtration efficiency of 98.7%, a pressure drop of 142 Pa, an average pore size of 5 μm, and a contact angle of 138.7°. These results provided optimal process parameters for preparing PLA melt-blown/electrospun composite filtration materials. This study highlights the potential of hydrophobic PLA composites with high filtration efficiency and low air resistance as environmentally friendly alternatives to traditional non-degradable filtration materials. Full article
Show Figures

Graphical abstract

30 pages, 3654 KiB  
Review
Protein and Polysaccharide Fibers via Air Jet Spinning: Emerging Techniques for Biomedical and Sustainable Applications
by Varsha Prahaladan, Nagireddy Poluri, Makara Napoli, Connor Castro, Kerem Yildiz, Brea-Anna Berry-White, Ping Lu, David Salas-de la Cruz and Xiao Hu
Int. J. Mol. Sci. 2024, 25(24), 13282; https://doi.org/10.3390/ijms252413282 - 11 Dec 2024
Viewed by 1526
Abstract
Polymers play a critical role in the biomedical and sustainable materials fields, serving as key resources for both research and product development. While synthetic and natural polymers are both widely used, synthetic polymers have traditionally dominated due to their ability to meet the [...] Read more.
Polymers play a critical role in the biomedical and sustainable materials fields, serving as key resources for both research and product development. While synthetic and natural polymers are both widely used, synthetic polymers have traditionally dominated due to their ability to meet the specific material requirements of most fiber fabrication methods. However, synthetic polymers are derived from non-renewable resources, and their production raises environmental and health concerns. Natural polymers, on the other hand, are derived from renewable biological sources and include a subset known as biopolymers, such as proteins and polysaccharides, which are produced by living organisms. These biopolymers are naturally abundant and offer benefits such as biodegradability and non-toxicity, making them especially suitable for biomedical and green applications. Recently, air jet spinning has emerged as a promising method for fabricating biopolymer fibers, valued for its simplicity, cost-effectiveness, and safety—advantages that stand out compared to the more conventional electrospinning process. This review examines the methods and mechanisms of air jet spinning, drawing on empirical studies and practical insights to highlight its advantages over traditional fiber production techniques. By assembling natural biopolymers into micro- and nanofibers, this novel fabrication method demonstrates strong potential for targeted applications, including tissue engineering, drug delivery, air filtration, food packaging, and biosensing, utilizing various protein and polysaccharide sources. Full article
(This article belongs to the Collection Feature Papers in 'Macromolecules')
Show Figures

Figure 1

13 pages, 5759 KiB  
Article
Impact of Micro- and Nanocellulose Coating on Properties of Wool Fabric by Using Solution Blow Spinning
by Yi Zhang, Abu Naser Md Ahsanul Haque and Maryam Naebe
Fibers 2024, 12(12), 107; https://doi.org/10.3390/fib12120107 - 5 Dec 2024
Viewed by 1115
Abstract
This study investigates the impact of micro- and nanocellulose coatings on the properties of wool fabrics using the solution blow spinning technique. The objective is to assess how varying cellulose sizes influence key fabric attributes, including physical properties, UV-shielding ability, air permeability and [...] Read more.
This study investigates the impact of micro- and nanocellulose coatings on the properties of wool fabrics using the solution blow spinning technique. The objective is to assess how varying cellulose sizes influence key fabric attributes, including physical properties, UV-shielding ability, air permeability and water vapour permeability, with a focus on their practical applications. Coating with microcrystalline cellulose (MCC) was found to increase the air permeability of fabric significantly, whereas coating with cellulose nanocrystals (CNCs) enhanced water vapour permeability and reduced pore size. The air permeability could relate to the breathability, and water vapour permeability could relate to the comfortability. Coated fabric with both sizes of cellulose could have different applications, like pollen filtration and printable cloth, and further functionality could be achieved by modifying the cellulose structure. This research establishes a platform for the effective application of cellulose coatings on wool fabric, offering promising advancements for textile performance and sustainability. Full article
Show Figures

Figure 1

23 pages, 5418 KiB  
Review
Key Advances in Solution Blow Spinning of Polylactic-Acid-Based Materials: A Prospective Study on Uses and Future Applications
by Nataša Nikolić, Dania Olmos and Javier González-Benito
Polymers 2024, 16(21), 3044; https://doi.org/10.3390/polym16213044 - 29 Oct 2024
Cited by 2 | Viewed by 1937
Abstract
Solution blow spinning (SBS) is a versatile and cost-effective technique for producing nanofibrous materials. It is based on the principles of other spinning methods as electrospinning (ES), which creates very thin and fine fibers with controlled morphologies. Polylactic acid (PLA), a biodegradable and [...] Read more.
Solution blow spinning (SBS) is a versatile and cost-effective technique for producing nanofibrous materials. It is based on the principles of other spinning methods as electrospinning (ES), which creates very thin and fine fibers with controlled morphologies. Polylactic acid (PLA), a biodegradable and biocompatible polymer derived from renewable resources, is widely used in biomedical fields, environmental protection, and packaging. This review provides a theoretical background for PLA, focusing on its properties that are associated with structural characteristics, such as crystallinity and thermal behavior. It also discusses various methods for producing fibrous materials, with particular emphasis on ES and SBS and on describing in more detail the main properties of the SBS method, along with its processing conditions and potential applications. Additionally, this review examines the properties of nanofibrous materials, particularly PLA-based nanofibers, and the new applications for which it is thought that they may be more useful, such as drug delivery systems, wound healing, tissue engineering, and food packaging. Ultimately, this review highlights the potential of the SBS method and PLA-based nanofibers in various new applications and suggests future research directions to address existing challenges and further enhance the SBS method and the quality of fibrous materials. Full article
(This article belongs to the Section Polymer Applications)
Show Figures

Figure 1

18 pages, 5236 KiB  
Article
Highly Porous 3D Nanofibrous Scaffold of Polylactic Acid/Polyethylene Glycol/Calcium Phosphate for Bone Regeneration by a Two-Step Solution Blow Spinning (SBS) Facile Route
by Vanderlane Cavalcanti da Silva, Déborah dos Santos Gomes, Eudes Leonan Gomes de Medeiros, Adillys Marcelo da Cunha Santos, Isabela Lemos de Lima, Taciane Pedrosa Rosa, Flaviana Soares Rocha, Leticia de Souza Castro Filice, Gelmires de Araújo Neves and Romualdo Rodrigues Menezes
Polymers 2024, 16(21), 3041; https://doi.org/10.3390/polym16213041 - 29 Oct 2024
Cited by 3 | Viewed by 1581
Abstract
This work presents the successful production of highly porous 3D nanofibrous hybrid scaffolds of polylactic acid (PLA)/polyethylene glycol (PEG) blends with the incorporation of calcium phosphate (CaP) bioceramics by a facile two-step process using the solution blow spinning (SBS) technique. CaP nanofibers were [...] Read more.
This work presents the successful production of highly porous 3D nanofibrous hybrid scaffolds of polylactic acid (PLA)/polyethylene glycol (PEG) blends with the incorporation of calcium phosphate (CaP) bioceramics by a facile two-step process using the solution blow spinning (SBS) technique. CaP nanofibers were obtained at two calcium/phosphorus (Ca/P) ratios, 1.67 and 1.1, by SBS and calcination at 1000 °C. They were incorporated in PLA/PEG blends by SBS at 10 and 20 wt% to form 3D hybrid cotton-wool-like scaffolds. Morphological analysis showed that the fibrous scaffolds obtained had a randomly interconnected and highly porous structure. Also, the mean fiber diameter ranged from 408 ± 141 nm to 893 ± 496 nm. Apatite deposited considerably within 14 days in a simulated body fluid (SBF) test for hybrid scaffolds containing a mix of hydroxyapatite (HAp) and tri-calcium phosphate-β (β-TCP) phases. The scaffolds with 20 wt% CaP and a Ca/P ration of 1.1 showed better in vitro bioactivity to induce calcium mineralization for bone regeneration. Cellular tests evidenced that the developed scaffolds can support the osteogenic differentiation and proliferation of pre-osteoblastic MC3T3-E1 cells into mature osteoblasts. The results showed that the developed 3D scaffolds have potential applications for bone tissue engineering. Full article
(This article belongs to the Special Issue Biodegradable Polymers in Sustainable and Biomedical Applications)
Show Figures

Graphical abstract

19 pages, 4350 KiB  
Article
Magnetic Nanoparticles in Biopolymer Fibers: Fabrication Techniques and Characterization Methods
by Mariana Bianchini Silva, Ulisses Oliveira Costa, Luiz Henrique Capparelli Mattoso, Sergio Neves Monteiro, Michele Lemos de Souza and Letícia Vitorazi
Polymers 2024, 16(19), 2805; https://doi.org/10.3390/polym16192805 - 3 Oct 2024
Cited by 2 | Viewed by 1285
Abstract
Hybrid nanocomposites combining biopolymer fibers incorporated with nanoparticles (NPs) have received increasing attention due to their remarkable characteristics. Inorganic NPs are typically chosen for their properties, such as magnetism and thermal or electrical conductivity, for example. Meanwhile, the biopolymer fiber component is a [...] Read more.
Hybrid nanocomposites combining biopolymer fibers incorporated with nanoparticles (NPs) have received increasing attention due to their remarkable characteristics. Inorganic NPs are typically chosen for their properties, such as magnetism and thermal or electrical conductivity, for example. Meanwhile, the biopolymer fiber component is a backbone, and could act as a support structure for the NPs. This shift towards biopolymers over traditional synthetic polymers is motivated by their sustainability, compatibility with biological systems, non-toxic nature, and natural decomposition. This study employed the solution blow spinning (SBS) method to obtain a nanocomposite comprising poly(vinyl pyrrolidone), PVA, and gelatin biodegradable polymer fibers incorporated with magnetic iron oxide nanoparticles coated with poly(acrylic acid), PAA2k, coded as γ-Fe2O3-NPs-PAA2k. The fiber production process entailed a preliminary investigation to determine suitable solvents, polymer concentrations, and spinning parameters. γ-Fe2O3-NPs were synthesized via chemical co-precipitation as maghemite and coated with PAA2k through the precipitation–redispersion protocol in order to prepare γ-Fe2O3-NPs-PAA2k. Biopolymeric fibers containing coated NPs with sub-micrometer diameters were obtained, with NP concentrations ranging from 1.0 to 1.7% wt. The synthesized NPs underwent characterization via dynamic light scattering, zeta potential analysis, and infrared spectroscopy, while the biopolymer fibers were characterized through scanning electron microscopy, infrared spectroscopy, and thermogravimetric analysis. Overall, this study demonstrates the successful implementation of SBS for producing biopolymeric fibers incorporating iron oxide NPs, where the amalgamation of materials demonstrated superior thermal behavior to the plain polymers. The thorough characterization of the NPs and fibers provided valuable insights into their properties, paving the way for their potential applications in various fields such as biomedical engineering, environmental remediation, and functional materials. Full article
(This article belongs to the Special Issue Physicochemical Properties of Polymer Composites)
Show Figures

Figure 1

15 pages, 2735 KiB  
Review
Challenges Associated with the Production of Nanofibers
by Lebo Maduna and Asis Patnaik
Processes 2024, 12(10), 2100; https://doi.org/10.3390/pr12102100 - 27 Sep 2024
Cited by 18 | Viewed by 3615
Abstract
Nanofibers, with their high surface area-to-volume ratio and unique physical properties, hold significant promise for a wide range of applications, including medical devices, filtration systems, packaging, electronics, and advanced textiles. However, their development and commercialization are hindered by several key challenges and hazards. [...] Read more.
Nanofibers, with their high surface area-to-volume ratio and unique physical properties, hold significant promise for a wide range of applications, including medical devices, filtration systems, packaging, electronics, and advanced textiles. However, their development and commercialization are hindered by several key challenges and hazards. The main issues are production cost and yield, high voltage, clogging, and toxic materials driven by complex production techniques, which limit their adoption. Additionally, there are environmental and health concerns associated with nanofiber production and disposal, necessitating the development of safer and more sustainable processes and materials. Addressing these challenges requires continued innovation in materials science and industrial practices, as well as a concerted effort to balance production, material, and surrounding condition parameters. This study emphasizes the challenges and hazards associated with nanofiber materials and their production techniques, including electrospinning, centrifugal spinning, solution blow spinning, electro-blown spinning, wet spinning, and melt spinning. It also emphasizes biopolymers and recycling as sustainable and eco-friendly practices to avoid harming the environment and human beings. Full article
(This article belongs to the Section Materials Processes)
Show Figures

Figure 1

15 pages, 7922 KiB  
Article
UV Resistance and Wetting of PLA Webs Obtained by Solution Blow Spinning
by Denys Baklan, Anna Bilousova and Miroslaw Wesolowski
Polymers 2024, 16(17), 2428; https://doi.org/10.3390/polym16172428 - 27 Aug 2024
Cited by 2 | Viewed by 1337
Abstract
In this work, the resistance of polylactide-based non-wovens produced by solution blow spinning to environmental factors was investigated. An average contact angle of up to 136° was achieved with an average fiber diameter of 340 nm at the optimal material density and nozzle–substrate [...] Read more.
In this work, the resistance of polylactide-based non-wovens produced by solution blow spinning to environmental factors was investigated. An average contact angle of up to 136° was achieved with an average fiber diameter of 340 nm at the optimal material density and nozzle–substrate distance. When exposed to ultraviolet (UV) radiation, the polylactide non-wovens rapidly lose their hydrophobic properties due to changes in surface morphology resulting from fiber melting. It was demonstrated that the influence of surface structural features on hydrophobicity is greater than that of the material itself. The stability of the wetting properties under UV irradiation was assessed using the derivative parameters of the Owens–Wendt technique, which can serve as an additional method for estimating surface polarity. Full article
(This article belongs to the Section Circular and Green Sustainable Polymer Science)
Show Figures

Figure 1

12 pages, 3147 KiB  
Article
Influence of Fast Drying on the Morphology of α-Fe2O3 and FeMnO3/α-Fe2O3 Fibers Produced by Solution Blow Spinning
by Lara Nágela Lopes Cavalcante Barros, Rondinele Nunes de Araujo, Emanuel Pereira do Nascimento, Alexandre José de Almeida Gama, Gelmires Araújo Neves, Marco Antonio Morales Torres and Romualdo Rodrigues Menezes
Nanomaterials 2024, 14(3), 304; https://doi.org/10.3390/nano14030304 - 2 Feb 2024
Cited by 1 | Viewed by 1373
Abstract
α-Fe2O3 and FeMnO3/α-Fe2O3 fibers were successfully prepared via Solution Blow Spinning (SBS). The effect of drying during the SBS process on fiber morphology was evaluated by scanning electron microscopy (SEM), transmission electron microscopy (TEM), and [...] Read more.
α-Fe2O3 and FeMnO3/α-Fe2O3 fibers were successfully prepared via Solution Blow Spinning (SBS). The effect of drying during the SBS process on fiber morphology was evaluated by scanning electron microscopy (SEM), transmission electron microscopy (TEM), and N2 adsorption–desorption isotherms. A slow drying promoted continuous fibers with rough surfaces and lower average diameters. However, fast drying enabled the production of fibers with low densification and many surface pores with higher BET-specific surface areas. The porous fibers produced have potential applications in energy generation and storage. Full article
Show Figures

Figure 1

Back to TopTop