Agronomic Use of Urban Composts from Decentralized Composting Scenarios: Implications for a Horticultural Crop and Soil Properties
Abstract
1. Introduction
2. Materials and Methods
2.1. Characteristics of the Organic Amendments and Soil Used
2.2. Experimental Set Up
2.3. Analytical Determinations
2.4. Statistical Analysis
3. Results and Discussion
3.1. Effects of the Treatments on Crop Yield and Quality
3.2. Effects of the Treatments on Lettuce Nutrient Contents and N Use Efficiency
3.3. Effects of the Treatments on Soil Properties
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- EU. Towards a Circular Economy-Waste Management in the EU. 2017. Available online: https://www.europarl.europa.eu/RegData/etudes/STUD/2017/581913/EPRS_STU%282017%29581913_EN.pdf (accessed on 7 March 2025).
- Cao, X.; Williams, P.N.; Zhan, Y.; Coughlin, S.A.; McGrath, J.W.; Chin, J.P.; Xu, Y. Municipal solid waste compost: Global trends and biogeochemical cycling. Soil Environ. Health 2023, 1, 100038. [Google Scholar] [CrossRef]
- Nanda, S.; Berruti, F. Municipal Solid Waste Management and Landfilling Technologies: A Review. Environ. Chem. Lett. 2021, 19, 1433–1456. [Google Scholar] [CrossRef]
- Bekchanov, M.; Mirzabaev, A. Circular economy of composting in Sri Lanka: Opportunities and challenges for reducing waste related pollution and improving soil health. J. Clean. Prod. 2018, 202, 1107–1119. [Google Scholar] [CrossRef]
- Álvarez-Alonso, C.; Pérez-Murcia, M.D.; Sánchez-Méndez, S.; Martínez-Sabater, E.; Irigoyen, I.; López, M.; Nogués, I.; Paredes, C.; Orden, L.; García-Rández, A.; et al. Municipal solid waste management in a decentralized composting scenario: Assessment of the process reproducibility and quality of the obtained composts. Agronomy 2024, 14, 54. [Google Scholar] [CrossRef]
- Marcello, B.; Di Gennaro, V.; Ferrini, S. Let the citizens speak: An empirical economic analysis of domestic organic waste for community composting in Tuscany. J. Clean. Prod. 2021, 306, 127263. [Google Scholar] [CrossRef]
- De Souza, L.C.G.; Drumond, M.A. Decentralized composting as a waste management tool connect with the new global trends: A systematic review. Int. J. Environ. Sci. Technol. 2022, 19, 12679–12700. [Google Scholar] [CrossRef]
- Alves, D.; Villar, I.; Mato, S. Community composting strategies for biowaste treatment: Methodology, bulking agent and compost quality. Environ. Sci. Pollut. Res. 2024, 31, 9873–9885. [Google Scholar] [CrossRef]
- Turrión, M.B.; Bueis, T.; Lafuente, F.; López, O.; San José, E.; Eleftheriadis, A.; Mulas, R. Effects on soil phosphorus dynamics of municipal solid waste compost addition to a burnt and unburnt forest soil. Sci. Total Environ. 2018, 642, 374–382. [Google Scholar] [CrossRef]
- Srivastava, V.; De Araujo, A.S.F.; Vaish, B.; Bartelt-Hunt, S.; Singh, P.; Singh, R.P. Biological response of using municipal solid waste compost in agriculture as fertilizer supplement. Rev. Environ. Sci. Biotechnol. 2016, 15, 677–696. [Google Scholar] [CrossRef]
- Arrobas, M.; Thais Nepomuceno Carvalho, J.; Raimundo, S.; Poggere, G.; Rodrigues, M.Â. The safe use of compost derived from municipal solid waste depends on its composition and conditions of application. Soil Use Manag. 2022, 38, 917–928. [Google Scholar] [CrossRef]
- FAOSTAT. Food and Agriculture Organization of the United Nations Database. 2022. Available online: http://www.fao.org/faostat/en/#data/QC (accessed on 18 February 2025).
- MAPA. 2021. Available online: https://www.mapa.gob.es/es/estadistica/temas/estadisticas-agrarias/agricultura/superficies-producciones-anuales-cultivos/ (accessed on 18 February 2025).
- Vico, A.; Sáez, J.A.; Pérez-Murcia, M.D.; Martinez-Tomé, J.; Andreu-Rodríguez, J.; Agulló, E.; Bustamante, M.A.; Sanz-Cobena, A.; Moral, R. Production of spinach in intensive Mediterranean horticultural systems can be sustained by organic-based fertilizers without yield penalties and with low environmental impacts. Agric. Syst. 2020, 178, 102765. [Google Scholar] [CrossRef]
- Al-Shammary, A.A.G.; Al-Shihmani, L.S.S.; Fernández-Gálvez, J.; Caballero-Calvo, A. Optimizing sustainable agriculture: A comprehensive review of agronomic practices and their impacts on soil attributes. J. Environ. Manag. 2024, 364, 121487. [Google Scholar] [CrossRef] [PubMed]
- Fan, X.; Kawamura, K.; Guo, W.; Xuan, T.D.; Lim, J.; Yuba, N.; Kurokawa, Y.; Obitsu, T.; Tsumiyama, R.; Lv, Y.; et al. A simple visible and near-infrared (V-NIR) camera system for monitoring the leaf area index and growth stage of Italian ryegrass. Comput. Electron. Agric. 2018, 144, 314–323. [Google Scholar] [CrossRef]
- Concepcion, R., II; Lauguico, S.; Alejandrino, J.; Dadios, E.; Sybingco, E. Lettuce Canopy Area Measurement Using Static Supervised Neural Networks Based on Numerical Image Textural Feature Analysis of Haralick and Gray Level Co-Occurrence Matrix. Agrivita 2020, 42, 472–486. [Google Scholar] [CrossRef]
- Guo, R.; Li, G.; Jiang, T.; Schuchardt, F.; Chen, T.; Zhao, Y.; Shen, Y. Effect of aeration rate, C/N ratio and moisture content on the stability and maturity of compost. Bioresour. Technol. 2012, 112, 171–178. [Google Scholar] [CrossRef]
- Zucconi, F.; Pera, A.; Forte, M.; de Bertoldi, M. Evaluating toxicity of immature compost. BioCycle 1981, 22, 54–57. [Google Scholar]
- Brinton, W.F.; Evans, E.; Droffner, M.L.; Brinton, R.B. A standardized Dewar test for evaluation of compost self-heating. Biocycle 1995, 36, 1–16. [Google Scholar]
- EU. Regulation (EU) 2019/1009, 2019. Regulation (EU) 2019/1009 of the European Parliament and of the Council of 5 June 2019 laying down rules on the making available on the market of EU fertiliser products, amending Regulations (EC) No 1069/2009 and (EC) No 1107/2009 and repealing Regulation (EC) No 2003/2003. Off. J. Eur. Union 2019, L 170, 1–114. [Google Scholar]
- Soil Survey Staff. Keys to Soil Taxonomy, 12th ed.; USDA-Natural Resources Conservation Service: Washington, DC, USA, 2014. [Google Scholar]
- Blanco, M.C.; Martínez, C.J. Nutrición Nitrogenada en Lechuga para Condiciones de Cultivo en Campo; Boletin INIA—Instituto de Investigaciones Agropecuarias: Santiago, Chile, 2019; pp. 22–32. Available online: https://hdl.handle.net/20.500.14001/6811 (accessed on 12 May 2025). (In Spanish)
- López, A.; Javier, G.A.; Fenoll, J.; Hellín, P.; Flores, P. Chemical composition and antioxidant capacity of lettuce: Comparative study of regular-sized (Romaine) and baby-sized (Little Gem and Mini Romaine) types. J. Food Compos. Anal. 2014, 33, 39–48. [Google Scholar] [CrossRef]
- Díaz-Pérez, M.; Cantón, J.M.; Velázquez, B.; Callejón-Ferre, A.-J. Commercial quality of ‘little gem’ lettuce hearts. J. Agric. Food Res. 2024, 16, 101168. [Google Scholar] [CrossRef]
- Bustamante, M.A.; Said-Pullicino, D.; Agulló, E.; Andreu, J.; Paredes, C.; Moral, R. Application of winery and distillery waste composts to a Jumilla (SE Spain) vineyard: Effects on the characteristics of a calcareous sandy-loam soil. Agr. Ecosys. Environ. 2011, 140, 80–87. [Google Scholar] [CrossRef]
- Bremner, J.M.; Keeney, D.R. Steam distillation methods for determination of ammonium, nitrate and nitrite. Anal. Chim. Acta 1965, 32, 485–495. [Google Scholar] [CrossRef]
- Patrignani, A.; Ochsner, T.E. Canopeo: A powerful new tool for measuring fractional green canopy cover. Agron. J. 2015, 107, 2312–2320. [Google Scholar] [CrossRef]
- Wang, Z.; Nie, T.; Lu, D.; Zhang, P.; Li, J.; Li, F.; Zhang, Z.; Chen, P.; Jiang, L.; Dai, C.; et al. Effects of different irrigation management and nitrogen rate on Sorghum (Sorghum bicolor L.) growth, yield and soil nitrogen accumulation with drip irrigation. Agronomy 2024, 14, 215. [Google Scholar] [CrossRef]
- Soudek, P.; Langhansová, L.; Dvořáková, M.; Revutska, A.; Petrová, S.; Hirnerová, A.; Bouček, J.; Trakal, L.; Hošek, P.; Soukupová, M. The impact of the application of compochar on soil moisture, stress, yield and nutritional properties of legumes under drought stress. Sci. Total Environ. 2024, 914, 166914. [Google Scholar] [CrossRef]
- Reis, M.; Coelho, L.; Beltrão, J.; Domingos, I.; Moura, M. Comparative effects of inorganic and organic compost fertilization on lettuce (Lactuca sativa L.). Int. J. Energy Environ. 2014, 8, 137–146. [Google Scholar]
- Zapata, D.; Trujillo-Gonzalez, J.M.; Torres-Mora, M.A.; Ballesta, J.; Andrés Zapata-González, D.; Trujillo-González, J.M.; González-Santamaria, D.; Jiménez-Ballesta, R. Assessment of toxic response of Lactuca sativa to compost extracted from agri-food waste. Int. J. Recyl. Org. Waste Agric. 2023, 13, 1–9. [Google Scholar] [CrossRef]
- Jayara, A.S.; Kumar, R.; Pandey, P.; Singh, S.; Shukla, A.; Singh, A.P.; Pandey, S.; Meena, R.L.; Reddy, K.I. Boosting nutrient use efficiency through fertilizer use management. Appl. Ecol. Environ. Res. 2023, 21, 2931–2952. [Google Scholar] [CrossRef]
- Smith, B. Onions and Other Alliums, 2nd ed.; Brewster, J.L., Ed.; CABI: Wallingford, UK, 2008; p. 432, Experimental Agriculture, 45, 130. [Google Scholar] [CrossRef]
- Alromian, F.M. Effect of type of compost and application rate on growth and quality of lettuce plant. J. Plant Nutr. 2020, 43, 2797–2809. [Google Scholar] [CrossRef]
- Vasileva, V.; Dinev, N.; Mitova, V.; Katsarova, A.; Hristova, M. Impact of compost application rate on lettuce plant growth and soil agrochemical status. Agric. Conspec. Sci. 2023, 88, 187–192. [Google Scholar]
- López-Bellido, L.; López-Bellido, R.J.; Redondo, R. Nitrogen efficiency in wheat under rainfed Mediterranean conditions as affected by split nitrogen application. Field Crops Res. 2005, 94, 86–97. [Google Scholar] [CrossRef]
- Andualem, A.; Wato, T.; Asfaw, A.; Urgi, G. Improving primary nutrients (NPK) use efficiency for the sustainable production and productivity of cereal crops: A compressive review. J. Agric. Sustain. Environ. 2024, 3, 1–28. [Google Scholar] [CrossRef]
- Baligar, V.C.; Fageria, N.K.; He, Z.L. Nutrient use efficiency in plants. Commun. Soil Sci. Plant Anal. 2001, 32, 921–950. [Google Scholar] [CrossRef]
- Ladha, J.K.; Pathak, H.; Krupnik, T.J.; Six, J.; van Kessel, C. Efficiency of fertilizer nitrogen in cereal production: Retrospects and prospects. Adv. Agron. 2005, 87, 85–156. [Google Scholar] [CrossRef]
- Paredes, C.; Medina, E.; Bustamante, M.Á.; Moral, R. Effects of spent mushroom substrates and inorganic fertilizer on the characteristics of a calcareous clayey-loam soil and lettuce production. Soil Use Manag. 2016, 32, 487–494. [Google Scholar] [CrossRef]
- Romaniuk, R.I.; Venece, M.; Cosentino, V.R.N.; Alvarez, C.R.; Ciarlo, E.A.; Korsakov, H.R.; Steinbach, H.S.; Lupi, A.M. Dynamic of soil labile carbon in forest systems of Eucalyptus grandis Hill ex Maiden in the Argentinean Mesopotamia. Bosque 2021, 42, 343–351. [Google Scholar] [CrossRef]
- Sharifi, M.; Phillips, L.; Zintel, S. Surface-applied organic amendments modify soil biological activity down the soil profile of an irrigated vineyard. Acta Hortic. 2021, 1314, 487–498. [Google Scholar] [CrossRef]
- Temegne, N.C.; Liégui, G.S.; Sandeu, K.D.B.; Fomekong, K.M.; Mbadia, K.N.S.; Eyenga, M.S.M.; Youmbi, E. Manure-based composts influence soil quality after lettuce (Lactuca sativa L.) production. J. Saudi Soc. Agric. Sci. 2024, in press, corrected proof. [Google Scholar] [CrossRef]
- Duong, T.T.T.; Verma, S.L.; Penfold, C.; Marschner, P. Nutrient release from composts into the surrounding soil. Geoderma 2013, 195–196, 42–47. [Google Scholar] [CrossRef]
- García-López, A.M.; Horta, C. Effects of compost on lettuce (Lactuca sativa) yield and soil biochemical properties. Rev. Ciências Agrárias 2022, 45, 356–360. [Google Scholar] [CrossRef]
- Hernández, T.; Chocano, C.; Moreno, J.L.; García, C. Use of compost as an alternative to conventional inorganic fertilizers in intensive lettuce (Lactuca sativa L.) crops—Effects on soil and plant. Soil Tillage Res. 2016, 160, 14–22. [Google Scholar] [CrossRef]
E | CM1 | CM2 | CM3 | CM4 | |
---|---|---|---|---|---|
pH | 7.6 ± 0.1 | 8.6 ± 0.1 | 8.1 ± 0.1 | 8.0 ± 0.1 | 7.6 ± 0.1 |
EC (dS m−1) | 6.80 ± 0.26 | 6.07 ± 0.13 | 3.20 ± 0.09 | 5.19 ± 0.11 | 1.12 ± 0.02 |
OM (%) | 84.1 ± 1.0 | 37.8 ± 0.5 | 38.2 ± 0.5 | 56.2 ± 0.9 | 40.8 ± 0.8 |
TOC (%) | 40.8 ± 0.6 | 25.3 ± 0.3 | 23.5 ± 0.4 | 31.5 ± 0.4 | 24.6 ± 0.4 |
TN (%) | 2.65 ± 0.03 | 2.11 ± 0.03 | 1.76 ± 0.02 | 2.85 ± 0.06 | 1.89 ± 0.03 |
TOC/TN ratio | 15.3 ± 0.2 | 11.9 ± 0.2 | 13.3 ± 0.3 | 11.0 ± 0.2 | 13.0 ± 0.2 |
P2O5 (%) | 2.07 ± 0.03 | 1.72 ± 0.03 | 2.09 ± 0.03 | 2.17 ± 0.03 | 1.44 ± 0.03 |
K2O (%) | 2.35 ± 0.04 | 2.50 ± 0.04 | 1.06 ± 0.03 | 1.34 ± 0.02 | 0.86 ± 0.01 |
Mg (g kg−1) | 6.10 ± 0.14 | 13.7 ± 0.2 | 8.89 ± 0.24 | 3.00 ± 0.08 | 3.91 ± 0.07 |
Ca (g kg−1) | 17.8 ± 0.4 | 136 ± 3 | 152 ± 2 | 51 ± 1 | 112 ± 3 |
Na (g kg−1) | 4.71 ± 0.08 | 7.02 ± 0.04 | 3.29 ± 0.09 | 5.49 ± 0.03 | 1.29 ± 0.03 |
Fe (g kg−1) | 0.94 ± 0.01 | 4.33 ± 0.07 | 2.36 ± 0.03 | 6.79 ± 0.12 | 7.13 ± 0.32 |
Cu (mg kg−1) | 58.8 ± 1.3 | 56.5 ± 1.0 | 20.7 ± 0.4 | 38.8 ± 0.9 | 31.7 ± 0.6 |
Mn (mg kg−1) | 214 ± 6 | 211 ± 4 | 80 ± 3 | 153 ± 5 | 230 ± 3 |
Zn (mg kg−1) | 441 ± 7 | 83.1 ± 1.3 | 65.7 ± 1.4 | 101 ± 2 | 102 ± 1 |
Cd (mg kg−1) | 0.23 ± 0.00 | 0.34 ± 0.01 | 0.37 ± 0.03 | 0.51 ± 0.01 | 0.31 ± 0.01 |
Cr (mg kg−1) | 8.28 ± 0.55 | 54.2 ± 9.8 | 22.0 ± 1.9 | 52.8 ± 2.0 | 70.7 ± 3.6 |
Ni (mg kg−1) | 5.23 ± 0.11 | 18.1 ± 3.7 | 7.27 ± 0.35 | 18.5 ± 1.0 | 19.2 ± 1.3 |
Pb (mg kg−1) | 1.61 ± 0.05 | 20.5 ± 8.2 | 9.07 ± 0.33 | 15.8 ± 0.4 | 15.0 ± 0.5 |
Parameter | Value |
---|---|
pH | 8.1 ± 0.2 |
EC (dS m−1) | 0.40 ± 0.02 |
Cox (%) | 0.50 ± 0.02 |
Cw (%) | 0.12 ± 0.51 |
Total Kjeldahl N (mg kg−1) | 595 ± 1 |
NH4+-N (mg kg−1) | 7.9 ± 0.36 |
NO3−-N (mg kg−1) | 51.1 ± 6.5 |
Available P (mg kg−1) | 60.3 ± 4.7 |
Soil texture | Clayey-loam |
% Coarse sand | 60 |
% Silt | 12.5 |
% Clay | 27.5 |
Cultivation Cycle 1 | ||||
TN (%) | TP (%) | TK (%) | NUE Index 1 (%) | |
B | 1.29 a ± 0.04 | 0.13 ab ± 0.02 | 3.23 a ± 0.25 | |
E | 1.65 b ± 0.04 | 0.14 b ± 0.00 | 4.53 d ± 0.05 | 15.67 ± 4.2 |
CM1 | 1.87 c ± 0.13 | 0.14 ab ± 0.01 | 3.63 bc ± 0.07 | 15.78 ± 14.7 |
CM2 | 1.40 a ± 0.01 | 0.12 ab ± 0.01 | 3.40 ab ± 0.12 | 3.55 ± 3.7 |
CM3 | 1.35 a ± 0.10 | 0.12 a ± 0.00 | 3.32 ab ± 0.18 | 3.26 ± 4.8 |
CM4 | 1.33 a ± 0.06 | 0.11 a ± 0.01 | 3.18 a ± 0.04 | 5.62 ± 4.6 |
IN | 2.04 c ± 0.02 | 0.12 ab ± 0.01 | 3.84 c ± 0.12 | 12.36 ± 5.2 |
F-ANOVA | *** | ** | *** | n.s. |
Cultivation cycle 2 | ||||
TN (%) | TP (%) | TK (%) | NUE index (%) | |
B | 0.50 a ± 0.05 | 0.14 a ± 0.03 | 1.73 a ± 0.10 | |
E | 0.79 c ± 0.11 | 0.24 b ± 0.04 | 2.73 c ± 0.61 | 20.4 c ± 2.1 |
CM1 | 0.68 bc ± 0.05 | 0.19 ab ± 0.02 | 2.36 bc ± 0.10 | 4.60 bc ± 0.61 |
CM2 | 0.56 ab ± 0.03 | 0.15 a ± 0.04 | 1.87 ab ± 0.09 | 1.54 ab ± 1.10 |
CM3 | 0.73 c ± 0.05 | 0.19 ab ± 0.03 | 2.19 abc ± 0.31 | 1.44 ab ± 0.81 |
CM4 | 0.57 ab ± 0.08 | 0.18 ab ± 0.02 | 1.80 a ± 0.20 | 0.01 a |
IN | 0.57 ab ± 0.03 | 0.16 a ± 0.04 | 1.98 ab ± 0.12 | 0.84 a ± 0.51 |
F-ANOVA | *** | ** | *** | *** |
Beginning of cultivation cycle 1 | |||||
pH | EC (dS m−1) | Cox (%) | P (mg kg−1) | Soil Respiration (mg CO2 g−1 day−1) | |
B | 8.1 ± 0.0 | 0.40 a ± 0.02 | 0.39 b ± 0.02 | 38.6 a ± 2.4 | 76.3 ab ± 11.8 |
E | 8.2 ± 0.1 | 0.51 b ± 0.11 | 0.45 bc ± 0.01 | 69.0 b ± 4.5 | 138 c ± 5.8 |
CM1 | 8.2 ± 0.1 | 0.53 b ± 0.01 | 0.44 bc ± 0.01 | 66.6 b ± 8.7 | 98.2 ab ± 3.4 |
CM2 | 8.2 ± 0.1 | 0.49 b ± 0.01 | 0.51 c ± 0.02 | 75.9 b± 4.2 | 78.7 ab ± 10.7 |
CM3 | 8.2 ± 0.1 | 0.52 b ± 0.01 | 0.39 b ± 0.01 | 62.1 b ± 2.8 | 116 bc ± 4 |
CM4 | 8.2 ± 0.1 | 0.44 a ± 0.03 | 0.45 bc ± 0.05 | 68.8 b ± 6.0 | 92.3 ab ± 5.7 |
IN | 8.1 ± 0.1 | 0.44 a ± 0.01 | 0.25 a ± 0.02 | 60.3 b ± 4.7 | 59.1 a ± 5.7 |
F-ANOVA | n.s. | *** | *** | *** | *** |
End of cultivation cycle 1 and beginning of cultivation cycle 2 | |||||
pH | EC (dS m−1) | Cox (%) | P (mg kg−1) | Soil respiration (mg CO2 g−1 day−1) | |
B | 8.7 ± 0.0 | 0.43 ab ± 0.04 | 0.34 a ± 0.03 | 26.7 a ± 0.7a | 48.2 ± 3.2 |
E | 8.7 ± 0.0 | 0.43 ab ± 0.02 | 0.44 b ± 0.02 | 32.4 b ± 1.8b | 66.9 ± 15.1 |
CM1 | 8.7 ± 0.0 | 0.40 ab ± 0.04 | 0.31 a ± 0.04 | 33.6 b ± 1.2b | 54.5 ± 10.4 |
CM2 | 8.8 ± 0.0 | 0.44 ab ± 0.03 | 0.32 a ± 0.03 | 33.0 b ± 1.2b | 69.8 ± 11.5 |
CM3 | 8.7 ± 0.0 | 0.45 b ± 0.01 | 0.32 a ± 0.02 | 33.9 b ± 2.7b | 46.3 ± 10.2 |
CM4 | 8.8 ± 0.0 | 0.37 a ± 0.01 | 0.29 a ± 0.05 | 36.4 b ± 2.3b | 45.0 ± 7.2 |
IN | 8.7 ± 0.2 | 0.46 b ± 0.01 | 0.22 a ± 0.05 | 32.7 b ± 2.8b | 35.0 ± 7.5 |
F-ANOVA | n.s. | ** | *** | ** | n.s. |
End of cultivation cycle 2 | |||||
pH | EC (dS m−1) | Cox (%) | P (mg kg−1) | Soil respiration (mg CO2 g−1 day−1) | |
B | 8.3 a ± 0.2 | 0.35 ± 0.02 | 0.30 a ± 0.00 | 28.9 a ± 4.4 | 81.1 ± 4.1 |
E | 8.3 ab ± 0.1 | 0.36 ± 0.04 | 0.42 b ± 0.02 | 79.2 b ± 2.8 | 137 ± 4 |
CM1 | 8.5 ab ± 0.1 | 0.39 ± 0.03 | 0.56 c ± 0.06 | 80.4 b ± 1.8 | 110 ± 11 |
CM2 | 8.6 b ± 0.1 | 0.37 ± 0.01 | 0.59 c ± 0.02 | 72.2 b ± 5.1 | 131 ± 21 |
CM3 | 8.5 ab ± 0.0 | 0.37 ± 0.01 | 0.57 c ± 0.03 | 71.4 b ± 4.9 | 87.3 ± 5.3 |
CM4 | 8.5 ab ± 0.1 | 0.33 ± 0.03 | 0.57 c ± 0.01 | 72.5 b ± 4.0 | 79.0 ± 2.4 |
IN | 8.4 ab ± 0.0 | 0.34 ± 0.03 | 0.23 a ± 0.01 | 32.3 a ± 9.7 | 115 ± 12 |
F-ANOVA | * | n.s. | *** | ** | n.s. |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Álvarez-Alonso, C.; Pérez-Murcia, M.D.; Manrique, N.; Andreu-Rodríguez, F.J.; Mira-Urios, M.Á.; Irigoyen, I.; López, M.; Orden, L.; Moral, R.; Nogués, I.; et al. Agronomic Use of Urban Composts from Decentralized Composting Scenarios: Implications for a Horticultural Crop and Soil Properties. Agronomy 2025, 15, 1520. https://doi.org/10.3390/agronomy15071520
Álvarez-Alonso C, Pérez-Murcia MD, Manrique N, Andreu-Rodríguez FJ, Mira-Urios MÁ, Irigoyen I, López M, Orden L, Moral R, Nogués I, et al. Agronomic Use of Urban Composts from Decentralized Composting Scenarios: Implications for a Horticultural Crop and Soil Properties. Agronomy. 2025; 15(7):1520. https://doi.org/10.3390/agronomy15071520
Chicago/Turabian StyleÁlvarez-Alonso, Cristina, María Dolores Pérez-Murcia, Natalia Manrique, F. Javier Andreu-Rodríguez, Miguel Ángel Mira-Urios, Ignacio Irigoyen, Marga López, Luciano Orden, Raúl Moral, Isabel Nogués, and et al. 2025. "Agronomic Use of Urban Composts from Decentralized Composting Scenarios: Implications for a Horticultural Crop and Soil Properties" Agronomy 15, no. 7: 1520. https://doi.org/10.3390/agronomy15071520
APA StyleÁlvarez-Alonso, C., Pérez-Murcia, M. D., Manrique, N., Andreu-Rodríguez, F. J., Mira-Urios, M. Á., Irigoyen, I., López, M., Orden, L., Moral, R., Nogués, I., & Bustamante, M. Á. (2025). Agronomic Use of Urban Composts from Decentralized Composting Scenarios: Implications for a Horticultural Crop and Soil Properties. Agronomy, 15(7), 1520. https://doi.org/10.3390/agronomy15071520