Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (378)

Search Parameters:
Keywords = solid organic waste treatment

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
20 pages, 3734 KiB  
Review
Microbial Community and Metabolic Pathways in Anaerobic Digestion of Organic Solid Wastes: Progress, Challenges and Prospects
by Jiachang Cao, Chen Zhang, Xiang Li, Xueye Wang, Xiaohu Dai and Ying Xu
Fermentation 2025, 11(8), 457; https://doi.org/10.3390/fermentation11080457 - 7 Aug 2025
Abstract
Anaerobic digestion (AD) is a sustainable and widely adopted technology for the treatment of organic solid wastes (OSWs). However, AD efficiency varies significantly across different substrates, primarily due to differences in the microbial community and metabolic pathways. This review provides a comprehensive summary [...] Read more.
Anaerobic digestion (AD) is a sustainable and widely adopted technology for the treatment of organic solid wastes (OSWs). However, AD efficiency varies significantly across different substrates, primarily due to differences in the microbial community and metabolic pathways. This review provides a comprehensive summary of the AD processes for four types of typical OSWs (i.e., sewage sludge, food waste, livestock manure, and straw), with an emphasis on their universal characteristics across global contexts, focusing mainly on the electron transfer mechanisms, essential microbial communities, and key metabolic pathways. Special attention was given to the mechanisms by which substrate-specific structural differences influence anaerobic digestion efficiency, with a focused analysis and discussion on how different components affect microbial communities and metabolic pathways. This study concluded that the hydrogenotrophic methanogenesis pathway, TCA cycle, and the Wood–Ljungdahl pathway serve as critical breakthrough points for enhancing methane production potential. This research not only provides a theoretical foundation for optimizing AD efficiency, but also offers crucial scientific insights for resource recovery and energy utilization of OSWs, making significant contributions to advancing sustainable waste management practices. Full article
(This article belongs to the Special Issue Feature Review Papers in Industrial Fermentation, 2nd Edition)
Show Figures

Figure 1

16 pages, 2260 KiB  
Article
From Shale to Value: Dual Oxidative Route for Kukersite Conversion
by Kristiina Kaldas, Kati Muldma, Aia Simm, Birgit Mets, Tiina Kontson, Estelle Silm, Mariliis Kimm, Villem Ödner Koern, Jaan Mihkel Uustalu and Margus Lopp
Processes 2025, 13(8), 2421; https://doi.org/10.3390/pr13082421 - 30 Jul 2025
Viewed by 292
Abstract
The increasing need for sustainable valorization of fossil-based and waste-derived materials has gained interest in converting complex organic matrices such as kerogen into valuable chemicals. This study explores a two-step oxidative strategy to decompose and valorize kerogen-rich oil shale, aiming to develop a [...] Read more.
The increasing need for sustainable valorization of fossil-based and waste-derived materials has gained interest in converting complex organic matrices such as kerogen into valuable chemicals. This study explores a two-step oxidative strategy to decompose and valorize kerogen-rich oil shale, aiming to develop a locally based source of aliphatic dicarboxylic acids (DCAs). The method combines air oxidation with subsequent nitric acid treatment to enable selective breakdown of the organic structure under milder conditions. Air oxidation was conducted at 165–175 °C using 1% KOH as an alkaline promoter and 40 bar oxygen pressure (or alternatively 185 °C at 30 bar), targeting 30–40% carbon conversion. The resulting material was then subjected to nitric acid oxidation using an 8% HNO3 solution. This approach yielded up to 23% DCAs, with pre-oxidation allowing a twofold reduction in acid dosage while maintaining efficiency. However, two-step oxidation was still accompanied by substantial degradation of the structure, resulting in elevated CO2 formation, highlighting the need to balance conversion and carbon retention. The process offers a possible route for transforming solid fossil residues into useful chemical precursors and supports the advancement of regionally sourced, sustainable DCA production from unconventional raw materials. Full article
Show Figures

Graphical abstract

27 pages, 940 KiB  
Review
Characteristics of Food Industry Wastewaters and Their Potential Application in Biotechnological Production
by Ivana Nikolić, Kosta Mijić and Ivana Mitrović
Processes 2025, 13(8), 2401; https://doi.org/10.3390/pr13082401 - 28 Jul 2025
Viewed by 633
Abstract
The food industry consumes large amounts of water across various processes, and generates wastewater characterized by parameters like biochemical oxygen demand, chemical oxygen demand, pH, suspended solids, and nutrients. To meet environmental standards and enable reuse or valorization, treatment methods such as physicochemical, [...] Read more.
The food industry consumes large amounts of water across various processes, and generates wastewater characterized by parameters like biochemical oxygen demand, chemical oxygen demand, pH, suspended solids, and nutrients. To meet environmental standards and enable reuse or valorization, treatment methods such as physicochemical, biological, and membrane-based processes are applied. This review focuses on the valorization of food industry wastewater in the biotechnological production of high-value products, with an emphasis on starch-rich wastewater, wineries and confectionery industry wastewater, and with a focus on new technologies for reduces environmental burden but also supports circular economy principles. Starch-rich wastewaters, particularly those generated by the potato processing industry, offer considerable potential for biotechnological valorization due to their high content of soluble starch, proteins, organic acids, minerals, and lipids. These effluents can be efficiently converted by various fungi (e.g., Aspergillus, Trichoderma) and yeasts (e.g., Rhodotorula, Candida) into value-added products such as lipids for biodiesel, organic acids, microbial proteins, carotenoids, and biofungicides. Similarly, winery wastewaters, characterized by elevated concentrations of sugars and polyphenols, have been successfully utilized as medium for microbial cultivation and product synthesis. Microorganisms belonging to the genera Aspergillus, Trichoderma, Chlorella, Klebsiella, and Xanthomonas have demonstrated the ability to transform these effluents into biofuels, microbial biomass, biopolymers, and proteins, contributing to sustainable bioprocess development. Additionally, wastewater from the confectionery industry, rich in sugars, proteins, and lipids, serves as a favorable fermentation medium for the production of xanthan gum, bioethanol, biopesticides, and bioplastics (e.g., PHA and PHB). Microorganisms of the genera Xanthomonas, Bacillus, Zymomonas, and Cupriavidus are commonly employed in these processes. Although there are still certain regulatory issues, research gaps, and the need for more detailed economic analysis and kinetics of such production, we can conclude that this type of biotechnological production on waste streams has great potential, contributing to environmental sustainability and advancing the principles of the circular economy. Full article
(This article belongs to the Special Issue 1st SUSTENS Meeting: Advances in Sustainable Engineering Systems)
Show Figures

Figure 1

13 pages, 4134 KiB  
Article
Use of Biodried Organic Waste as a Soil Amendment: Positive Effects on Germination and Growth of Lettuce (Lactuca sativa L., var. Buttercrunch) as a Model Crop
by Rosa María Contreras-Cisneros, Fabián Robles-Martínez, Marina Olivia Franco-Hernández and Ana Belem Piña-Guzmán
Processes 2025, 13(7), 2285; https://doi.org/10.3390/pr13072285 - 17 Jul 2025
Viewed by 309
Abstract
Biodrying and composting are aerobic processes to treat and stabilize organic solid waste, but biodrying involves a shorter process time and does not require the addition of water. The resulting biodried material (BM) is mainly used as an energy source in cement production [...] Read more.
Biodrying and composting are aerobic processes to treat and stabilize organic solid waste, but biodrying involves a shorter process time and does not require the addition of water. The resulting biodried material (BM) is mainly used as an energy source in cement production or in municipal solid waste incineration with energy recovery, but when obtained from agricultural or agroindustrial organic waste, it could also be used as a soil amendment, such as compost (CO). In this study, the phytotoxicity of BM compared to CO, both made from organic wastes (orange peel, mulch and grass), was evaluated on seed germination and growth (for 90 days) of lettuce (Lactuca sativa L.) seedlings on treatments prepared from mixtures of BM and soil, soil (100%) and a mixture of CO and soil. The germination index (GI%) was higher for BM extracts (200 g/L) than for CO extracts (68% vs. 53%, respectively). According to their dry weight, lettuce grew more on the CO mixture (16.5 g) than on the BM (5.4–7.4 g), but both materials far exceeded the soil values (0.15 g). The absence of phytotoxicity suggests that BM acts as a soil amendment, improving soil structure and providing nutrients to the soil. Therefore, biodrying is a quick and low-cost bioprocess to obtain a soil improver. Full article
Show Figures

Figure 1

19 pages, 1488 KiB  
Article
Anaerobic Co-Digestion of Sewage Sludge and Organic Solid By-Products from Table Olive Processing: Influence of Substrate Mixtures on Overall Process Performance
by Encarnación Díaz-Domínguez, José Ángel Rubio, James Lyng, Enrique Toro, Fernando Estévez and José L. García-Morales
Energies 2025, 18(14), 3812; https://doi.org/10.3390/en18143812 - 17 Jul 2025
Viewed by 240
Abstract
Sewage sludge, characterized by its high organic matter and nutrient content, as well as the presence of microbial pathogens and other contaminants, requires proper management due to its significant generation rate. The table olive sector, which is highly significant in Spain as a [...] Read more.
Sewage sludge, characterized by its high organic matter and nutrient content, as well as the presence of microbial pathogens and other contaminants, requires proper management due to its significant generation rate. The table olive sector, which is highly significant in Spain as a global leader in production and export, generates various waste streams such the Organic Solid By-Products from Table Olive Processing (OSBTOP), which are mainly derived from the olive pit after the pitting process. The main aim of this study was to enhance the methane production performance of sewage sludge through co-digestion with OSBTOP as a co-substrate. Batch assays demonstrated that employing OSBTOP as a co-substrate increased methane content by 35–41% across all tested mixtures. While the highest methane yield was produced at a 40:60 (sludge:OSBTOP) ratio, a 60:40 mixture proved to be a more advantageous option for scale-up and practical application. This is attributed to factors such as the higher availability of sludge and its inherent buffering capacity, which counteracts the accumulation of volatile fatty acids and promotes process stability, thereby contributing to the study’s objective of significantly enhancing methane production from sewage sludge through co-digestion. In semi-continuous operation, methane yields in the co-digestion scenario exceeded those of mixed sludge digestion, showing a yield of 180 versus 120 LCH4−1 · kgVSadded−1, representing a 50% improvement. This study highlights the potential of anaerobic digestion as a strategy for valorizing OSBTOP, a by-product with no prior studies, while demonstrating that its co-digestion with sewage sludge enhances methane generation, offering a sustainable approach to organic waste treatment. Full article
(This article belongs to the Special Issue Zero Waste Technology from Biofuel Development)
Show Figures

Figure 1

19 pages, 1165 KiB  
Article
Expansion of Mechanical Biological Residual Treatment Plant with Fermentation Stage for Press Water from Organic Fractions Involving a Screw Press
by Rzgar Bewani, Abdallah Nassour, Thomas Böning, Jan Sprafke and Michael Nelles
Recycling 2025, 10(4), 141; https://doi.org/10.3390/recycling10040141 - 16 Jul 2025
Viewed by 285
Abstract
A three-year optimization study was conducted at a mechanical biological treatment plant with the aim of enhancing organic fractions recovery from mechanically separated fine fractions (MSFF) of residual waste using a screw press. The study aimed to optimize key operating parameters for the [...] Read more.
A three-year optimization study was conducted at a mechanical biological treatment plant with the aim of enhancing organic fractions recovery from mechanically separated fine fractions (MSFF) of residual waste using a screw press. The study aimed to optimize key operating parameters for the employed screw press, such as pressure, liquid-to-MSFF, feeding quantity per hour, and press basket mesh size, to enhance volatile solids and biogas recovery in the generated press water for anaerobic digestion. Experiments were performed at the full-scale facility to evaluate the efficiency of screw press extraction with other pretreatment methods, like press extrusion, wet pulping, and hydrothermal treatment. The results indicated that hydrolysis of the organic fractions in MSFF was the most important factor for improving organic extraction from the MSFF to press water for fermentation. Optimal hydrolysis efficiency was achieved with a digestate and process water-to-MSFF of approximately 1000 L/ton, with a feeding rate between 8.8 and 14 tons per hour. Increasing pressure from 2.5 to 4.0 bar had minimal impact on press water properties or biogas production, regardless of the press basket size. The highest volatile solids (29%) and biogas (50%) recovery occurred at 4.0 bar pressure with a 1000 L/ton liquid-to-MSFF. Further improvements could be achieved with longer mixing times before pressing. These findings demonstrate the technical feasibility of the pressing system for preparing an appropriate substrate for the fermentation process, underscoring the potential for optimizing the system. However, further research is required to assess the cost–benefit balance. Full article
Show Figures

Figure 1

18 pages, 1422 KiB  
Article
Potable Water Recovery for Space Habitation Systems Using Hybrid Life Support Systems: Biological Pretreatment Coupled with Reverse Osmosis for Humidity Condensate Recovery
by Sunday Adu, William Shane Walker and William Andrew Jackson
Membranes 2025, 15(7), 212; https://doi.org/10.3390/membranes15070212 - 16 Jul 2025
Viewed by 596
Abstract
The development of efficient and sustainable water recycling systems is essential for long-term human missions and the establishment of space habitats on the Moon, Mars, and beyond. Humidity condensate (HC) is a low-strength wastewater that is currently recycled on the International Space Station [...] Read more.
The development of efficient and sustainable water recycling systems is essential for long-term human missions and the establishment of space habitats on the Moon, Mars, and beyond. Humidity condensate (HC) is a low-strength wastewater that is currently recycled on the International Space Station (ISS). The main contaminants in HC are primarily low-molecular-weight organics and ammonia. This has caused operational issues due to microbial growth in the Water Process Assembly (WPA) storage tank as well as failure of downstream systems. In addition, treatment of this wastewater primarily uses adsorptive and exchange media, which must be continually resupplied and represent a significant life-cycle cost. This study demonstrates the integration of a membrane-aerated biological reactor (MABR) for pretreatment and storage of HC, followed by brackish water reverse osmosis (BWRO). Two system configurations were tested: (1) periodic MABR fluid was sent to batch RO operating at 90% water recovery with the RO concentrate sent to a separate waste tank; and (2) periodic MABR fluid was sent to batch RO operating at 90% recovery with the RO concentrate returned to the MABR (accumulating salinity in the MABR). With an external recycle tank (configuration 2), the system produced 2160 L (i.e., 1080 crew-days) of near potable water (dissolved organic carbon (DOC) < 10 mg/L, total nitrogen (TN) < 12 mg/L, total dissolved solids (TDS) < 30 mg/L) with a single membrane (weight of 260 g). When the MABR was used as the RO recycle tank (configuration 1), 1100 L of permeate could be produced on a single membrane; RO permeate quality was slightly better but generally similar to the first configuration even though no brine was wasted during the run. The results suggest that this hybrid system has the potential to significantly enhance the self-sufficiency of space habitats, supporting sustainable extraterrestrial human habitation, as well as reducing current operational problems on the ISS. These systems may also apply to extreme locations such as remote/isolated terrestrial locations, especially in arid and semi-arid regions. Full article
(This article belongs to the Special Issue Advanced Membranes and Membrane Technologies for Wastewater Treatment)
Show Figures

Figure 1

17 pages, 2432 KiB  
Article
Fertilization Effects of Solid Digestate Treatments on Earthworm Community Parameters and Selected Soil Attributes
by Anna Mazur-Pączka, Kevin R. Butt, Marcin Jaromin, Edmund Hajduk, Mariola Garczyńska, Joanna Kostecka and Grzegorz Pączka
Agriculture 2025, 15(14), 1511; https://doi.org/10.3390/agriculture15141511 - 13 Jul 2025
Viewed by 824
Abstract
An increasing number of soils, including those in EU countries, are affected by organic matter deficiency and the deterioration of nutrients, and using mineral fertilizers is often associated with negative environmental impacts. One of the basic recommendations for sustainable agriculture is to increase [...] Read more.
An increasing number of soils, including those in EU countries, are affected by organic matter deficiency and the deterioration of nutrients, and using mineral fertilizers is often associated with negative environmental impacts. One of the basic recommendations for sustainable agriculture is to increase the proportion of organic fertilizers in crop production and preserve soil biodiversity. An increasingly common organic fertilizer is biogas plant digestate, the physical and chemical properties of which depend primarily on the waste material used in biogas production. However, the fertilizer value of this additive and its effects on the soil environment, including beneficial organisms, remain insufficiently studied. Soil macrofauna, particularly earthworms, play a crucial role in soil ecosystems, because they significantly impact the presence of plant nutrients, actively participate in forming soil structures, and strongly influence organic matter dynamics. The present study was undertaken to determine the effects of fertilizing a silt loam soil with the solid fraction of digestate in monoculture crop production on earthworm community characteristics and the resulting changes in selected soil physicochemical properties. The research was conducted at a single site, so the original soil characteristics across the experimental plots were identical. Plots were treated annually (for 3 years; 2021–2023) with different levels of digestate: DG100 (100% of the recommended rate; 30 t ha−1), DG75 (75% of the recommended rate; 22.5 t ha−1), DG50 (15 t ha−1), DG25 (7.5 t ha−1), and CL (a control plot without fertilizer). An electrical method was used to extract earthworms. Those found at the study site belonged to seven species representing three ecological groups: Dendrodrilus rubidus (Sav.), Lumbricus rubellus (Hoff.), and Dendrobaena octaedra (Sav.) (epigeics); Aporrectodea caliginosa (Sav.), Aporrectodea rosea (Sav.), and Octolasion lacteum (Örley) (endogeics); and Lumbricus terrestris (L.) (anecics). Significant differences in the abundance and biomass of earthworms were found between the higher level treatments (DG100, DG75, and DG50), and the lowest level of fertilization and the control plot (DG25 and CL). The DG25 and CL plots showed an average of 24.7% lower earthworm abundance and 22.8% lower biomass than the other plots. There were no significant differences in the earthworm metrics between the plots within each of the two groups (DG100, DG75, and DG50; and DG25 and CL). The most significant influence on the average abundance and average biomass of Lumbricidae was probably exerted by soil moisture and the annual dosage of digestate. A significant increase in the abundance and biomass of Lumbricidae was shown at plots DG100, DG75, and DG50 in the three successive years of the experiment. The different fertilizer treatments were found to have different effects on selected soil parameters. No significant differences were found among the values of the analyzed soil traits within each plot in the successive years of the study. Full article
(This article belongs to the Section Agricultural Soils)
Show Figures

Figure 1

22 pages, 2129 KiB  
Article
Biological Hydrogen Production Through Dark Fermentation with High-Solids Content: An Alternative to Enhance Organic Residues Degradation in Co-Digestion with Sewage Sludge
by Rodolfo Daniel Silva-Martínez, Oscar Aguilar-Juárez, Lourdes Díaz-Jiménez, Blanca Estela Valdez-Guzmán, Brenda Aranda-Jaramillo and Salvador Carlos-Hernández
Fermentation 2025, 11(7), 398; https://doi.org/10.3390/fermentation11070398 - 11 Jul 2025
Viewed by 506
Abstract
Adequate treatment of the organic fraction of municipal solid waste (OFMSW) in co-digestion with sewage sludge (SS) through dark fermentation (DF) technologies has been widely studied and recognized. However, there is little experience with a high-solids approach, where practical and scalable conditions are [...] Read more.
Adequate treatment of the organic fraction of municipal solid waste (OFMSW) in co-digestion with sewage sludge (SS) through dark fermentation (DF) technologies has been widely studied and recognized. However, there is little experience with a high-solids approach, where practical and scalable conditions are established to lay the groundwork for further development of feasible industrial-scale projects. In this study, the biochemical hydrogen potential of OFMSW using a 7 L batch reactor at mesophilic conditions was evaluated. Parameters such as pH, redox potential, temperature, alkalinity, total solids, and substrate/inoculum ratio were adjusted and monitored. Biogas composition was analyzed by gas chromatography. The microbial characterization of SS and post-reaction percolate liquids was determined through metagenomics analyses. Results show a biohydrogen yield of 38.4 NmLH2/gVS OFMSW, which forms ~60% of the produced biogas. Aeration was proven to be an efficient inoculum pretreatment method, mainly to decrease the levels of methanogenic archaea and metabolic competition, and at the same time maintain the required total solid (TS) contents for high-solids conditions. The microbial community analysis reveals that biohydrogen production was carried out by specific anaerobic and aerobic bacteria, predominantly dominated by the phylum Firmicutes, including the genus Bacillus (44.63% of the total microbial community), Clostridium, Romboutsia, and the phylum Proteobacteria, with the genus Proteus. Full article
(This article belongs to the Special Issue Valorization of Food Waste Using Solid-State Fermentation Technology)
Show Figures

Figure 1

22 pages, 3729 KiB  
Article
Assessing the Impact of Residual Municipal Solid Waste Characteristics on Screw Press Performance in a Mechanical Biological Treatment Plant Optimized with Anaerobic Digestion
by Rzgar Bewani, Abdallah Nassour, Thomas Böning, Jan Sprafke and Michael Nelles
Sustainability 2025, 17(14), 6365; https://doi.org/10.3390/su17146365 - 11 Jul 2025
Cited by 1 | Viewed by 372
Abstract
Mechanical–biological treatment plants face challenges in effectively separating organic fractions from residual municipal solid waste for biological treatment. This study investigates the optimization measures carried out at the Erbenschwang MBT facility, which transitioned from solely aerobic treatment to integrated anaerobic digestion using a [...] Read more.
Mechanical–biological treatment plants face challenges in effectively separating organic fractions from residual municipal solid waste for biological treatment. This study investigates the optimization measures carried out at the Erbenschwang MBT facility, which transitioned from solely aerobic treatment to integrated anaerobic digestion using a screw press. This study focused on evaluating the efficiency of each mechanical pretreatment step by investigating the composition of the residual waste, organic fraction recovery rate, and screw press performance in recovering organic material and biogas to press water. The results showed that 92% of the organic material from the residual waste was recovered into fine fractions after shredding and trommel screening. The pressing experiments produced high-quality press water with less than 3% inert material (0.063–4 mm size). Mass balance analysis revealed that 47% of the input fresh mass was separated into press water, corresponding to 24% of the volatile solids recovered. Biogas yield tests showed that the press water had a biogas potential of 416 m3/ton VS, recovering 38% of the total biogas potential. In simple terms, the screw press produced 32 m3 of biogas per ton of mechanically separated fine fractions and 20 m3 per ton of input residual waste. This low-pressure, single-step screw press efficiently and cost-effectively prepares anaerobic digestion feedstock, making it a promising optimization for both existing and new facilities. The operational configuration of the screw press remains an underexplored area in current research. Therefore, further studies are needed to systematically evaluate key parameters such as screw press pressure (bar), liquid-to-waste (L/ton), and feed rate (ton/h). Full article
Show Figures

Figure 1

22 pages, 2047 KiB  
Article
Structure Formation and Curing Stage of Arbolite–Concrete Composites Based on Iron-Sulfur Binders
by Baizak Isakulov, Abilkhair Issakulov and Agnieszka Dąbska
Infrastructures 2025, 10(7), 179; https://doi.org/10.3390/infrastructures10070179 - 10 Jul 2025
Viewed by 326
Abstract
The paper deals with the issue of obtaining iron-sulfur-containing binders through their mechanochemical treatment using mutual neutralization and detoxification structure formation, and the curing stage of arbolite concrete composites based on industrial waste under long-term loading were also studied. Due to abrasion and [...] Read more.
The paper deals with the issue of obtaining iron-sulfur-containing binders through their mechanochemical treatment using mutual neutralization and detoxification structure formation, and the curing stage of arbolite concrete composites based on industrial waste under long-term loading were also studied. Due to abrasion and impact, the mutual neutralization and detoxification methods of industrial waste toxic components through their mechanochemical treatment on the structures of ball mill LShM-750, were used to obtain iron-sulfur-containing binders. Pyrite cinders acted as oxidizing agents, and elementary technical sulfur had reduced properties. To determine the rate of creep strain growth, the load on prism samples was applied in the form of specially made spring units at stress levels of 0.15 Rbn, 0.44 Rbn, and 0.74 Rbn, where Rbn is the prism strength of iron-sulfur-containing arbolite concrete in compression. The strength and fracture formations of lightweight iron-sulfur concrete were studied using strain gauge apparatus and depth strain gauges glued on shredded reed fibers using adhesive, installed before concreting. It was revealed that the introduction of a sulfur additive within the range from 10 to 13% increases the compressive strength of iron-sulfur-containing concrete composites prepared with that of mortars at a water/solid ratio equal to 0.385 in wet and dry states. It is found that the deformations occurring under applied load growth proportionally to it, and deviation from this regularity was observed for lightweight iron-sulfur-containing concrete only at high compressive stresses. It was also proved that the destruction of iron-sulfur-containing arbolite occurs sequentially. First, the destruction of the mortar component is observed, and then the organic aggregate in the form of crushed reed fiber is destroyed. It was confirmed that arbolite concrete composite can be used as an effective wall material for civil engineering structure, especially in seismic regions of Kazakhstan. Full article
Show Figures

Figure 1

22 pages, 3937 KiB  
Article
Selective Ammonium Recovery from Livestock and Organic Solid Waste Digestates Using Zeolite Tuff: Efficiency and Farm-Scale Prospects
by Matteo Alberghini, Giacomo Ferretti, Giulio Galamini, Cristina Botezatu and Barbara Faccini
Recycling 2025, 10(4), 137; https://doi.org/10.3390/recycling10040137 - 8 Jul 2025
Viewed by 318
Abstract
Implementing efficient strategies for the circular recovery and reuse of nutrients from wastewaters is mandatory to meet the Green Deal objectives and Sustainable Development Goals. In this context we investigated the use of zeolitic tuff (containing chabazite and phillipsite) in the selective recovery [...] Read more.
Implementing efficient strategies for the circular recovery and reuse of nutrients from wastewaters is mandatory to meet the Green Deal objectives and Sustainable Development Goals. In this context we investigated the use of zeolitic tuff (containing chabazite and phillipsite) in the selective recovery and reuse of N from various anaerobic liquid digestates in view of their implementation in farm-scale treatment plants. We tested the method on three livestock digestates and two municipal organic solid waste digestates. Adsorption isotherms and kinetics were assessed on each digestate, and a large set of parameters, including (i) contact time, (ii) initial NH4+ concentration, (iii) presence of competing ions, (iv) total solids content, and (vi) separation methods (microfiltration and clarification), were considered in the experimental design. Our results showed that the adsorption mechanism can be explained by the Freundlich model (R2 up to 0.97), indicating a multilayer and heterogeneous adsorption, while the kinetic of adsorption can be explained by the pseudo-second-order model, indicating chemical adsorption and ion exchange. The efficiency in the removal of NH4+ was indirectly related to the K+ and total solids content of the digestate. Maximum NH4+ removal exceeded 90% in MSW-derived digestates and 80% within 60 min in livestock-derived digestates at a 5% solid/liquid ratio. Thermodynamic parameters confirmed favorable and spontaneous adsorption (ΔG up to −7 kJ⋅mol−1). Farm-scale projections estimate a nitrogen recovery potential of 1.2 to 16 kg N⋅day−1, depending on digestate type and process conditions. These findings support the application of natural zeolitic tuffs as a low-cost, chemical-free solution for ammonium recovery, contributing to sustainable agriculture and circular economy objectives. Full article
Show Figures

Figure 1

12 pages, 2664 KiB  
Article
Heavy Metal Immobilization by Phosphate-Solubilizing Fungus and Phosphogypsum Under the Co-Existence of Pb(II) and Cd(II)
by Xu Li, Zhenyu Chao, Haoxuan Li, Jiakai Ji, Xin Sun, Yingxi Chen, Zhengda Li, Zhen Li, Chuanhao Li, Jun Yao and Lan Xiang
Agronomy 2025, 15(7), 1632; https://doi.org/10.3390/agronomy15071632 - 4 Jul 2025
Viewed by 336
Abstract
Globally, phosphogypsum (PG) is the primary by-product of the phosphorus industry. Aspergillus niger (A. niger), one of the most powerful types of phosphate-solubilizing fungi (PSF), can secrete organic acids to dissolve the phosphates in PG. This study investigated heavy metal (HM) [...] Read more.
Globally, phosphogypsum (PG) is the primary by-product of the phosphorus industry. Aspergillus niger (A. niger), one of the most powerful types of phosphate-solubilizing fungi (PSF), can secrete organic acids to dissolve the phosphates in PG. This study investigated heavy metal (HM) remediation by PG and A. niger under the co-existence of Pb and Cd. It demonstrated that 1 mmol/L Pb2+ stimulated the bioactivity of A. niger during incubation, based on the CO2 emission rate. PG successfully functioned as P source for the fungus, and promoted the growth of the fungal cells. Meanwhile, it also provided sulfates to immobilize Pb in the solution. The subsequently generated anglesite was confirmed using SEM imaging. The immobilization rate of Pb reached over 95%. Under co-existence, Pb2+ and 0.01 mmol/L Cd2+ maximized the stimulating effect of A. niger. However, the biotoxicity of Pb2+ and elevated Cd2+ (0.1 mmol/L) counterbalanced the stimulating effect. Finally, 1 mmol/L Cd2+ dramatically reduced the fungal activity. In addition, organic matters from the debris of A. niger could still bind Pb2+ and Cd2+ according to the significantly lowered water-soluble Pb and Cd concentrations. In all treatments with the addition of Cd2+, the relatively high biotoxicity of Cd2+ induced A. niger to absorb more Pb2+ to minimize the sorption of Cd2+ based on the XRD results. The functional group analysis of ATR-IR also confirmed the phenomenon. This pathway maintained the stability of Pb2+ immobilization using the fungus and PG. This study, hence, shed light on the application of A. niger and solid waste PG to remediate the pollution of Pb and Cd. Full article
Show Figures

Figure 1

27 pages, 2941 KiB  
Review
Valorization of Fruit Pomace by Enzymatic Treatment and Microbial Fermentation
by Nadiya Samad, Clinton E. Okonkwo, Mutamed Ayyash, Ali H. Al-Marzouqi, Oni Yuliarti and Afaf Kamal-Eldin
Fermentation 2025, 11(7), 376; https://doi.org/10.3390/fermentation11070376 - 29 Jun 2025
Viewed by 656
Abstract
Fruit pomace is a major processing byproduct abundant in fermentable sugars, dietary fibers, and phenolic and other bioactive compounds. This review provides a summary of the latest developments in fruit pomace enzymatic valorization and microbial fermentation, focusing on the enzymes and microbes used, [...] Read more.
Fruit pomace is a major processing byproduct abundant in fermentable sugars, dietary fibers, and phenolic and other bioactive compounds. This review provides a summary of the latest developments in fruit pomace enzymatic valorization and microbial fermentation, focusing on the enzymes and microbes used, technologies, bioconversion products, and applications. The extraction and structural transformation of dietary fibers, oligosaccharides, and phenolic and other bioactive compounds have been made easier by enzymatic treatments. Microbial fermentation of fruit pomace produces a range of compounds such as prebiotics, organic acids, and polyphenols. Solid-state fermentation and enzyme immobilization allow the scalability and efficiency of these processes. The combination of enzymatic valorization and microbial fermentation may provide a sustainable approach to turn fruit pomace from waste into value-added food ingredients. Full article
(This article belongs to the Special Issue Advances in Fermented Fruits and Vegetables)
Show Figures

Figure 1

16 pages, 728 KiB  
Article
Agronomic Use of Urban Composts from Decentralized Composting Scenarios: Implications for a Horticultural Crop and Soil Properties
by Cristina Álvarez-Alonso, María Dolores Pérez-Murcia, Natalia Manrique, F. Javier Andreu-Rodríguez, Miguel Ángel Mira-Urios, Ignacio Irigoyen, Marga López, Luciano Orden, Raúl Moral, Isabel Nogués and María Ángeles Bustamante
Agronomy 2025, 15(7), 1520; https://doi.org/10.3390/agronomy15071520 - 22 Jun 2025
Viewed by 495
Abstract
Circular economy in the context of municipal organic waste management has boosted the emergence of novel composting scenarios, such as community composting and decentralized urban composting in small installations, which favors localized management and valorization of organic waste streams. However, there is little [...] Read more.
Circular economy in the context of municipal organic waste management has boosted the emergence of novel composting scenarios, such as community composting and decentralized urban composting in small installations, which favors localized management and valorization of organic waste streams. However, there is little information about the agronomic use of the composts obtained from these new organic waste management systems as an alternative for inorganic fertilization in crop production. In this work, municipal solid waste-derived composts from two decentralized composting scenarios (CM1 and CM2 from community composting, and CM3 and CM4 from decentralized urban small-scale composting plants) were applied and mixed in the top layer of a calcareous clayey-loam soil to assess their effects as alternative substitutes for conventional soil inorganic fertilization (IN) during two successive cultivation cycles of lettuce (Lactuca sativa L.) grown in pots with the amended soils. These treatments were also compared with an organic waste (goat–rabbit manure, E) and a control treatment without fertilization (B). The effects of the fertilizing treatments on the crop yield and quality, as well as on the properties of the soil considered were studied. In general, the application of the different composts did not produce negative effects on lettuce yield and quality. The compost-derived fertilization showed similar lettuce yields compared to the inorganic and manure-derived fertilizations (IN and E, respectively), and higher yields than the soil without amendment (B), with increases in the initial yield values of B, for the first cycle from 34.2% for CM1 to 53.8% for CM3, and from 20.3% for CM3 to 92.4% for CM1 in the second cycle. Furthermore, the organically amended soils showed a better crop development, obtaining higher values than the control treatment in the parameters studied. In addition, the incorporation of the organic treatments improved the soil characteristics, leading to 1.3 and 1.2 times higher organic matter contents in the soils with CM2 and in the soils with CM1, CM3, and E, respectively, compared to the control soil without fertilizing treatment (B), and 2.0 and 1.8 times greater organic matter contents, respectively, compared to soil with inorganic fertilization (IN). Therefore, the use of municipal solid waste-derived composts from these new organic waste management systems, such as the decentralized composting scenarios studied (community composting and urban decentralized small-scale composting plants), is presented, not only as a sustainable valorization method, but also as an alternative for the use of inorganic fertilizers in lettuce cultivation, while enhancing soil properties, contributing to increasing the circularity of agriculture. Full article
Show Figures

Graphical abstract

Back to TopTop