Study of PVP and PLA Systems and Fibers Obtained by Solution Blow Spinning for Chlorhexidine Release
Abstract
1. Introduction
2. Materials and Methods
2.1. Material
2.2. Molecular Interactions in Solution
2.2.1. Ultraviolet Visible Spectroscopy (UV-Vis)
2.2.2. Fluorescence Spectroscopy
2.3. Molecular Interactions in Solid State
2.3.1. Preparation and Characterization of Solid Dispersions (SD)
2.3.2. Fourier Transform Infrared Spectroscopy (FTIR)
2.3.3. X-Ray Diffraction (XRD)
2.3.4. Thermogravimetric Analysis (TGA)
2.3.5. Differential Scanning Calorimetry (DSC)
2.4. Fiber Processing
2.4.1. Morphological Analysis
2.4.2. Chlorhexidine Release Assays from Solid Dispersions and Fibers
2.5. Mathematical Models
3. Results and Discussion
3.1. Molecular Interactions in Solution
3.1.1. Ultraviolet Visible Spectroscopy (UV-Vis)
3.1.2. Fluorescence Spectroscopy
3.2. Molecular Interactions in Solid State
3.2.1. Fourier Transform Infrared Spectroscopy (FTIR)
3.2.2. X-Ray Diffraction (XRD)
3.2.3. Thermogravimetric Analysis (TGA)
3.2.4. Differential Scanning Calorimetry (DSC)
3.3. Characterization of PVP and PLA Fibers
3.3.1. Morphological Analysis
3.3.2. Chlorhexidine Release Assays from Solid Dispersions
3.3.3. Chlorhexidine Release Assays from Fiber Discs
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
PVP | Polyvinylpyrrolidone |
PLA | Polylactic acid |
CHX | Chlorhexidine |
PM | Physical mixture |
SD | Solid dispersions |
SBS | Solution Blow Spinning |
PVA | Polyvinyl alcohol |
PCL | Polycaprolactone |
ES | Electrospinning |
UV-Vis | Ultraviolet Visible Spectroscopy |
FTIR | Fourier Transform Infrared Spectroscopy |
XRD | X-Ray Diffraction |
TGA | Thermogravimetric Analysis |
DSC | Differential Scanning Calorimetry |
References
- Ding, D.; Wang, B.; Zhang, X.; Zhang, J.; Zhang, H.; Liu, X.; Gao, Z.; Yu, Z. The Spread of Antibiotic Resistance to Humans and Potential Protection Strategies. Ecotoxicol. Environ. Saf. 2023, 254, 114734. [Google Scholar] [CrossRef]
- Abbas, A.; Barkhouse, A.; Hackenberger, D.; Wright, G.D. Antibiotic Resistance: A Key Microbial Survival Mechanism That Threatens Public Health. Cell Host Microbe 2024, 32, 837–851. [Google Scholar] [CrossRef]
- Zhuang, M.; Achmon, Y.; Cao, Y.; Liang, X.; Chen, L.; Wang, H.; Siame, B.A.; Leung, K.Y. Distribution of Antibiotic Resistance Genes in the Environment. Environ. Pollut. 2021, 285, 117402. [Google Scholar] [CrossRef]
- Levy, S.B.; Bonnie, M. Antibacterial Resistance Worldwide: Causes, Challenges and Responses. Nat. Med. 2004, 10, S122–S129. [Google Scholar] [CrossRef]
- Abdelkader, H.; Fathalla, Z.; Seyfoddin, A.; Farahani, M.; Thrimawithana, T.; Allahham, A.; Alani, A.W.G.; Al-Kinani, A.A.; Alany, R.G. Polymeric Long-Acting Drug Delivery Systems (LADDS) for Treatment of Chronic Diseases: Inserts, Patches, Wafers, and Implants. Adv. Drug Deliv. Rev. 2021, 177, 113957. [Google Scholar] [CrossRef]
- Boateng, J.S.; Matthews, K.H.; Stevens, H.N.E.; Eccleston, G.M. Wound Healing Dressings and Drug Delivery Systems: A Review. J. Pharm. Sci. 2008, 97, 2892–2923. [Google Scholar] [CrossRef]
- Liu, X.; Xu, H.; Zhang, M.; Yu, D.G. Electrospun Medicated Nanofibers for Wound Healing: Review. Membranes 2021, 11, 770. [Google Scholar] [CrossRef]
- Abdulghani, S.; Mitchell, G.R. Biomaterials for in Situ Tissue Regeneration: A Review. Biomolecules 2019, 9, 750. [Google Scholar] [CrossRef]
- Gao, C. Polymeric Biomaterials for Tissue Regeneration, 2nd ed.; Springer Nature: Singapore, 2023. [Google Scholar] [CrossRef]
- Whitaker, R.; Hernaez-Estrada, B.; Hernandez, R.M.; Santos-Vizcaino, E.; Spiller, K.L. Immunomodulatory Biomaterials for Tissue Repair. Chem. Rev. 2021, 121, 11305–11335. [Google Scholar] [CrossRef]
- Carriles, J.; Nguewa, P.; González-Gaitano, G. Advances in Biomedical Applications of Solution Blow Spinning. Int. J. Mol. Sci. 2023, 24, 14757. [Google Scholar] [CrossRef]
- Marcello, E.; Chiono, V. Biomaterials-Enhanced Intranasal Delivery of Drugs as a Direct Route for Brain Targeting. Int. J. Mol. Sci. 2023, 24, 3390. [Google Scholar] [CrossRef]
- Ranakoti, L.; Gangil, B.; Bhandari, P.; Singh, T.; Sharma, S.; Singh, J.; Singh, S. Promising Role of Polylactic Acid as an Ingenious Biomaterial in Scaffolds, Drug Delivery, Tissue Engineering, and Medical Implants: Research Developments, and Prospective Applications. Molecules 2023, 28, 485. [Google Scholar] [CrossRef] [PubMed]
- Facklam, A.L.; Volpatti, L.R.; Anderson, D.G. Biomaterials for Personalized Cell Therapy. Adv. Mater. 2020, 32, 1902005. [Google Scholar] [CrossRef] [PubMed]
- Yang, F.; Shi, K.; Jia, Y.P.; Hao, Y.; Peng, J.R.; Qian, Z.Y. Advanced Biomaterials for Cancer Immunotherapy. Acta Pharmacol. Sin. 2020, 41, 911–927. [Google Scholar] [CrossRef]
- Farkas, N.I.; Marincaș, L.; Barbu-Tudoran, L.; Barabás, R.; Turdean, G.L. Investigation of the Real-Time Release of Doxycycline from PLA-Based Nanofibers. J. Funct. Biomater. 2023, 14, 331. [Google Scholar] [CrossRef]
- Razzak, M.; Dewi, S.; Lely, H.; Taty, E. The Characterization of Dressing Component Materials and Radiation Formation of PVA±PVP Hydrogel. Radiat. Phys. Chem. 1999, 55, 153–165. [Google Scholar] [CrossRef]
- Dong, W.H.; Liu, J.X.; Mou, X.J.; Liu, G.S.; Huang, X.W.; Yan, X.; Ning, X.; Russell, S.J.; Long, Y.Z. Performance of Polyvinyl Pyrrolidone-Isatis Root Antibacterial Wound Dressings Produced in Situ by Handheld Electrospinner. Colloids Surf. B Biointerfaces 2020, 188, 110766. [Google Scholar] [CrossRef] [PubMed]
- Luo, Y.; Hong, Y.; Shen, L.; Wu, F.; Lin, X. Multifunctional Role of Polyvinylpyrrolidone in Pharmaceutical Formulations. AAPS PharmSciTech 2021, 22, 34. [Google Scholar] [CrossRef]
- de Albuquerque, T.L.; Marques Júnior, J.E.; de Queiroz, L.P.; Ricardo, A.D.S.; Rocha, M.V.P. Polylactic Acid Production from Biotechnological Routes: A Review. Int. J. Biol. Macromol. 2021, 186, 933–951. [Google Scholar] [CrossRef]
- Chen, T.; Zhao, X.; Weng, Y. Self-Assembled Polylactic Acid (PLA): Synthesis, Properties and Biomedical Applications. Front. Chem. 2023, 10, 1107620. [Google Scholar] [CrossRef]
- Hussain, M.; Khan, S.M.; Shafiq, M.; Abbas, N. A Review on PLA-Based Biodegradable Materials for Biomedical Applications. Giant 2024, 18, 100261. [Google Scholar] [CrossRef]
- Liang, R.; Yang, X.; Yew, P.Y.M.; Sugiarto, S.; Zhu, Q.; Zhao, J.; Loh, X.J.; Zheng, L.; Kai, D. PLA-Lignin Nanofibers as Antioxidant Biomaterials for Cartilage Regeneration and Osteoarthritis Treatment. J. Nanobiotechnology 2022, 20, 327. [Google Scholar] [CrossRef]
- Di Cristo, F.; Valentino, A.; De Luca, I.; Peluso, G.; Bonadies, I.; Calarco, A.; Di Salle, A. PLA Nanofibers for Microenvironmental-Responsive Quercetin Release in Local Periodontal Treatment. Molecules 2022, 27, 2205. [Google Scholar] [CrossRef] [PubMed]
- Farah, S.; Anderson, D.G.; Langer, R. Physical and Mechanical Properties of PLA, and Their Functions in Widespread Applications—A Comprehensive Review. Adv. Drug Deliv. Rev. 2016, 107, 367–392. [Google Scholar] [CrossRef]
- Czarnecka, K.; Wojasiński, M.; Ciach, T.; Sajkiewicz, P. Solution Blow Spinning of Polycaprolactone-Rheological Determination of Spinnability and the Effect of Processing Conditions on Fiber Diameter and Alignment. Materials 2021, 14, 1463. [Google Scholar] [CrossRef]
- Monsores, K.G.d.C.; Oliveira da Silva, A.; Oliveira, S.d.S.A.; Weber, R.P.; Dias, M.L. Production of Nanofibers from Solution Blow Spinning (SBS). J. Mater. Res. Technol. 2022, 16, 1824–1831. [Google Scholar] [CrossRef]
- Omran, N.; Elnabawy, E.; Le, B.; Trabelsi, M.; Gamal, M.; Kandas, I.; Hassanin, A.H.; Shyha, I.; Shehata, N. Solution Blow Spun Piezoelectric Nanofibers Membrane for Energy Harvesting Applications. React. Funct. Polym. 2022, 179, 105365. [Google Scholar] [CrossRef]
- Domínguez, J.E.; Kasiri, A.; González-Benito, J. Wettability Behavior of Solution Blow Spun Polysulfone by Controlling Morphology. J. Appl. Polym. Sci. 2021, 138, 50200. [Google Scholar] [CrossRef]
- Abdel-Sayed, P.; Tornay, D.; Hirt-Burri, N.; de Buys Roessingh, A.; Raffoul, W.; Applegate, L.A. Implications of Chlorhexidine Use in Burn Units for Wound Healing. Burns 2020, 46, 1150–1156. [Google Scholar] [CrossRef]
- Brown, J.L.; Townsend, E.; Short, R.D.; Williams, C.; Woodall, C.; Nile, C.J.; Ramage, G. Assessing the Inflammatory Response to in Vitro Polymicrobial Wound Biofilms in a Skin Epidermis Model. npj Biofilms Microbiomes 2022, 8, 19. [Google Scholar] [CrossRef]
- Maziere, M.; Rompante, P.; Andrade, J.C.; Rodrigues, C.F. Are Mouthwashes Really Effective against Candida spp.? J. Fungi 2024, 10, 528. [Google Scholar] [CrossRef]
- Mohammadi, Z.; Abbott, P.V. The Properties and Applications of Chlorhexidine in Endodontics. Int. Endod. J. 2009, 42, 288–302. [Google Scholar] [CrossRef] [PubMed]
- de Carvalho, L.D.; Peres, B.U.; Shen, Y.; Haapasalo, M.; Maezono, H.; Manso, A.P.; Ko, F.; Jackson, J.; Carvalho, R.M. Chlorhexidine-Containing Electrospun Polymeric Nanofibers for Dental Applications: An In Vitro Study. Antibiotics 2023, 12, 1414. [Google Scholar] [CrossRef]
- Bardoňová, L.; Mamulová Kutláková, K.; Kotzianová, A.; Kulhánek, J.; Židek, O.; Velebný, V.; Tokarský, J. Electrospinning of Fibrous Layers Containing an Antibacterial Chlorhexidine/Kaolinite Composite. ACS Appl. Bio Mater. 2020, 3, 3028–3038. [Google Scholar] [CrossRef] [PubMed]
- Chen, Z.J.; Lv, J.C.; Wang, Z.G.; Wang, F.Y.; Huang, R.H.; Zheng, Z.L.; Xu, J.Z.; Wang, J. Polycaprolactone Electrospun Nanofiber Membrane with Sustained Chlorohexidine Release Capability against Oral Pathogens. J. Funct. Biomater. 2022, 13, 280. [Google Scholar] [CrossRef]
- Pouponneau, P.; Perrey, O.; Brunon, C.; Grossiord, C.; Courtois, N.; Salles, V.; Alves, A. Electrospun Bioresorbable Membrane Eluting Chlorhexidine for Dental Implants. Polymers 2020, 12, 66. [Google Scholar] [CrossRef] [PubMed]
- Zhou, S.; Liu, Z.; Jin, Y.; Huang, Y.; Fang, Y.; Tian, H.; Wu, H. Poly (Lactic Acid) Electrospun Nanofiber Membranes: Advanced Characterization for Biomedical Applications with Drug Loading Performance Studies. Int. J. Biol. Macromol. 2024, 281, 136188. [Google Scholar] [CrossRef]
- Bonan, R.F.; Bonan, P.R.F.; Batista, A.U.D.; Perez, D.E.C.; Castellano, L.R.C.; Oliveira, J.E.; Medeiros, E.S. Poly(Lactic Acid)/Poly(Vinyl Pyrrolidone) Membranes Produced by Solution Blow Spinning: Structure, Thermal, Spectroscopic, and Microbial Barrier Properties. J. Appl. Polym. Sci. 2017, 134. [Google Scholar] [CrossRef]
- Scaffaro, R.; Settanni, L.; Gulino, E.F. Release Profiles of Carvacrol or Chlorhexidine of PLA/Graphene Nanoplatelets Membranes Prepared Using Electrospinning and Solution Blow Spinning: A Comparative Study. Molecules 2023, 28, 1967. [Google Scholar] [CrossRef]
- Arakawa, T.; Gagnon, P. Excluded Cosolvent in Chromatography. J. Pharm. Sci. 2018, 107, 2297–2305. [Google Scholar] [CrossRef]
- Rahman, Z.; Dharani, S.; Khuroo, T.; Khan, M.A. Potential Application of USP Paddle and Basket Dissolution Methods in Discriminating for Portioned Moist Snuff and Snus Smokeless Tobacco Products. AAPS PharmSciTech 2021, 22, 51. [Google Scholar] [CrossRef]
- Duckworth, P.F.; Maddocks, S.E.; Rahatekar, S.S.; Barbour, M.E. Alginate Films Augmented with Chlorhexidine Hexametaphosphate Particles Provide Sustained Antimicrobial Properties for Application in Wound Care. J. Mater. Sci. Mater. Med. 2020, 31, 33. [Google Scholar] [CrossRef] [PubMed]
- Costa, P.; Sousa Lobo, J.M. Evaluation of Mathematical Models Describing Drug Release from Estradiol Transdermal Systems. Drug Dev. Ind. Pharm. 2003, 29, 89–97. [Google Scholar] [CrossRef] [PubMed]
- Laracuente, M.L.; Yu, M.H.; McHugh, K.J. Zero-Order Drug Delivery: State of the Art and Future Prospects. J. Control. Release 2020, 327, 834–856. [Google Scholar] [CrossRef]
- Machín, R.; Isasi, J.R.; Vélaz, I. Hydrogel Matrices Containing Single and Mixed Natural Cyclodextrins. Mech. Drug Release Eur. Polym. J. 2013, 49, 3912–3920. [Google Scholar] [CrossRef]
- Makoid, M.C.; Makoid, M.C.; Dufoure, A.; Banakar, U.V. Modelling of Dissolution Behaviour of Controlled Release Systems. STP Pharma Prat. 1993, 3, 49. [Google Scholar]
- Maria, G.; Berger, D.; Nastase, S.; Luta, I. Kinetic Studies on the Irinotecan Release Based on Structural Properties of Functionalized Mesoporous-Silica Supports. Microporous Mesoporous Mater. 2012, 149, 25–35. [Google Scholar] [CrossRef]
- Peppas, N.A.; Sahlin, J.J. A Simple Equation for the Description of Solute Release. III. Coupling of Diffusion and Relaxation. Int. J. Pharm. 1989, 57, 169–172. [Google Scholar] [CrossRef]
- Zhang, Y.; Huo, M.; Zhou, J.; Zou, A.; Li, W.; Yao, C.; Xie, S. DDSolver: An Add-in Program for Modeling and Comparison of Drug Dissolution Profiles. AAPS J. 2010, 12, 263–271. [Google Scholar] [CrossRef]
- Skoog, D.; Holler, F.; Crouch, S. Principles of Instrumental Analysis, 6th ed.; Brooks Cole: Belmont, CA, USA, 2007. [Google Scholar]
- Aqeel, Y.; Siddiqui, R.; Anwar, A.; Shah, M.R.; Khan, N.A. Gold Nanoparticle Conjugation Enhances the Antiacanthamoebic Effects of Chlorhexidine. Antimicrob. Agents Chemother. 2016, 60, 1283–1288. [Google Scholar] [CrossRef]
- Carolina, M.; Bravo, B.; Villalobos, S.M.; Jara, M.N.; Yévenes López, I. Saline Solution in the Formation of Para-Chloroaniline in the Reaction Between Chlorhexidine and Sodium Hypochlorite. EC Dent. Sci. 2017, 8, 217–224. [Google Scholar]
- Kim, G.M.; Le, K.H.T.; Giannitelli, S.M.; Lee, Y.J.; Rainer, A.; Trombetta, M. Electrospinning of PCL/PVP Blends for Tissue Engineering Scaffolds. J. Mater. Sci. Mater. Med. 2013, 24, 1425–1442. [Google Scholar] [CrossRef]
- Aldeen Salaymeh, E.; Steinberg, D.; Abu Ammar, A. Chlorhexidine-Loaded Microneedles for Treatment of Oral Diseases. Int. J. Pharm. 2025, 670, 125143. [Google Scholar] [CrossRef] [PubMed]
- Jahangiri, A.; Khalilzad, F.; Barghi, L. Dissolution Improvement of Binary Solid Dispersions of Erlotinib Prepared by One-Step Electrospray Method. Biol. Methods Protoc. 2022, 7, bpac001. [Google Scholar] [CrossRef]
- Mendes, J.F.; Norcino, L.B.; Corrêa, T.Q.; Barbosa, T.V.; Paschoalin, R.T.; Mattoso, L.H.C. Obtaining Poly (Lactic Acid) Nanofibers Encapsulated with Peppermint Essential Oil as Potential Packaging via Solution-Blow-Spinning. Int. J. Biol. Macromol. 2023, 230, 123424. [Google Scholar] [CrossRef]
- Priyadarshini, B.M.; Selvan, S.T.; Narayanan, K.; Fawzy, A.S. Characterization of Chlorhexidine-Loaded Calcium-Hydroxide Microparticles as a Potential Dental Pulp-Capping Material. Bioengineering 2017, 4, 59. [Google Scholar] [CrossRef]
- Maiti, K.S. Ultrafast N–H Vibrational Dynamics of Hydrogen-Bonded Cyclic Amide Reveal by 2DIR Spectroscopy. Chem. Phys. 2018, 515, 509–512. [Google Scholar] [CrossRef]
- Cortés, M.E.; Cortés, C.; Rubén, R.; Sinisterra, D.; Avila-Campos, M.J.; Tortamano, N.; Rocha, R.G. The Chlorhexidine:β-Cyclodextrin Inclusion Compound: Preparation, Characterization and Microbiological Evaluation. J. Incl. Phenom. Macrocycl. Chem. 2001, 40, 297–302. [Google Scholar] [CrossRef]
- Ataei, M.; Afrasiabi Garekani, H.; Alizadeh Sani, M.; Julian McClements, D.; Sadeghi, F. Evaluation of Polyvinyl Pyrrolidone Nanofibers for Encapsulation, Protection, and Release of Curcumin: Impact on in Vitro Bioavailability. J. Mol. Liq. 2024, 397, 124115. [Google Scholar] [CrossRef]
- Nanaki, S.; Barmpalexis, P.; Iatrou, A.; Christodoulou, E.; Kostoglou, M.; Bikiaris, D.N. Risperidone Controlled Release Microspheres Based on Poly(Lactic Acid)-Poly(Propylene Adipate) Novel Polymer Blends Appropriate for Long Acting Injectable Formulations. Pharmaceutics 2018, 10, 130. [Google Scholar] [CrossRef]
- Sun, R.; Zhang, J.; Whiley, R.A.; Sukhorukov, G.B.; Cattell, M.J. Synthesis, Drug Release, and Antibacterial Properties of Novel Dendritic Chx-Srcl2 and Chx-Zncl2 Particles. Pharmaceutics 2021, 13, 1799. [Google Scholar] [CrossRef] [PubMed]
- Steckiewicz, K.P.; Cieciórski, P.; Barcińska, E.; Jaśkiewicz, M.; Narajczyk, M.; Bauer, M.; Kamysz, W.; Megiel, E.; Inkielewicz-Stepniak, I. Silver Nanoparticles as Chlorhexidine and Metronidazole Drug Delivery Platforms: Their Potential Use in Treating Periodontitis. Int. J. Nanomed. 2022, 17, 495–517. [Google Scholar] [CrossRef] [PubMed]
- Onetto, D.; Correa, V.; Araya, P.; Yévenes, I.; Neira, M. Efecto Del Ultrasonido Endodóntico Sobre Clorhexidina al 2% En La Formación de Paracloroanilina. Estudio in Vitro. Rev. Clínica Periodoncia Implantol. Rehabil. Oral 2015, 8, 185–191. [Google Scholar] [CrossRef]
- Lewandowska, K.; Szulc, M. Miscibility Studies on Carboxymethyl Chitosan and Poly(N-Vinylpyrrolidone) Mixtures. Int. J. Biol. Macromol. 2023, 248, 125985. [Google Scholar] [CrossRef] [PubMed]
- Frone, A.N.; Popa, M.S.; Uşurelu, C.D.; Panaitescu, D.M.; Gabor, A.R.; Nicolae, C.A.; Raduly, M.F.; Zaharia, A.; Alexandrescu, E. Bio-Based Poly(Lactic Acid)/Poly(Butylene Sebacate) Blends with Improved Toughness. Polymers 2022, 14, 3998. [Google Scholar] [CrossRef]
- Kurakula, M.; Rao, G.S.N.K. Pharmaceutical Assessment of Polyvinylpyrrolidone (PVP): As Excipient from Conventional to Controlled Delivery Systems with a Spotlight on COVID-19 Inhibition. J. Drug Deliv. Sci. Technol. 2020, 60, 102046. [Google Scholar] [CrossRef]
- Cao, M.; Cui, T.; Yue, Y.; Li, C.; Guo, X.; Jia, X.; Wang, B. Investigation of Carbon Fiber on the Tensile Property of FDM-Produced PLA Specimen. Polymers 2022, 14, 5230. [Google Scholar] [CrossRef]
- Hammannavar, P.B.; Baraker, B.M.; Bhajantri, R.F.; Ravindrachary, V.; Lobo, B. DBS Investigation on Films of Cobalt Chloride Doped PVA-PVP Blend. J. Phys. Conf. Ser. 2015, 618, 012034. [Google Scholar] [CrossRef]
- Cao, Y.; Shen, C.; Yang, Z.; Cai, Z.; Deng, Z.; Wu, D. Polycaprolactone/Polyvinyl Pyrrolidone Nanofibers Developed by Solution Blow Spinning for Encapsulation of Chlorogenic Acid. Food Qual. Saf. 2022, 6, fyac014. [Google Scholar] [CrossRef]
- Gajić, I.; Stojanović, S.; Ristić, I.; Ilić-Stojanović, S.; Pilić, B.; Nešić, A.; Najman, S.; Dinić, A.; Stanojević, L.; Urošević, M.; et al. Electrospun Poly(Lactide) Fibers as Carriers for Controlled Release of Biochanin A. Pharmaceutics 2022, 14, 528. [Google Scholar] [CrossRef]
Compound/System | Mass Loss (%) | Maximum Peak Temperature (°C) | |
CHX | 27.15 | 209.2 | |
52.35 | 472.7 | ||
PVP | 5.317 88.10 | 87.40 437.7 | |
CHX:PVP | 30:70 | 17.43 | 231.3 |
63.84 | 438.9 | ||
40:60 | 18.12 | 222.8 | |
58.03 | 439.7 | ||
50:50 | 6.199 | 108.0 | |
18.48 | 224.7 | ||
62.04 | 442.8 | ||
50:50 PM | 13.98 | 216.9 | |
71.71 | 439.1 | ||
PLA | 4.739 94.28 | 108.2 366.2 | |
CHX:PLA | 30:70 | 72.12 | 317.8 |
16.01 | 440.8 | ||
9.061 | 575.3 | ||
40:60 | 4.581 | 88.96 | |
51.82 | 279.9 | ||
25.52 | 439.9 | ||
50:50 | 51.68 | 304.1 | |
30.36 | 443.0 | ||
50:50 PM | 63.57 | 308.5 | |
15.32 | 444.1 |
Compound/System | Onset (°C) | Endset (°C) | Peak Temperature (°C) | Enthalpy (J/g) | |
CHX | 132.2 | 143.3 | 136.0 | 94.26 | |
PVP | 156.9 | 190.3 | 163.9 | 159.8 | |
150.6 | 157.2 | 153.1 | 4.249 | ||
CHX:PVP | 30:70 | 66.58 | 67.68 | 71.83 | 10.27 |
146.4 | 147.6 | 150.5 | 23.96 | ||
40:60 | 70.01 | 71.72 | 75.34 | 10.38 | |
147.7 | 148.5 | 150.1 | 7.910 | ||
50:50 | 63.93 | 77.62 | 72.87 | 8.280 | |
50:50 PM | 121.7 | 122.3 | 126.4 | 22.50 | |
161.7 | 162.1 | 164.0 | 45.96 | ||
PLA | 154.8 | 168.1 | 163.4 | 30.30 | |
CHX:PLA | 30:70 | 123.6 | 146.7 | 140.4 | 26.82 |
40:60 | 133.7 | 151.2 | 146.3 | 19.88 | |
50:50 | 126.1 | 147.8 | 140.3 | 14.87 | |
50:50 PM | 128.0 | 138.2 | 133.7 | 13.36 | |
155.6 | 169.0 | 163.2 | 18.58 |
Polymer Drug:Polumer | Korsmeyer–Peppas | Higuchi | Zero Order | First Order | Makoid–Banakar | Peppas–Sahlin | ||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
kKP × 102 | n | R2 | kH × 102 | R2 | k0 × 102 | R2 | k1 × 102 | R2 | kMB × 102 | n | c × 102 | R2 | kD × 102 | kR | m | R2 | ||
CHX | 2.96 ± 0.23 | 0.56 ± 0.01 | 0.994 | 5.99 ± 0.14 | 0.962 | 0.50 ± 0.02 | 0.880 | 0.98 ± 0.03 | 0.983 | 2.27 ± 0.38 | 0.73 ± 0.05 | 0.08 ± 0.04 | 0.994 | 2.21 ± 0.36 | - | 0.74 ± 0.04 | 0.994 | |
PVP | 30:70 | 3.09 ± 0.18 | 0.64 ± 0.01 | 0.996 | 5.98 ± 0.14 | 0.964 | 0.50 ± 0.02 | 0.875 | 1.02 ± 0.03 | 0.990 | 2.18 ± 0.20 | 0.75 ± 0.03 | 0.12 ± 0.03 | 0.998 | 2.17 ± 0.18 | - | 0.76 ± 0.02 | 0.998 |
40:60 | 24.20 ± 1.30 | 0.27 ± 0.01 | 0.970 | 8.34 ± 0.41 | 0.574 | 0.62 ± 0.08 | - | 3.61 ± 0.32 | 0.815 | 19.40 ± 1.20 | 0.35 ± 0.02 | 0.13 ± 0.03 | 0.987 | 20.40 ± 1.00 | - | 0.39 ± 0.02 | 0993 | |
50:50 | 36.00 ± 3.80 | 0.21 ± 0.02 | 0.872 | 9.41 ± 0.84 | 0.043 | 0.67 ± 0.13 | - | 8.95 ± 0.82 | 0.918 | 26.90 ± 2.80 | 0.34 ± 0.03 | 0.26 ± 0.05 | 0.955 | 29.90 ± 2.70 | - | 0.38 ± 0.03 | 0.971 | |
50:50 PM | 28.70 ± 4.80 | 0.25 ± 0.04 | 0.848 | 9.02 ± 0.67 | 0.488 | 0.67 ± 0.11 | - | 6.62 ± 0.46 | 0.965 | 18.1 ± 3.7 | 0.44 ± 0.07 | 0.33 ± 0.09 | 0.928 | 19.60 ± 3.70 | - | 0.47 ± 0.05 | 0.931 | |
PLA | 30:70 | 82.20 ± 1.40 | 0.04 ± 0.01 | 0.992 | 9.57 ± 1.72 | - | 0.60 ± 0.18 | - | 63.20 ± 9.40 | 0.940 | 79.40 ± 1.60 | 0.06 ± 0.01 | 0.04 ± 0.01 | 0.995 | 105.00 ± 3.00 | - | 0.13 ± 0.01 | 0.997 |
40:60 | 69.20 ± 2.10 | 0.07 ± 0.01 | 0.984 | 9.23 ± 1.36 | - | 0.60 ± 0.16 | - | 22.00 ± 2.40 | 0.920 | 64.20 ± 2.70 | 0.10 ± 0.02 | 0.06 ± 0.03 | 0.989 | 75.00 ± 4.50 | - | 0.18 ± 0.02 | 0.992 | |
50:50 | 77.00 ± 0.40 | 0.05 ± 0.01 | 0.999 | 9.66 ± 1.32 | - | 0.65 ± 0.16 | - | 32.60 ± 4.60 | 0.914 | 76.60 ± 0.50 | 0.05 ± 0.01 | 0.01 ± 0.01 | 0.999 | 89.30 ± 1.30 | - | 0.06 ± 0.02 | 0.999 |
Polymer/System | Korsmeyer–Peppas | Higuchi | Zero Order | First Order | Makoid–Banakar | Peppas–Sahlin | |||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
kKP | n | R2 | kH | R2 | k0 | R2 | k1 | R2 | kMB | n | c x 102 | R2 | kD | kR | m | R2 | |
PVP | 1.84 ± 0.14 | 0.74 ± 0.02 | 0.994 | 5.71 ± 0.21 | 0.918 | 0.51 ± 0.02 | 0.940 | 0.91 ± 0.03 | 0.974 | 1.36 ± 0.22 | 0.83 ± 0.04 | 0.09 ± 0.04 | 0.995 | 1.31 ± 0.19 | - | 0.85 ± 0.04 | 0.995 |
PLA | 24.5 ± 0.80 | 0.20 ± 0.01 | 0.996 | 4.17 ± 0.63 | 0.139 | 0.12 ± 0.04 | - | 2.64 ± 0.54 | 0.705 | 22.40 ± 0.70 | 0.23 ± 0.01 | 0.01 ± 0.01 | 0.999 | 22.30 ± 0.80 | - | 0.27 ± 0.01 | 0.999 |
PVP/PLA/PVP | 11.20 ± 0.90 | 0.42 ± 0.02 | 0.972 | 7.70 ± 0.17 | 0.949 | 0.62 ± 0.05 | 0.319 | 2.10 ± 0.07 | 0.978 | 6.18 ± 0.42 | 0.62 ± 0.02 | 0.27 ± 0.02 | 0.996 | 6.34 ± 0.38 | - | 0.64 ± 0.02 | 0995 |
PLA/PVP/PLA | 3.90 ± 0.18 | 0.46 ± 0.01 | 0.995 | 3.19 ± 0.04 | 0.990 | 0.12 ± 0.02 | 0.258 | 0.35 ± 0.02 | 0.898 | 4.72 ± 0.35 | 0.42 ± 0.02 | - | 0.997 | 4.59 ± 1.54 | 0.68 ± 1.51 | 0.32 ± 0.10 | 0.997 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Rosas, O.; Acevedo, M.; Vélaz, I. Study of PVP and PLA Systems and Fibers Obtained by Solution Blow Spinning for Chlorhexidine Release. Polymers 2025, 17, 1839. https://doi.org/10.3390/polym17131839
Rosas O, Acevedo M, Vélaz I. Study of PVP and PLA Systems and Fibers Obtained by Solution Blow Spinning for Chlorhexidine Release. Polymers. 2025; 17(13):1839. https://doi.org/10.3390/polym17131839
Chicago/Turabian StyleRosas, Oliver, Manuel Acevedo, and Itziar Vélaz. 2025. "Study of PVP and PLA Systems and Fibers Obtained by Solution Blow Spinning for Chlorhexidine Release" Polymers 17, no. 13: 1839. https://doi.org/10.3390/polym17131839
APA StyleRosas, O., Acevedo, M., & Vélaz, I. (2025). Study of PVP and PLA Systems and Fibers Obtained by Solution Blow Spinning for Chlorhexidine Release. Polymers, 17(13), 1839. https://doi.org/10.3390/polym17131839