Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (327)

Search Parameters:
Keywords = solution annealing treatment

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
15 pages, 2746 KB  
Article
Topographic, Thermal and Chemical Characterization of Oxidized Cu and Cu-Ag Thin Films
by Maria C. Carrupt, Ana M. Ferraria, Ana P. Serro and Ana P. Piedade
Materials 2025, 18(19), 4562; https://doi.org/10.3390/ma18194562 - 30 Sep 2025
Viewed by 214
Abstract
This study investigated the effects of silver doping, natural ageing, and thermal-induced oxidation on the surface chemistry, morphology, and thermal performance of copper thin films. Ag is used as a doping element in Cu because, in bulk materials it usually refines microstructures, leading [...] Read more.
This study investigated the effects of silver doping, natural ageing, and thermal-induced oxidation on the surface chemistry, morphology, and thermal performance of copper thin films. Ag is used as a doping element in Cu because, in bulk materials it usually refines microstructures, leading to increased hardness and mechanical strength through mechanisms such as solid solution strengthening and twinning. In this work was also used due to its oxidation resistance. Thin films of pure and silver-doped copper (Cu_2Ag and Cu_4Ag) were deposited by RF magnetron sputtering and characterized as-deposited, naturally aged, at room temperature and humidity for one year, and thermally treated at 200 °C, in air. The characterization included X-ray photoelectron spectroscopy (XPS), Atomic Force microscopy (AFM), and thermal analysis, specifically thermal conductivity (λ), thermal diffusivity (α), and thermal capacity (ρ.Cp). Surface XPS analysis revealed changes in copper and silver oxidation states after natural aging and annealing. AFM revelead that the incorporation of silver and heat treatment altered the surface roughness and morphology. Thermal analysis found that for lower silver concentrations, the thermal conductivity increased, but aging and annealing had varying effects depending on the silver content. The Cu_4Ag film showed the best thermal stability after natural ageing. Overall, the results suggest that carefully controlled silver doping can enhance the thermal stability of copper thin films for applications where aging is a concern, such as microelectronics. Full article
(This article belongs to the Section Thin Films and Interfaces)
Show Figures

Figure 1

25 pages, 13748 KB  
Article
Differential Corrosion Behavior of High-Aluminum 304 Stainless Steel in Molten Nitrate Salts: The Roles of Rolling and Heat Treatment
by Weijie Tang, Kan Zhou, Zhenguo Li, Lifu Xin, Dexian Huang, Faqi Zhan, Penghui Yang, Haicun Yu and Peiqing La
Materials 2025, 18(19), 4513; https://doi.org/10.3390/ma18194513 - 28 Sep 2025
Viewed by 325
Abstract
The high material cost has restricted the development of concentrated solar power (CSP) systems. In this study, a low-cost alternative material was developed by adding aluminum to 304 stainless steel to form a protective oxide film, thereby enhancing its corrosion resistance to molten [...] Read more.
The high material cost has restricted the development of concentrated solar power (CSP) systems. In this study, a low-cost alternative material was developed by adding aluminum to 304 stainless steel to form a protective oxide film, thereby enhancing its corrosion resistance to molten salt. Three material variants were tested: untreated hot-rolled plates after solution treatment and cold-rolled high-aluminum 304 stainless steel (High-Al304SS) after solution treatment and annealing treatment. After all samples were immersed in a NaNO3-KNO3 mixed salt at 600 °C for 480 h, corrosion products including NaFeO2, CrO2, Mn2O4, and NiCr2O4 were formed. The phase composition was determined by XRD, and the surface and cross-section of the corrosion layer were analyzed by SEM and EDS surface and point analysis. The corrosion rate of the samples was calculated by the weight loss method. Notably, an Al2O3-Cr2O3 composite oxide film was formed on the sample surface, effectively inhibiting corrosion. The high defect density and grain boundary energy introduced by the cold-rolling process, as well as the precipitation of the second phase during annealing, accelerated the corrosion process of the samples. However, the hot-rolled samples after solution treatment exhibited excellent corrosion resistance (64.43 μm/year) and, through further process optimization, are expected to become an ideal low-cost alternative material for 347H stainless steel (23 μm/year) in CSP systems. Full article
Show Figures

Figure 1

16 pages, 4663 KB  
Article
Magnetic Properties and Strengthening Mechanism of Cu-Bearing Non-Oriented Silicon Steel
by Shi Qiu, Yuhao Niu, Kaixuan Shao, Bing Fu, Haijun Wang and Jialong Qiao
Materials 2025, 18(18), 4233; https://doi.org/10.3390/ma18184233 - 9 Sep 2025
Viewed by 490
Abstract
The effects of Cu content on the microstructure, texture, precipitates, and magnetic and mechanical properties of 0.20 mm-thick non-oriented silicon steel (3.0% Si-0.8% Al-0.5% Mn) were systematically investigated using optical microscopy, X-ray diffraction, electron backscatter diffraction, and transmission electron microscopy. The strengthening mechanisms [...] Read more.
The effects of Cu content on the microstructure, texture, precipitates, and magnetic and mechanical properties of 0.20 mm-thick non-oriented silicon steel (3.0% Si-0.8% Al-0.5% Mn) were systematically investigated using optical microscopy, X-ray diffraction, electron backscatter diffraction, and transmission electron microscopy. The strengthening mechanisms of Cu-bearing high-strength non-oriented silicon steel were further elucidated. Increasing Cu content inhibited grain growth and suppressed the development of the α*-fiber texture in annealed sheets, while promoting the formation of γ-fiber texture. As a result, the P1.0/400 and B50 values deteriorated. The P1.0/400 and B50 values of 1.47% Cu non-oriented silicon steel were 13.930 W/kg and 1.614 T, respectively. However, due to the solid solution strengthening effect of 0.5% Cu and partial precipitation strengthening, the Rp0.2 increased by 43 MPa. After aging treatment at 550 °C for 20 min, the P1.0/400 values of the aged sheets slightly increased, while the B50 values remained almost unchanged. In the aged sheets containing 1.0–1.5% Cu, clustered Cu-rich precipitates with average sizes of 2.71 nm and 13.28 nm were observed. The crystal structure of these precipitates transitioned from the metastable B2-Cu to the stable FCC-Cu. These precipitates enhanced the Rp0.2 of the non-oriented electrical steel to 241 MPa and 269 MPa through cutting and bypass mechanisms, respectively. A high-strength non-oriented silicon steel with balanced magnetic and mechanical properties was developed for driving motors of new energy vehicles by utilizing nanoscale Cu-rich precipitates formed through aging treatment. The optimized steel exhibits a yield strength of 708 MPa, a magnetic induction B50 of 1.639 T, and high-frequency iron loss P1.0/400 of 14.77 W/kg. Full article
Show Figures

Figure 1

16 pages, 22049 KB  
Article
Effect of Heat Treatment on Microstructures and Mechanical Properties of TC4 Alloys Prepared by Selective Laser Melting
by Jian Zhang, Yuhuan Shi, Su Shen, Shengdong Zhang, Honghui Ding and Xiaoming Pan
Materials 2025, 18(17), 4126; https://doi.org/10.3390/ma18174126 - 2 Sep 2025
Viewed by 764
Abstract
The reduced ductility caused by the brittle needle-like α′ martensite limits the application of TC4 alloys produced by selective laser melting (SLM). Appropriate heat treatment can improve the microstructures and properties of SLM-fabricated TC4 alloys. In this work, SLM-fabricated TC4 alloys underwent stress [...] Read more.
The reduced ductility caused by the brittle needle-like α′ martensite limits the application of TC4 alloys produced by selective laser melting (SLM). Appropriate heat treatment can improve the microstructures and properties of SLM-fabricated TC4 alloys. In this work, SLM-fabricated TC4 alloys underwent stress relief annealing at 600 °C and high-temperature annealing at 800 °C. The effects of heat treatment temperature on phase composition, microstructural morphology, grain orientation, and mechanical properties were investigated. Meanwhile, the microstructural evolution and fracture mechanisms during the heat treatment process were analyzed. The results indicate that after annealing at 600 °C, the needle-like α′ phase transforms into elongated α, and nano-β phase increases. When annealed at 800 °C, the α′ phase completely transforms into a more stable lath-shaped α phase and a short rod-shaped β phase, with the nano-β phase disappearing. The texture orientation gradually shifts from <0001> towards <01-10>, where slip systems are more active. Additionally, heat treatment promotes the transition of grain boundaries to high-angle grain boundaries, thereby alleviating stress concentration and enhancing solid-solution strengthening. After heat treatment, the ultimate tensile strength of the material slightly decreases, but the elongation significantly increases. As the annealing temperature increased, the elongation (EL) improved from 5.22% to 11.43%. Following high-temperature annealing at 800 °C, necking and larger dimples appear on the fracture surface, and the fracture mechanism shifts from a mixed brittle–ductile fracture to a ductile fracture. This work provides a theoretical basis for improving the microstructures and properties of SLM-fabricated TC4 alloys through heat treatment. Full article
Show Figures

Graphical abstract

17 pages, 14975 KB  
Article
Achieving High Specific Strength via Multiple Strengthening Mechanisms in an Fe-Mn-Al-C-Ni-Cr Lightweight Steel
by Rui Bai, Ying Li, Yunfei Du, Yaqin Zhang, Xiuli He and Hongyu Liang
Materials 2025, 18(17), 4023; https://doi.org/10.3390/ma18174023 - 28 Aug 2025
Viewed by 601
Abstract
The development of lightweight steels with high specific strength is critical for automotive applications and energy savings. This study aimed to develop a high-performance lightweight steel with high specific strength by designing an alloy composition and optimizing thermomechanical processing. A novel Fe-28.6Mn-10.2Al-1.1C-3.2Ni-3.9Cr (wt.%) [...] Read more.
The development of lightweight steels with high specific strength is critical for automotive applications and energy savings. This study aimed to develop a high-performance lightweight steel with high specific strength by designing an alloy composition and optimizing thermomechanical processing. A novel Fe-28.6Mn-10.2Al-1.1C-3.2Ni-3.9Cr (wt.%) steel was investigated, focusing on microstructural evolution, mechanical properties, and strengthening mechanisms. The steel was processed through hot-rolling, solution treatment, cold-rolling, and subsequent annealing. Microstructural characterization revealed a dual-phase matrix of austenite and ferrite (6.8 vol.%), with B2 precipitates distributed at the grain boundaries and within the austenite matrix, alongside nanoscale κ-carbides (<10 nm). Short-time annealing resulted in the finer austenite grains (~1.1 μm) and the higher volume fraction (5.0%) of intragranular B2 precipitates with a smaller size (~0.18 μm), while long-time annealing promoted the coarsening of austenite grains (~1.6 μm) and the growth of intergranular B2 particles (~0.9 μm). This steel achieved yield strengths of 1130~1218 MPa and tensile strengths of 1360~1397 MPa through multiple strengthening mechanisms, including solid solution strengthening, grain boundary strengthening, dislocation strengthening, and precipitation strengthening. Full article
(This article belongs to the Section Metals and Alloys)
Show Figures

Figure 1

18 pages, 1187 KB  
Article
A Bi-Population Co-Evolutionary Multi-Objective Optimization Algorithm for Production Scheduling Problems in a Metal Heat Treatment Process with Time Window Constraints
by Jiahui Gu, Boheng Liu and Ziyan Zhao
Mathematics 2025, 13(16), 2696; https://doi.org/10.3390/math13162696 - 21 Aug 2025
Viewed by 404
Abstract
Heat treatment is a critical intermediate process in copper strip manufacturing, where strips go through an air-cushion annealing furnace. The production scheduling for the air-cushion annealing furnace can contribute to cost reduction and efficiency enhancement throughout the overall copper strip production process. The [...] Read more.
Heat treatment is a critical intermediate process in copper strip manufacturing, where strips go through an air-cushion annealing furnace. The production scheduling for the air-cushion annealing furnace can contribute to cost reduction and efficiency enhancement throughout the overall copper strip production process. The production scheduling problem must account for time window constraints and gas atmosphere transition requirements among jobs, resulting in a complex combinatorial optimization problem that necessitates dual-objective optimization of the total atmosphere transition cost of annealing and the total penalties for time window violations. Most multi-objective optimization algorithms rely on the evolution of a single population, which makes them prone to premature convergence, leading to local optimal solutions and insufficient exploration of the solution space. To address the challenges above effectively, we propose a Bi-population Co-evolutionary Multi-objective Optimization Algorithm (BCMOA). Specifically, the BCMOA initially constructs two independent populations that evolve separately. When the iterative process meets predefined conditions, elite solution sets are extracted from each population for interaction, thereby generating new offspring individuals. Subsequently, these new offspring participate in elite solution selection alongside the parent populations via a non-dominated selection mechanism. The performance of the BCMOA has undergone extensive validation on benchmark datasets. The results show that the BCMOA outperforms its competitive peers in solving the relevant problem, thereby demonstrating significant application potential in industrial scenarios. Full article
Show Figures

Figure 1

18 pages, 16179 KB  
Article
Barium Titanate-Based Glass–Ceramics Crystallized from Multicomponent Oxide Glasses: Phase Composition and Microstructure
by Ruzha Harizanova, Wolfgang Wisniewski, Dragomir M. Tatchev, Georgi Avdeev, Svetlozar Nedev and Christian Rüssel
Materials 2025, 18(16), 3783; https://doi.org/10.3390/ma18163783 - 12 Aug 2025
Viewed by 615
Abstract
The interest in synthesizing new dielectric materials is caused by their potential application in various electronic and sensor devices as well as in a large variety of electronic components. The present work reports the synthesis of glasses in the Na2O/Al2 [...] Read more.
The interest in synthesizing new dielectric materials is caused by their potential application in various electronic and sensor devices as well as in a large variety of electronic components. The present work reports the synthesis of glasses in the Na2O/Al2O3/BaO/ZrO2/TiO2/B2O3/SiO2 system prepared by melt-quenching. These glasses were then crystallized to glass–ceramics by a controlled thermal treatment. X-ray diffraction experiments reveal the precipitation of Ba2TiSi2O8 (fresnoite) and BaTiO3, which probably forms a BaZrxTi1−xO3 solid solution. The microstructure is studied by scanning electron microscopy and shows the presence of mulberry-shaped, crystallized structures with a densely-branching morphology. Microcomputed X-ray tomography is used to gather information on the volume fraction and average size of the crystallized volume as an effect of the applied temperature–time schedule. Longer annealing times lead to a higher volume fraction and increasing average size of the crystallization structures obtained. The dielectric properties analyzed by impedance spectroscopy are insulating and show relatively high dielectric constants ≥ 100 and moderate loss tangent values at 10 kHz. Full article
Show Figures

Figure 1

23 pages, 7586 KB  
Article
Multi-Scale Mechanical Anisotropy and Heat Treatment Effects in Additively Manufactured AlSi10Mg
by Aikaterini Argyrou, Leonidas Gargalis, Leonidas Karavias, Evangelia K. Karaxi and Elias P. Koumoulos
Metals 2025, 15(8), 890; https://doi.org/10.3390/met15080890 - 8 Aug 2025
Viewed by 696
Abstract
This study investigates the combined effects of build planes and heat treatments on the micro- and nanoscale mechanical properties of additively manufactured AlSi10Mg alloy. The hardness and elastic modulus were examined across two principal planes, XY and XZ, under three conditions: as-built (AB), [...] Read more.
This study investigates the combined effects of build planes and heat treatments on the micro- and nanoscale mechanical properties of additively manufactured AlSi10Mg alloy. The hardness and elastic modulus were examined across two principal planes, XY and XZ, under three conditions: as-built (AB), after solution annealing followed by water quenching (SA), and artificially aged after solution annealing (SA&AA). The results reveal that hardness is significantly affected by heat treatment, decreasing after SA and partially recovering upon subsequent artificial aging (SA&AA), while remaining largely unaffected by build planes, with average values differing by less than 2%. In contrast, the elastic modulus demonstrates a clear anisotropy, correlated with the microstructural changes from both additive manufacturing and thermal post-processing. The XY plane initially shows a modulus up to 29% higher than the XZ plane. However, after aging, the values of both planes converge to similar levels. While average values suggest general trends, localized measurements reveal notable spatial heterogeneity in both the hardness and elastic modulus—particularly after thermal treatments—arising from microstructural evolutions. These findings highlight the complex interplay between orientation and thermal history, underscoring that the mechanical performance of AlSi10Mg is governed by the synergistic effects that influence anisotropy and local mechanical behavior. Full article
(This article belongs to the Special Issue Welding and Additive Manufacturing of Metals)
Show Figures

Figure 1

16 pages, 4328 KB  
Article
High-Throughput Study on Nanoindentation Deformation of Al-Mg-Si Alloys
by Tong Shen, Guanglong Xu, Fuwen Chen, Shuaishuai Zhu and Yuwen Cui
Materials 2025, 18(15), 3663; https://doi.org/10.3390/ma18153663 - 4 Aug 2025
Viewed by 563
Abstract
Al-Mg-Si (6XXX) series aluminum alloys are widely applied in aerospace and transportation industries. However, exploring how varying compositions affect alloy properties and deformation mechanisms is often time-consuming and labor-intensive due to the complexity of the multicomponent composition space and the diversity of processing [...] Read more.
Al-Mg-Si (6XXX) series aluminum alloys are widely applied in aerospace and transportation industries. However, exploring how varying compositions affect alloy properties and deformation mechanisms is often time-consuming and labor-intensive due to the complexity of the multicomponent composition space and the diversity of processing and heat treatments. This study, inspired by the Materials Genome Initiative, employs high-throughput experimentation—specifically the kinetic diffusion multiple (KDM) method—to systematically investigate how the pop-in effect, indentation size effect (ISE), and creep behavior vary with the composition of Al-Mg-Si alloys at room temperature. To this end, a 6016/Al-3Si/Al-1.2Mg/Al KDM material was designed and fabricated. After diffusion annealing at 530 °C for 72 h, two junction areas were formed with compositional and microstructural gradients extending over more than one thousand micrometers. Subsequent solution treatment (530 °C for 30 min) and artificial aging (185 °C for 20 min) were applied to simulate industrial processing conditions. Comprehensive characterization using electron probe microanalysis (EPMA), nanoindentation with continuous stiffness measurement (CSM), and nanoindentation creep tests across these gradient regions revealed key insights. The results show that increasing Mg and Si content progressively suppresses the pop-in effect. When the alloy composition exceeds 1.0 wt.%, the pop-in events are nearly eliminated due to strong interactions between solute atoms and mobile dislocations. In addition, adjustments in the ISE enabled rapid evaluation of the strengthening contributions from Mg and Si in the microscale compositional array, demonstrating that the optimum strengthening occurs when the Mg-to-Si atomic ratio is approximately 1 under a fixed total alloy content. Furthermore, analysis of the creep stress exponent and activation volume indicated that dislocation motion is the dominant creep mechanism. Overall, this enhanced KDM method proves to be an effective conceptual tool for accelerating the study of composition–deformation relationships in Al-Mg-Si alloys. Full article
Show Figures

Graphical abstract

22 pages, 9293 KB  
Article
Thermal Stability of the Ultra-Fine-Grained Structure and Mechanical Properties of AlSi7MgCu0.5 Alloy Processed by Equal Channel Angular Pressing at Room Temperature
by Miloš Matvija, Martin Fujda, Ondrej Milkovič, Marek Vojtko and Katarína Gáborová
Crystals 2025, 15(8), 701; https://doi.org/10.3390/cryst15080701 - 31 Jul 2025
Viewed by 496
Abstract
Understanding the limitations of cold-formed aluminum alloys in practice applications is essential, particularly due to the risk of substructural changes and a reduction in strength when exposed to elevated temperatures. In this study, the thermal stability of the ultra-fine-grained (UFG) structure formed by [...] Read more.
Understanding the limitations of cold-formed aluminum alloys in practice applications is essential, particularly due to the risk of substructural changes and a reduction in strength when exposed to elevated temperatures. In this study, the thermal stability of the ultra-fine-grained (UFG) structure formed by equal channel angular pressing (ECAP) at room temperature and the mechanical properties of the AlSi7MgCu0.5 alloy were investigated. Prior to ECAP, the plasticity of the as-cast alloy was enhanced by a heat treatment consisting of solution annealing, quenching, and artificial aging to achieve an overaged state. Four repetitive passes via ECAP route A resulted in the homogenization of eutectic Si particles within the α-solid solution, the formation of ultra-fine grains and/or subgrains with high dislocation density, and a significant improvement in alloy strength due to strain hardening. The main objective of this work was to assess the microstructural and mechanical stability of the alloy after post-ECAP annealing in the temperature range of 373–573 K. The UFG microstructure was found to be thermally stable up to 523 K, above which notable grain and/or subgrain coarsening occurred as a result of discontinuous recrystallization of the solid solution. Mechanical properties remained stable up to 423 K; above this temperature, a considerable decrease in strength and a simultaneous increase in ductility were observed. Synchrotron radiation X-ray diffraction (XRD) was employed to analyze the phase composition and crystallographic characteristics, while transmission electron microscopy (TEM) was used to investigate substructural evolution. Mechanical properties were evaluated through tensile testing, impact toughness testing, and hardness measurements. Full article
(This article belongs to the Special Issue Celebrating the 10th Anniversary of International Crystallography)
Show Figures

Figure 1

22 pages, 6208 KB  
Article
Corrosion Behavior of Annealed 20MnCr5 Steel
by Dario Kvrgić, Lovro Liverić, Paweł Nuckowski and Sunčana Smokvina Hanza
Materials 2025, 18(15), 3566; https://doi.org/10.3390/ma18153566 - 30 Jul 2025
Viewed by 466
Abstract
This study investigated the influence of various annealing treatments on the microstructure and corrosion behavior of 20MnCr5 steel in a 3.5% NaCl solution. A combination of microstructural analysis, hardness testing, and electrochemical techniques was used to comprehensively characterize each condition. To enhance data [...] Read more.
This study investigated the influence of various annealing treatments on the microstructure and corrosion behavior of 20MnCr5 steel in a 3.5% NaCl solution. A combination of microstructural analysis, hardness testing, and electrochemical techniques was used to comprehensively characterize each condition. To enhance data interpretability, a correlation analysis was performed and visualized through a correlation diagram, enabling statistical assessment of the relationships between grain features, phase distribution, mechanical properties, and corrosion indicators. The results demonstrated that corrosion resistance in 20MnCr5 steel is not governed by a single parameter but by the interplay between grain size, morphology, and phase balance. Excessive pearlite content or coarse, irregular grains were consistently associated with higher corrosion rates and lower electrochemical stability. In contrast, a moderate phase ratio and equiaxed grain structure, achieved through normalization, resulted in better corrosion resistance, confirmed by the highest polarization resistance and lowest corrosion current density values among all samples. Although increased grain refinement improved the hardness, it did not always correlate with a better corrosion performance, especially when morphological uniformity was lacking. This highlights the importance of balancing mechanical and corrosion properties through carefully controlled thermal processing. Full article
Show Figures

Figure 1

17 pages, 4992 KB  
Article
Effect of Heat Treatments and Related Microstructural Modifications on High-Cycle Fatigue Behavior of Powder Bed Fusion–Laser Beam-Fabricated Ti-6Al-2Sn-4Zr-6Mo Alloy
by Gianluca Pirro, Alessandro Morri, Alessandra Martucci, Mariangela Lombardi and Lorella Ceschini
Metals 2025, 15(8), 849; https://doi.org/10.3390/met15080849 - 29 Jul 2025
Viewed by 416
Abstract
The study investigates the influence of microstructures on fatigue behavior and failure mechanisms of the α-β titanium alloy Ti6246, fabricated via Powder Bed Fusion-Laser Beam (PBF-LB). In particular, the investigation assesses the effect of two post-processing heat treatments, namely α-β annealing at 875 [...] Read more.
The study investigates the influence of microstructures on fatigue behavior and failure mechanisms of the α-β titanium alloy Ti6246, fabricated via Powder Bed Fusion-Laser Beam (PBF-LB). In particular, the investigation assesses the effect of two post-processing heat treatments, namely α-β annealing at 875 °C (AN875) and solution treatment at 825 °C followed by aging at 500 °C (STA825), on the alloy’s rotating and bending fatigue behavior. The results indicate that the STA825 condition provides superior fatigue resistance (+25%) compared to AN875, due to the presence of a finer bilamellar microstructure, characterized by thinner primary α lamellae (αp) and a more homogeneous distribution of secondary α lamellae (αs) within the β matrix. Additionally, an investigation conducted using the Kitagawa–Takahashi (KT) approach and the El-Haddad model, based on the relationship between the fatigue limit and defect sensitivity, revealed improved crack propagation resistance from pre-existing defects (ΔKth) for the STA825 condition compared to AN875. Notably, the presence of fine αs after aging for STA825 is effective in delaying crack nucleation and propagation at early stages, while refined αp contributes to hindering macrocrack growth. The fatigue behavior of the STA825-treated Ti6246 alloy was even superior to that of the PBF-LB-processed Ti64, representing a viable alternative for the production of high-performance components in the automotive and aerospace sectors. Full article
Show Figures

Graphical abstract

11 pages, 8761 KB  
Communication
An Annealing Strategy for Inhibiting Recrystallization in Nickel-Based Single-Crystal Superalloys
by Xing Hu, Fuze Xu, Menglin Gao, Shengjun Xia, Shuaiheng Liang, Chunfa Huang, Dexin Ma and Qiulin Li
Materials 2025, 18(14), 3341; https://doi.org/10.3390/ma18143341 - 16 Jul 2025
Viewed by 483
Abstract
The inhibition of recrystallization in high-strain nickel-based single-crystal superalloys remains a critical challenge for advanced turbine blade applications. This study investigates the evolution of the primary γ’ phase and dislocation during annealing in a third-generation Re-containing single-crystal superalloy (WZ30) subjected to 5% compressive [...] Read more.
The inhibition of recrystallization in high-strain nickel-based single-crystal superalloys remains a critical challenge for advanced turbine blade applications. This study investigates the evolution of the primary γ’ phase and dislocation during annealing in a third-generation Re-containing single-crystal superalloy (WZ30) subjected to 5% compressive deformation. Isochronal annealing (700 to 1200 °C, 1 min) combined with scanning electron microscopy (SEM) and an electron backscatter diffraction (EBSD) analysis revealed a nonlinear variation of the geometrically necessary dislocation (GND) density, which reached a minimum of 1000 °C with 62.7% of the primary γ’ phase retained. Prolonged recovery annealing at 1000 °C for 10 h effectively inhibited recrystallization during subsequent solution heat treatment. This result provides a practical strategy for inhibiting recrystallization in single-crystal superalloys. Full article
Show Figures

Figure 1

11 pages, 7411 KB  
Article
The Effects of Thermo-Mechanical Treatments on Microstructure and High-Temperature Mechanical Properties of a Nickel-Based Superalloy
by Zihan Kang, Yaxing Ma and Qian Lei
Crystals 2025, 15(7), 630; https://doi.org/10.3390/cryst15070630 - 9 Jul 2025
Viewed by 528
Abstract
The effects of thermo-mechanical treatment and different annealing temperatures on the microstructure and mechanical properties of a nickel-based superalloy were investigated by metallographic microscope, scanning electron microscope, and mechanical properties measurements. The results demonstrated that the tensile strength and elongation of the hot-rolled [...] Read more.
The effects of thermo-mechanical treatment and different annealing temperatures on the microstructure and mechanical properties of a nickel-based superalloy were investigated by metallographic microscope, scanning electron microscope, and mechanical properties measurements. The results demonstrated that the tensile strength and elongation of the hot-rolled samples were higher than those of the annealed ones. The ultimate engineering stress and engineering strain of the studied samples solid solution treated at 1175 °C for 4 h were 709 ± 19.8 MPa and 87.2 ± 1.4%, and the product of strength times elongation (PSE) was 61.8 GPa·%. These findings indicated that the thermo-mechanical treatment was an effective method to improve both the strength and the ductility of the nickel-based superalloy. Full article
(This article belongs to the Special Issue Emerging Topics of High-Performance Alloys (2nd Edition))
Show Figures

Figure 1

14 pages, 4491 KB  
Communication
Superhydrophilic Antifog Glass and Quartz Induced by Plasma Treatment in Air
by Huixing Zhang, Xiaolong Fang, Xiaowen Qi, Chaoran Sun, Zhenze Zhai, Longze Chen, He Wang, Qiufang Hu, Hongtao Cui and Meiyan Qiu
Nanomaterials 2025, 15(14), 1058; https://doi.org/10.3390/nano15141058 - 8 Jul 2025
Viewed by 470
Abstract
Fogging on glass poses a severe challenge in daily life, potentially even becoming life-threatening during driving and surgery; therefore there is a need for antifog surface structures. Fabricating superhydrophilic surfaces has been one of the major solutions to the challenge. Conventional direct thermal [...] Read more.
Fogging on glass poses a severe challenge in daily life, potentially even becoming life-threatening during driving and surgery; therefore there is a need for antifog surface structures. Fabricating superhydrophilic surfaces has been one of the major solutions to the challenge. Conventional direct thermal annealing glass in a furnace at 900 K for 2 h led to superhydrophicity but failed to produce superhydrophilicity on quartz. Meanwhile, it degraded transmission and was low throughput. This study developed a programmed fast plasma treatment of planar soda-lime glass and quartz in air, applied for only a few seconds, that was able to fabricate superhydrophilic surfaces. The process led to a 0° contact angle without sacrificing transmission, a result unreported before. The plasma treatment covered a whole 30 × 30 cm2 substrate in only approximately 5 s, resulting in superhydrophilicity, which has rarely been reported before. This simple yet controllable process has great potential for further scale-up and practical applications. Full article
(This article belongs to the Special Issue Nanomaterials for Chemical Engineering (3rd Edition))
Show Figures

Figure 1

Back to TopTop