Influence of Fast Drying on the Morphology of α-Fe2O3 and FeMnO3/α-Fe2O3 Fibers Produced by Solution Blow Spinning
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Fiber Production
2.3. Characterization
3. Results and Discussion
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Schneider, R.; Facure, M.H.M.; Chagas, P.A.M.; Andre, R.S.; dos Santos, D.M.; Correa, D.S. Tailoring the Surface Properties of Micro/Nanofibers Using 0D, 1D, 2D, and 3D Nanostructures: A Review on Post-Modification Methods. Adv. Mater. Interfaces 2021, 8, 2100430. [Google Scholar] [CrossRef]
- Daristotle, J.L.; Behrens, A.M.; Sandler, A.D.; Kofinas, P. A Review of the Fundamental Principles and Applications of Solution Blow Spinning. ACS Appl. Mater. Interfaces 2016, 8, 34951–34963. [Google Scholar] [CrossRef] [PubMed]
- Medeiros, E.S.; Glenn, G.M.; Klamczynski, A.P.; Orts, W.J.; Mattoso, L.H.C. Solution blow spinning: A new method to produce micro- and nanofibers from polymer solutions. J. Appl. Polym. Sci. 2009, 113, 2322–2330. [Google Scholar] [CrossRef]
- Oliveira, J.E.; Mattoso, L.H.C.; Orts, W.J.; Medeiros, E.S. Structural and Morphological Characterization of Micro and Nanofibers Produced by Electrospinning and Solution Blow Spinning: A Comparative Study. Adv. Mater. Sci. Eng. 2013, 2013, 409572. [Google Scholar] [CrossRef]
- Lorente, M.; González-Gaitano, G.; González-Benito, J. Preparation, Properties and Water Dissolution Behavior of Polyethylene Oxide Mats Prepared by Solution Blow Spinning. Polymers 2022, 14, 1299. [Google Scholar] [CrossRef] [PubMed]
- Szymańska, E.; Wojasiński, M.; Czarnomysy, R.; Dębowska, R.; Łopianiak, I.; Adasiewicz, K.; Ciach, T.; Winnicka, K. Chitosan-Enriched Solution Blow Spun Poly(Ethylene Oxide) Nanofibers with Poly(Dimethylsiloxane) Hydrophobic Outer Layer for Skin Healing and Regeneration. Int. J. Mol. Sci. 2022, 23, 5135. [Google Scholar] [CrossRef] [PubMed]
- Dong, W.; Dong, W.; Liu, F.; Liu, F.; Zhou, X.; Zhou, X.; Wang, L.; Wang, L.; Zhao, Z.; Zhao, Z.; et al. Superhydrophilic PVDF nanofibrous membranes with hierarchical structure based on solution blow spinning for oil-water separation. Sep. Purif. Technol. 2022, 301, 121903. [Google Scholar] [CrossRef]
- Farias, R.M.d.C.; Severo, L.L.; da Costa, D.L.; de Medeiros, E.S.; Glenn, G.M.; Santata, L.N.d.L.; Neves, G.d.A.; Kiminami, R.H.G.A.; Menezes, R.R. Solution blow spun spinel ferrite and highly porous silica nanofibers. Ceram. Int. 2018, 44, 10984–10989. [Google Scholar] [CrossRef]
- Silva, V.D.; Ferreira, L.S.; Simões, T.A.; Medeiros, E.S.; Macedo, D.A. 1D hollow MFe2O4 (M=Cu, Co, Ni) fibers by Solution Blow Spinning for oxygen evolution reaction. J. Colloid Interface Sci. 2019, 540, 59–65. [Google Scholar] [CrossRef]
- Raimundo, R.A.; Silva, V.D.; Medeiros, E.S.; Macedo, D.A.; Simões, T.A.; Gomes, U.U.; Morales, M.A.; Gomes, R.M. Multifunctional solution blow spun NiFe–NiFe2O4 composite nanofibers: Structure, magnetic properties and OER activity. J. Phys. Chem. Solids 2020, 139, 109325. [Google Scholar] [CrossRef]
- Martin, A.M.V.; Flores, D.C.; Siacor, F.D.C.; Taboada, E.B.; Tan, N.P.B. Preparation of mango peel-waste pectin-based nanofibers by solution blow spinning (SBS). Nanotechnology 2022, 33, 495602. [Google Scholar] [CrossRef] [PubMed]
- Silva, M.J.; Dias, Y.J.; Yarin, A.L. Electrically-assisted supersonic solution blowing and solution blow spinning of fibrous materials from natural rubber extracted from havea brasilienses. Ind. Crop. Prod. 2023, 192, 116101. [Google Scholar] [CrossRef]
- Omran, N.; Elnabawy, E.; Le, B.; Trabelsi, M.; Gamal, M.; Kandas, I.; Hassanin, A.H.; Shyha, I.; Shehata, N. Solution blow spun piezoelectric nanofibers membrane for energy harvesting applications. React. Funct. Polym. 2022, 179, 105365. [Google Scholar] [CrossRef]
- Santos, A.M.; Medeiros, E.L.; Blaker, J.J.; Medeiros, E.S. Aqueous solution blow spinning of poly(vinyl alcohol) micro- and nanofibers. Mater. Lett. 2016, 176, 122–126. [Google Scholar] [CrossRef]
- Araujo, R.; Nascimento, E.; Raimundo, R.; Macedo, D.; Mastelaro, V.; Neves, G.; Morales, M.; Menezes, R. Hybrid hematite/calcium ferrite fibers by solution blow spinning: Microstructural, optical and magnetic characterization. Ceram. Int. 2021, 47, 33363–33372. [Google Scholar] [CrossRef]
- Silva, V.; Farias, R.; Bonan, R.; Cartaxo, J.; Medeiros, E.; Figueiredo, L.; Neves, G.; Menezes, R. Novel synthesis of BCP cotton-wool-like nanofibrous scaffolds by air-heated solution blow spinning (A-HSBS) technique. Ceram. Int. 2023, 49, 24084–24092. [Google Scholar] [CrossRef]
- Li, J.-Q.; Zhou, F.-C.; Sun, Y.-H.; Nan, J.-M. FeMnO3 porous nanocubes/Mn2O3 nanotubes hybrids derived from Mn3[Fe(CN)6]2·nH2O Prussian Blue Analogues as an anode material for lithium-ion batteries. J. Alloys Compd. 2018, 740, 346–354. [Google Scholar] [CrossRef]
- Crum, J.V.; Riley, B.J.; Vienna, J.D. Binary Phase Diagram of the Manganese Oxide–Iron Oxide System. J. Am. Ceram. Soc. 2009, 92, 2378–2384. [Google Scholar] [CrossRef]
- Pour, N.M.; Azimi, G.; Leion, H.; Rydén, M.; Mattisson, T.; Lyngfelt, A. Investigation of Manganese-Iron Oxide Materials based on Manganese Ores as Oxygen Carriers for Chemical Looping with Oxygen Uncoupling (CLOU). Energy Technol. 2014, 2, 469–479. [Google Scholar] [CrossRef]
- Jiang, Z.; Zhao, Y.; Yang, P. Formation of MFe2O4 (M = Co, Mn, Ni) 1D nanostructures towards rapid removal of pollutants. Mater. Chem. Phys. 2018, 214, 1–7. [Google Scholar] [CrossRef]
- Yao, J.; Wu, J.; Yang, Y.; Xiao, S.; Li, Y. Lithium storage performance of coralline-like FeMnO3 anode materials prepared by a facile chemical co-precipitation method. J. Alloys Compd. 2020, 848, 156444. [Google Scholar] [CrossRef]
- Silva, V.D.; Raimundo, R.A.; Simões, T.A.; Loureiro, F.J.; Fagg, D.P.; Morales, M.A.; Macedo, D.A.; Medeiros, E.S. Nonwoven Ni–NiO/carbon fibers for electrochemical water oxidation. Int. J. Hydrogen Energy 2021, 46, 3798–3810. [Google Scholar] [CrossRef]
- Cena, C.; Torsoni, G.; Zadorosny, L.; Malmonge, L.; Carvalho, C.; Malmonge, J. BSCCO superconductor micro/nanofibers produced by solution blow-spinning technique. Ceram. Int. 2017, 43, 7663–7667. [Google Scholar] [CrossRef]
- Samuel, E.; Aldalbahi, A.; El-Newehy, M.; El-Hamshary, H.; Yoon, S.S. Flexible and freestanding manganese/iron oxide carbon nanofibers for supercapacitor electrodes. Ceram. Int. 2022, 48, 18374–18383. [Google Scholar] [CrossRef]
- George, G.; Jackson, S.L.; Luo, C.Q.; Fang, D.; Luo, D.; Hu, D.; Wen, J.; Luo, Z. Effect of doping on the performance of high-crystalline SrMnO3 perovskite nanofibers as a supercapacitor electrode. Ceram. Int. 2018, 44, 21982–21992. [Google Scholar] [CrossRef]
- Bhagwan, J.; Sahoo, A.; Yadav, K.; Sharma, Y. Nanofibers of spinel-CdMn2O4: A new and high performance material for supercapacitor and Li-ion batteries. J. Alloys Compd. 2017, 703, 86–95. [Google Scholar] [CrossRef]
- Sing, K.S.W. Reporting physisorption data for gas/solid systems with special reference to the determination of surface area and porosity (Recommendations 1984). Pure Appl. Chem. 1985, 57, 603–619. [Google Scholar] [CrossRef]
- Wang, T.; Peng, L.; Wu, D.; Chen, B.; Jia, B. Crude fiber and protein rich cottonseed meal derived carbon quantum dots composite porous carbon for supercapacitor. J. Alloys Compd. 2023, 947, 169499. [Google Scholar] [CrossRef]
- Han, T.; Ma, S.; Xu, X.; Cao, P.; Liu, W.; Xu, X.; Pei, S. Electrospinning synthesis, crystal structure, and ethylene glycol sensing properties of orthorhombic SmBO3 (B Fe, Co) perovskites. J. Alloys Compd. 2021, 876, 160211. [Google Scholar] [CrossRef]
- Ren, W.; Qin, M.; Zhou, Y.; Zhou, H.; Zhu, J.; Pan, J.; Zhou, J.; Cao, X.; Liang, S. Electrospun Na4Fe3(PO4)2(P2O7) nanofibers as free-standing cathodes for ultralong-life and high-rate sodium-ion batteries. Energy Storage Mater. 2023, 54, 776–783. [Google Scholar] [CrossRef]
- Chchiyai, Z.; Hdidou, L.; Tayoury, M.; Chari, A.; Tamraoui, Y.; Alami, J.; Dahbi, M.; Manoun, B. Synthesis and electrochemical properties of Mn-doped porous Mg0. 9Zn0. 1Fe2− xMnxO4 (0≤ x≤ 1.25) spinel oxides as anode materials for lithium-ion batteries. J. Alloys Compd. 2023, 935, 167997. [Google Scholar] [CrossRef]
Iron Oxide (F.D *.) | Fe:Mn = 1:1 (F.D *.) | Iron Oxide (S.D **.) | Fe:Mn = 1:1 (S.D **.) | |
---|---|---|---|---|
Iron oxide (S.D **.) | 0.012 | <0.001 | - | <0.001 |
Fe:Mn = 1:1 (S.D **.) | <0.001 | <0.001 | <0.001 | - |
Iron oxide (F.D *.) | - | 0.921 | 0.012 | <0.001 |
Fe:Mn = 1:1 (F.D *.) | 0.921 | - | <0.001 | <0.001 |
Sample | ||||
---|---|---|---|---|
Slow Drying | Fast Drying | |||
Iron Oxide | Fe:Mn = 1:1 | Iron Oxide | Fe:Mn = 1:1 | |
Specific surface area (m2/g) | 14.6 | 28.7 | 34.9 | 73.3 |
Average pore diameter (nm) | 3.1 | 2.9 | 2.7 | 2.9 |
Pore volume (cm3/g) | 0.032 | 0.038 | 0.015 | 0.031 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Barros, L.N.L.C.; Araujo, R.N.d.; Nascimento, E.P.d.; Gama, A.J.d.A.; Neves, G.A.; Torres, M.A.M.; Menezes, R.R. Influence of Fast Drying on the Morphology of α-Fe2O3 and FeMnO3/α-Fe2O3 Fibers Produced by Solution Blow Spinning. Nanomaterials 2024, 14, 304. https://doi.org/10.3390/nano14030304
Barros LNLC, Araujo RNd, Nascimento EPd, Gama AJdA, Neves GA, Torres MAM, Menezes RR. Influence of Fast Drying on the Morphology of α-Fe2O3 and FeMnO3/α-Fe2O3 Fibers Produced by Solution Blow Spinning. Nanomaterials. 2024; 14(3):304. https://doi.org/10.3390/nano14030304
Chicago/Turabian StyleBarros, Lara Nágela Lopes Cavalcante, Rondinele Nunes de Araujo, Emanuel Pereira do Nascimento, Alexandre José de Almeida Gama, Gelmires Araújo Neves, Marco Antonio Morales Torres, and Romualdo Rodrigues Menezes. 2024. "Influence of Fast Drying on the Morphology of α-Fe2O3 and FeMnO3/α-Fe2O3 Fibers Produced by Solution Blow Spinning" Nanomaterials 14, no. 3: 304. https://doi.org/10.3390/nano14030304
APA StyleBarros, L. N. L. C., Araujo, R. N. d., Nascimento, E. P. d., Gama, A. J. d. A., Neves, G. A., Torres, M. A. M., & Menezes, R. R. (2024). Influence of Fast Drying on the Morphology of α-Fe2O3 and FeMnO3/α-Fe2O3 Fibers Produced by Solution Blow Spinning. Nanomaterials, 14(3), 304. https://doi.org/10.3390/nano14030304