Hot-Air Spinning Technology Enables the High-Efficiency Production of Nanofiber
Abstract
1. Introduction
2. Experimental Section
2.1. Materials
2.2. Characterization Methods
2.3. Computational Fluid Dynamics
2.4. Fiber Collector Devices
3. Results and Discussion
3.1. The Working Mechanism of DP-SBS
3.2. Universality, Reasonable Temperature, and Productivity of DP-SBS
3.3. Application Demonstration of Several Nanofiber Materials Prepared by DP-SBS
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Cheng, K.C.K.; Bedolla-Pantoja, M.A.; Kim, Y.K.; Gregory, J.V.; Xie, F.; de France, A.; Hussal, C.; Sun, K.; Abbott, N.L.; Lahann, J. Templated nanofiber synthesis via chemical vapor polymerization into liquid crystalline films. Science 2018, 362, 804–808. [Google Scholar] [CrossRef] [PubMed]
- Gu, J.F.; Li, F.C.; Zhu, Y.B.; Li, D.H.; Liu, X.; Wu, B.; Wu, H.A.; Fan, X.Q.; Ji, X.Y.; Chen, Y.S.; et al. Extremely Robust and Multifunctional Nanocomposite Fibers for Strain-Unperturbed Textile Electronics. Adv. Mater. 2023, 35, 12. [Google Scholar]
- Jin, X.H.; Price, M.B.; Finnegan, J.R.; Boott, C.E.; Richter, J.M.; Rao, A.; Menke, M.; Friend, R.H.; Whittell, G.R.; Manners, I. Long-range exciton transport in conjugated polymer nanofibers prepared by seeded growth. Science 2018, 360, 897–900. [Google Scholar] [CrossRef] [PubMed]
- Lee, S.; Leach, M.K.; Redmond, S.A.; Chong, S.Y.C.; Mellon, S.H.; Tuck, S.J.; Feng, Z.Q.; Corey, J.M.; Chan, J.R. A culture system to study oligodendrocyte myelination processes using engineered nanofibers. Nat. Methods 2012, 9, 917–922. [Google Scholar]
- Chen, S.H.; Qiu, L.; Cheng, H.M. Carbon-Based Fibers for Advanced Electrochemical Energy Storage Devices. Chem. Rev. 2020, 120, 2811–2878. [Google Scholar]
- Cheng, C.; Zhang, J.G.; Li, S.; Xia, Y.; Nie, C.X.; Shi, Z.Q.; Cuellar-Camacho, J.L.; Ma, N.; Haag, R. A Water-Processable and Bioactive Multivalent Graphene Nanoink for Highly Flexible Bioelectronic Films and Nanofibers. Adv. Mater. 2018, 30, 11. [Google Scholar] [CrossRef]
- Guo, J.R.; Fu, S.B.; Deng, Y.P.; Xu, X.; Laima, S.; Liu, D.Z.; Zhang, P.Y.; Zhou, J.; Zhao, H.; Yu, H.X.; et al. Hypocrystalline ceramic aerogels for thermal insulation at extreme conditions. Nature 2022, 606, 909–916. [Google Scholar] [CrossRef]
- Jin, J.; Lee, D.; Im, H.G.; Han, Y.C.; Jeong, E.G.; Rolandi, M.; Choi, K.C.; Bae, B.S. Chitin Nanofiber Transparent Paper for Flexible Green Electronics. Adv. Mater. 2016, 28, 5169–5175. [Google Scholar] [CrossRef]
- Jin, Q.; Guo, T.X.; Perez, N.; Yang, N.J.; Jiang, X.; Nielsch, K.; Reith, H. On-Chip Micro Temperature Controllers Based on Freestanding Thermoelectric Nano Films for Low-Power Electronics. Nano-Micro Lett. 2024, 16, 11. [Google Scholar] [CrossRef]
- Lee, S.; Hao, L.T.; Park, J.; Oh, D.X.; Hwang, D.S. Nanochitin and Nanochitosan: Chitin Nanostructure Engineering with Multiscale Properties for Biomedical and Environmental Applications. Adv. Mater. 2023, 35, 36. [Google Scholar]
- Smalyukh, I.I. Transparent aerogels reduce energy loss through building windows. Nat. Energy 2023, 8, 327–328. [Google Scholar]
- Sridhar, R.; Lakshminarayanan, R.; Madhaiyan, K.; Barathi, V.A.; Limh, K.H.C.; Ramakrishna, S. Electrosprayed nanoparticles and electrospun nanofibers based on natural materials: Applications in tissue regeneration, drug delivery and pharmaceuticals. Chem. Soc. Rev. 2015, 44, 790–814. [Google Scholar] [PubMed]
- Wang, S.; Jiang, F.; Xu, X.; Kuang, Y.D.; Fu, K.; Hitz, E.; Hu, L.B. Super-Strong, Super-Stiff Macrofibers with Aligned, Long Bacterial Cellulose Nanofibers. Adv. Mater. 2017, 29, 8. [Google Scholar]
- Zhou, Z.Q.; You, T.L.; Pan, Z.Y.; Wang, D.; Wang, H.; Wang, L.Y.; Xu, G.L.; Liang, Y.; Hu, J.; Tang, M. Trichome-Like Biomimetic Air Filters via Templated Silicone Nanofilaments. Adv. Mater. 2024, 36, 2311129. [Google Scholar]
- Lee, C.C.; Grenier, C.; Meijer, E.W.; Schenning, A. Preparation and characterization of helical self-assembled nanofibers. Chem. Soc. Rev. 2009, 38, 671–683. [Google Scholar]
- Liu, X.; Chen, C.F.; Ye, H.W.; Jia, Y.S.; Wu, Y.Y.; Jin, A.L.; Wang, Y.B.; Chen, X.S. One-step hydrothermal growth of carbon nanofibers and insitu assembly of Ag nanowire@carbon nanofiber@Ag nanoparticles ternary composites for efficient photocatalytic removal of organic pollutants. Carbon 2018, 131, 213–222. [Google Scholar]
- Wang, Y.Q.; Shi, Y.; Pan, L.J.; Yang, M.; Peng, L.L.; Zong, S.; Shi, Y.; Yu, G.H. Multifunctional Superhydrophobic Surfaces Templated from Innately Microstructured Hydrogel Matrix. Nano Lett. 2014, 14, 4803–4809. [Google Scholar]
- Banerji, A.; Jin, K.L.; Mahanthappa, M.K.; Bates, F.S.; Ellison, C.J. Porous Fibers Templated by Melt Blowing Cocontinuous Immiscible Polymer Blends. ACS Macro Lett. 2021, 10, 1196–1203. [Google Scholar]
- Jin, K.L.; Banerji, A.; Kitto, D.; Bates, F.S.; Ellison, C.J. Mechanically Robust and Recyclable Cross-Linked Fibers from Melt Blown Anthracene-Functionalized Commodity Polymers. ACS Appl. Mater. Interfaces 2019, 11, 12863–12870. [Google Scholar]
- Dzenis, Y. Spinning continuous fibers for nanotechnology. Science 2004, 304, 1917–1919. [Google Scholar] [CrossRef]
- Luo, C.J.; Stoyanov, S.D.; Stride, E.; Pelan, E.; Edirisinghe, M. Electrospinning versus fibre production methods: From specifics to technological convergence. Chem. Soc. Rev. 2012, 41, 4708–4735. [Google Scholar] [PubMed]
- Xue, J.J.; Wu, T.; Dai, Y.Q.; Xia, Y.N. Electrospinning and Electrospun Nanofibers: Methods, Materials, and Applications. Chem. Rev. 2019, 119, 5298–5415. [Google Scholar] [PubMed]
- Gao, Y.; Xiang, H.F.; Wang, X.X.; Yan, K.; Liu, Q.; Li, X.; Liu, R.Q.; Yu, M.; Long, Y.Z. A portable solution blow spinning device for minimally invasive surgery hemostasis. Chem. Eng. J. 2020, 387, 7. [Google Scholar]
- Gao, Y.; Zhang, J.; Su, Y.; Wang, H.; Wang, X.X.; Huang, L.P.; Yu, M.; Ramakrishna, S.; Long, Y.Z. Recent progress and challenges in solution blow spinning. Mater. Horizons 2021, 8, 426–446. [Google Scholar]
- Huang, Y.; Song, J.N.; Yang, C.; Long, Y.Z.; Wu, H. Scalable manufacturing and applications of nanofibers. Mater. Today 2019, 28, 98–113. [Google Scholar]
- Li, Z.W.; Cui, Z.W.; Zhao, L.H.; Hussain, N.; Zhao, Y.Z.; Yang, C.; Jiang, X.Y.; Li, L.; Song, J.A.; Zhang, B.P.; et al. High-throughput production of kilogram-scale nanofibers by Karman vortex solution blow spinning. Sci. Adv. 2022, 8, 9. [Google Scholar]
- Santos, A.M.C.; Medeiros, E.L.G.; Blaker, J.J.; Medeiros, E.S. Aqueous solution blow spinning of poly(vinyl alcohol) micro- and nanofibers. Mater. Lett. 2016, 176, 122–126. [Google Scholar]
- Lyu, N.; He, H.; Wang, F.; Liang, C.; Zhang, X. Droplet evaporation characteristics on heated superhydrophobic surface subjected to airflow. Int. J. Heat Mass Transf. 2021, 181, 121874. [Google Scholar]
- Akduman, C. Preparation and comparison of electrospun PEO/PTFE and PVA/PTFE nanofiber membranes for syringe filters. J. Appl. Polym. Sci. 2023, 140, 14. [Google Scholar]
- Chen, H.; Chen, X.H.; Chen, H.Y.; Liu, X.; Li, J.X.; Luo, J.; He, A.H.; Han, C.C.; Liu, Y.; Xu, S.S. Molecular Interaction, Chain Conformation, and Rheological Modification during Electrospinning of Hyaluronic Acid Aqueous Solution. Membranes 2020, 10, 217. [Google Scholar] [CrossRef]
- Dong, S.X.; Li, J.; Zhang, S.; Li, N.; Li, B.; Zhang, Q.L.; Ge, L.Q. Excellent microwave absorption of lightweight PAN-based carbon nanofibers prepared by electrospinning. Colloid Surf. A-Physicochem. Eng. Asp. 2022, 651, 8. [Google Scholar]
- Elishav, O.; Beilin, V.; Rozent, O.; Shter, G.E.; Grader, G.S. Thermal shrinkage of electrospun PVP nanofibers. J. Polym. Sci. Pt. B-Polym. Phys. 2018, 56, 248–254. [Google Scholar]
- Ergün, A.B.; Sevim, A.M.; Kiliç, A.; Gül, A. Metallophthalocyanine/polyacrylonitrile nanofibers by solution blow spinning technique for enhanced photocatalytic activity by visible light. J. Appl. Polym. Sci. 2021, 138, 9. [Google Scholar]
- Freire, L.A.; Lemos, A.C.C.; Miranda, K.W.E.; da Silva, J.P.; de Oliveira, J.E. Statistical optimization for preparing nanofibrous mats of polybutylene adipate co-terephthalate/poly(vinylpyrrolidone) blends by solution blow spinning. Polym. Eng. Sci. 2022, 62, 2511–2523. [Google Scholar] [CrossRef]
- Jalaja, K.; Bhuvaneswari, S.; Ganiga, M.; Divyamol, R.; Anup, S.; Cyriac, J.; George, B.K. Effective SERS detection using a flexible wiping substrate based on electrospun polystyrene nanofibers. Anal. Methods 2017, 9, 3998–4003. [Google Scholar]
- Jia, J.J.; Lin, Z.H.; Zhu, J.L.; Liu, Y.J.; Hu, Y.L.; Fang, K.J. Anti-adhesive and antibacterial chitosan/PEO nanofiber dressings with high breathability for promoting wound healing. Int. J. Biol. Macromol. 2024, 261, 13. [Google Scholar]
- Li, B.Y.; Liu, Y.H.; Wei, S.; Huang, Y.T.; Yang, S.W.; Xue, Y.; Xuan, H.Y.; Yuan, H.H. A Solvent System Involved Fabricating Electrospun Polyurethane Nanofibers for Biomedical Applications. Polymers 2020, 12, 3038. [Google Scholar] [CrossRef]
- Liu, R.Q.; Wang, X.X.; Fu, J.; Zhang, Q.Q.; Song, W.Z.; Xu, Y.; Chen, Y.Q.; Ramakrishna, S.; Long, Y.Z. Preparation of Nanofibrous PVDF Membrane by Solution Blow Spinning for Mechanical Energy Harvesting. Nanomaterials 2019, 9, 1090. [Google Scholar] [CrossRef]
- Natarelli, C.V.L.; de Barros, H.E.A.; Freitas, H.R.; Bufalo, T.C.E.; Dias, E.S.; de Oliveira, J.E.; Marconcini, J.M. PVA/zein nanofibers obtained by solution blow spinning. J. Mater. Sci. 2023, 58, 13518–13529. [Google Scholar]
- Nie, Y.L.; Zhang, S.H.; He, Y.; Zhang, L.Y.; Wang, Y.Q.; Li, S.S.; Wang, N. One-step modification of electrospun PVDF nanofiber membranes for effective separation of oil-water emulsion. New J. Chem. 2022, 46, 4734–4745. [Google Scholar]
- Oliveira, J.E.; Mattoso, L.H.C.; Orts, W.J.; Medeiros, E.S. Structural and Morphological Characterization of Micro and Nanofibers Produced by Electrospinning and Solution Blow Spinning: A Comparative Study. Adv. Mater. Sci. Eng. 2013, 2013, 14. [Google Scholar]
- Ramos, P.; Calvo-Correas, T.; Eceiza, A.; González-Benito, J. Nonwoven Mats Based on Segmented Biopolyurethanes Filled with MWCNT Prepared by Solution Blow Spinning. Polymers 2022, 14, 4175. [Google Scholar] [CrossRef] [PubMed]
- Surendhiran, D.; Cui, H.Y.; Lin, L. Encapsulation of Phlorotannin in Alginate/PEO blended nanofibers to preserve chicken meat from Salmonella contaminations. Food Packag. Shelf Life 2019, 21, 9. [Google Scholar]
- Varnaite-Zuravliova, S.; Savest, N.; Baltusnikaite-Guzaitiene, J.; Abraitiene, A.; Krumme, A. The Investigation of the Production of Salt-Added Polyethylene Oxide/Chitosan Nanofibers. Materials 2024, 17, 17. [Google Scholar]
- Wu, H.J.; Fan, J.T.; Qin, X.H.; Zhang, G. Thermal radiative properties of electrospun superfine fibrous PVA films. Mater. Lett. 2008, 62, 828–831. [Google Scholar]
- Zhang, H.; Wang, R.; Li, P.; Jia, L.N.; Wang, F.; Liu, Y.B.; Wang, H.; Yu, L.; Li, B. One-Step, Large-Scale Blow Spinning to Fabricate Ultralight, Fibrous Sorbents with Ultrahigh Oil Adsorption Capacity. ACS Appl. Mater. Interfaces 2021, 13, 6631–6641. [Google Scholar]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhang, G.-D.; Gao, Y.; Yu, P.-H.; Zhang, C.; Guo, C.-H.; Ramakrishna, S.; Long, Y.-Z.; Zhang, J. Hot-Air Spinning Technology Enables the High-Efficiency Production of Nanofiber. Nanomaterials 2025, 15, 578. https://doi.org/10.3390/nano15080578
Zhang G-D, Gao Y, Yu P-H, Zhang C, Guo C-H, Ramakrishna S, Long Y-Z, Zhang J. Hot-Air Spinning Technology Enables the High-Efficiency Production of Nanofiber. Nanomaterials. 2025; 15(8):578. https://doi.org/10.3390/nano15080578
Chicago/Turabian StyleZhang, Guo-Dong, Yuan Gao, Pi-Hang Yu, Chao Zhang, Chuan-Hui Guo, Seeram Ramakrishna, Yun-Ze Long, and Jun Zhang. 2025. "Hot-Air Spinning Technology Enables the High-Efficiency Production of Nanofiber" Nanomaterials 15, no. 8: 578. https://doi.org/10.3390/nano15080578
APA StyleZhang, G.-D., Gao, Y., Yu, P.-H., Zhang, C., Guo, C.-H., Ramakrishna, S., Long, Y.-Z., & Zhang, J. (2025). Hot-Air Spinning Technology Enables the High-Efficiency Production of Nanofiber. Nanomaterials, 15(8), 578. https://doi.org/10.3390/nano15080578