Impact of Micro- and Nanocellulose Coating on Properties of Wool Fabric by Using Solution Blow Spinning
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Preparation of CNCs, PVA Solution and Spray Solution
2.3. Spray Solution on Wool Fabric
2.4. Characterisations
3. Results
3.1. The Properties of Spray-Coated Fabric
3.2. The Morphology of the Sprayed Fabric
3.3. FTIR Spectrum of the Spared Fabric
3.4. Pore Size of the Sprayed Fabric
3.5. UV-Shielding Properties of the Spray-Coated Fabric
3.6. Air Permeability of the Spray-Coated Fabric
3.7. Water Vapour Permeability of the Spray-Coated Fabric
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Wen, O.Y.; Tohir, M.Z.M.; Yeaw, T.C.S.; Razak, M.A.; Zainuddin, H.S.; Hamid, M.R.A. Fire-resistant and flame-retardant surface finishing of polymers and textiles: A state-of-the-art review. Prog. Org. Coat. 2023, 175, 107330. [Google Scholar] [CrossRef]
- Attia, N.F.; Osama, R.; Elashery, S.E.; Kalam, A.; Al-Sehemi, A.G.; Algarni, H. Recent advances of sustainable textile fabric coatings for UV protection properties. Coatings 2022, 12, 1597. [Google Scholar] [CrossRef]
- Saad, S.R.; Mahmed, N.; Abdullah, M.M.A.B.; Sandu, A.V. Self-Cleaning Technology in Fabric: A Review. In Proceedings of the IOP Conference Series: Materials Science and Engineering, Iasi, Romania, 19–20 July 2016; p. 012028. [Google Scholar]
- Grand View Research. Textile Coatings Market Size, Share & Trends Analysis Report By Polymer Type (Thermoplastics, Thermosets, Other Polymer Types), By End Use (Protective Clothing). Available online: https://www.grandviewresearch.com/industry-analysis/textile-coatings-market-report (accessed on 8 October 2024).
- Billah, S.M.R. Textile Coatings. In Functional Polymers; Mazumder, M.A.J., Sheardown, H., Al-Ahmed, A., Eds.; Springer International Publishing: Cham, Switzerland, 2019; pp. 825–882. [Google Scholar]
- Hu, Z.-Y.; Chang, J.; Guo, F.-F.; Deng, H.-Y.; Pan, G.-T.; Li, B.-Y.; Zhang, Z.-L. The effects of dimethylformamide exposure on liver and kidney function in the elderly population: A cross-sectional study. Medicine 2020, 99, e20749. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y.; Haque, A.N.M.A.; Ranjbar, S.; Tester, D.; Naebe, M. A Standard Terminology for the Description of Fibrous Microplastics from Textiles. Adv. Sci. Technol. 2024, 146, 33–36. [Google Scholar]
- Zhang, Y.; Haque, A.N.M.A.; Naebe, M. UV-functional flexible nanocomposite film with high lignin-cellulose nanocrystals content. J. Mater. Res. Technol. 2023, 26, 5990–6000. [Google Scholar] [CrossRef]
- Smriti, S.A.; Haque, A.N.M.A.; Khadem, A.H.; Siddiqa, F.; Rahman, A.M.; Himu, H.A.; Farzana, N.; Islam, M.A.; Naebe, M. Recent developments of the nanocellulose extraction from water hyacinth: A review. Cellulose 2023, 30, 8617–8641. [Google Scholar] [CrossRef]
- Sunasee, R.; Hemraz, U.D. Synthetic strategies for the fabrication of cationic surface-modified cellulose nanocrystals. Fibers 2018, 6, 15. [Google Scholar] [CrossRef]
- Dai, Z.; Ottesen, V.; Deng, J.; Helberg, R.M.L.; Deng, L. A brief review of nanocellulose based hybrid membranes for CO2 separation. Fibers 2019, 7, 40. [Google Scholar] [CrossRef]
- Indirasetyo, N.L.; Kusmono. Isolation and properties of cellulose nanocrystals fabricated by ammonium persulfate oxidation from Sansevieria trifasciata fibers. Fibers 2022, 10, 61. [Google Scholar] [CrossRef]
- Bangar, S.P.; Harussani, M.; Ilyas, R.; Ashogbon, A.O.; Singh, A.; Trif, M.; Jafari, S.M. Surface modifications of cellulose nanocrystals: Processes, properties, and applications. Food Hydrocoll. 2022, 130, 107689. [Google Scholar] [CrossRef]
- Chattopadhyay, D.; Patel, B. Synthesis, characterization and application of nano cellulose for enhanced performance of textiles. J. Text. Sci. Eng. 2016, 6, 2. [Google Scholar]
- Yang, X.; Wang, Z.; Zhang, Y.; Liu, W. A biocompatible and sustainable anti-ultraviolet functionalization of cotton fabric with nanocellulose and chitosan nanocomposites. Fibers Polym. 2020, 21, 2521–2529. [Google Scholar] [CrossRef]
- Zhao, Q.; Sun, G.; Yan, K.; Zhou, A.; Chen, Y. Novel bio-antifelting agent based on waterborne polyurethane and cellulose nanocrystals. Carbohydr. Polym. 2013, 91, 169–174. [Google Scholar] [CrossRef] [PubMed]
- Xiang, F.; Zhao, M.; Yang, X.; Li, Z. Self-assembly of modified cellulose nanocrystals on flexible fabric via hydrophobic force induction for versatile applications. Prog. Org. Coat. 2024, 190, 108406. [Google Scholar] [CrossRef]
- Ioelovich, M.J. Microcellulose Vs Nanocellulose–A Review. World J. Adv. Eng. Technol. Sci. 2022, 5, 001–015. [Google Scholar] [CrossRef]
- Rouse, J.G.; Van Dyke, M.E. A review of keratin-based biomaterials for biomedical applications. Materials 2010, 3, 999–1014. [Google Scholar] [CrossRef]
- Qin, C.; Wang, Y.; Gao, H.; Liu, X.; Nie, Y.; Ji, X. Insight into the keratin ratio effect of the keratin/cellulose composite fiber. ACS Appl. Polym. Mater. 2023, 6, 265–276. [Google Scholar] [CrossRef]
- Gericke, A.; Venkataraman, M. Thermal and moisture management in the microclimate of socks for diabetic foot care: The role of mohair-wool content. Fibers 2024, 12, 53. [Google Scholar] [CrossRef]
- Spagnuolo, L.; D’Orsi, R.; Operamolla, A. Nanocellulose for paper and textile coating: The importance of surface chemistry. ChemPlusChem 2022, 87, e202200204. [Google Scholar] [CrossRef]
- Dong, X.M.; Kimura, T.; Revol, J.-F.; Gray, D.G. Effects of ionic strength on the isotropic−chiral nematic phase transition of suspensions of cellulose crystallites. Langmuir 1996, 12, 2076–2082. [Google Scholar] [CrossRef]
- EN 13758-2; Textiles Solar UV Protective Properties—Part 2: Classification and Marking of Apparel. Slovenian Institute for Standardization: Ljubljana, Slovenia, 2003.
- ASTM D737-18; Standard Test Method for Air Permeability of Textile Fabrics. ASTM International: West Conshohocken, PA, USA, 2023.
- ASTM E96-00e1; Standard Test Methods for Water Vapor Transmission of Materials. ASTM International: West Conshohocken, PA, USA, 2017.
- Sun, X.; Lu, C.; Liu, Y.; Zhang, W.; Zhang, X. Melt-processed poly (vinyl alcohol) composites filled with microcrystalline cellulose from waste cotton fabrics. Carbohydr. Polym. 2014, 101, 642–649. [Google Scholar] [CrossRef] [PubMed]
- Ahmad, F.; Mushtaq, B.; Butt, F.A.; Rasheed, A.; Ahmad, S. Preparation and characterization of wool fiber reinforced nonwoven alginate hydrogel for wound dressing. Cellulose 2021, 28, 7941–7951. [Google Scholar] [CrossRef]
- Potenza, M.; Bergamonti, L.; Lottici, P.P.; Righi, L.; Lazzarini, L.; Graiff, C. Green extraction of cellulose nanocrystals of polymorph II from Cynara scolymus L.: Challenge for a “zero waste” economy. Crystals 2022, 12, 672. [Google Scholar] [CrossRef]
- Peets, P.; Kaupmees, K.; Vahur, S.; Leito, I. Reflectance FT-IR spectroscopy as a viable option for textile fiber identification. Herit. Sci. 2019, 7, 93. [Google Scholar] [CrossRef]
- Linn, K.S.; Kasemsiri, P.; Jetsrisuparb, K.; Iamamornphan, W.; Chindaprasirt, P.; Knijnenburg, J.T. Development of biodegradable films with antioxidant activity using pectin extracted from Cissampelos pareira leaves. J. Polym. Environ. 2022, 30, 2087–2098. [Google Scholar] [CrossRef]
- Sampath, U.T.M.; Ching, Y.C.; Chuah, C.H.; Singh, R.; Lin, P.-C. Preparation and characterization of nanocellulose reinforced semi-interpenetrating polymer network of chitosan hydrogel. Cellulose 2017, 24, 2215–2228. [Google Scholar] [CrossRef]
- Mohamed, M.G.; Hsiao, C.-H.; Hsu, K.-C.; Lu, F.-H.; Shih, H.-K.; Kuo, S.-W. Supramolecular functionalized polybenzoxazines from azobenzene carboxylic acid/azobenzene pyridine complexes: Synthesis, surface properties, and specific interactions. RSC Adv. 2015, 5, 12763–12772. [Google Scholar] [CrossRef]
- Thach-Nguyen, R.; Lam, H.-H.; Phan, H.-P.; Dang-Bao, T. Cellulose nanocrystals isolated from corn leaf: Straightforward immobilization of silver nanoparticles as a reduction catalyst. RSC Adv. 2022, 12, 35436–35444. [Google Scholar] [CrossRef]
- Cai, Z.; Al Faruque, M.A.; Kiziltas, A.; Mielewski, D.; Naebe, M. Sustainable lightweight insulation materials from textile-based waste for the automobile industry. Materials 2021, 14, 1241. [Google Scholar] [CrossRef]
- Zhu, L.; Wang, X.; Blanchonette, I.; Naebe, M. Thermal comfort properties of bifacial fabrics. Text. Res. J. 2019, 89, 43–51. [Google Scholar] [CrossRef]
Sample Name | Description | Spray Solution Component | Spray Solution Amount (g) | Spray Distance (cm) | Spray Pressure (psi) | |||||
---|---|---|---|---|---|---|---|---|---|---|
PVA (g) | Water (g) | Resin (g) | Acetone (g) | MCC (g) | CNCs (g) | |||||
WF | Wool fabric | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 60 | 35 |
RC | 5% Resin control | 0 | 125.4 | 0.6 | 38.5 | 0 | 0 | 10 | 60 | 35 |
5-MCP | 5% MCC/PVA | 6.6 | 125.4 | 0.6 | 38.5 | 4.4 | 0 | 10 | 60 | 35 |
10-MCP | 10% MCC/PVA | 6.6 | 62.7 | 0.6 | 38.5 | 4.4 | 0 | 10 | 60 | 35 |
CC | 5% CNC control | 0 | 125.4 | 0 | 38.5 | 0 | 4.4 | 10 | 60 | 35 |
CP1 | 5% CNC/PVA 1g | 6.6 | 125.4 | 0.6 | 38.5 | 0 | 4.4 | 1 | 60 | 35 |
CP5 | 5% CNC/PVA 5 g | 6.6 | 125.4 | 0.6 | 38.5 | 0 | 4.4 | 5 | 60 | 35 |
CP10 | 5% CNC/PVA 10 g | 6.6 | 125.4 | 0.6 | 38.5 | 0 | 4.4 | 10 | 60 | 35 |
Sample Name | Thickness (μm) | Coating Layer Thickness (μm) | Pressure for Thickness Measurement (kPa) |
---|---|---|---|
WF | 510.0 ± 10.00 | 0 | 0.5 |
RC | 574.0 ± 5.48 | 64 | 0.5 |
5-MCP | 722.0 ± 27.75 | 212 | 0.5 |
10-MCP | 826.7 ± 61.86 | 316.7 | 0.5 |
CC | 584.0 ± 8.94 | 74 | 0.5 |
CP1 | 538.0 ± 4.47 | 28 | 0.5 |
CP5 | 628.0 ± 13.04 | 118 | 0.5 |
CP10 | 690.0 ± 25.50 | 180 | 0.5 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhang, Y.; Haque, A.N.M.A.; Naebe, M. Impact of Micro- and Nanocellulose Coating on Properties of Wool Fabric by Using Solution Blow Spinning. Fibers 2024, 12, 107. https://doi.org/10.3390/fib12120107
Zhang Y, Haque ANMA, Naebe M. Impact of Micro- and Nanocellulose Coating on Properties of Wool Fabric by Using Solution Blow Spinning. Fibers. 2024; 12(12):107. https://doi.org/10.3390/fib12120107
Chicago/Turabian StyleZhang, Yi, Abu Naser Md Ahsanul Haque, and Maryam Naebe. 2024. "Impact of Micro- and Nanocellulose Coating on Properties of Wool Fabric by Using Solution Blow Spinning" Fibers 12, no. 12: 107. https://doi.org/10.3390/fib12120107
APA StyleZhang, Y., Haque, A. N. M. A., & Naebe, M. (2024). Impact of Micro- and Nanocellulose Coating on Properties of Wool Fabric by Using Solution Blow Spinning. Fibers, 12(12), 107. https://doi.org/10.3390/fib12120107