Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (443)

Search Parameters:
Keywords = sol-gel transitions

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
17 pages, 997 KiB  
Article
Valorization of Agricultural Wastes into Environmentally Sustainable Asphalt Binders
by Paolino Caputo, Valentina Gargiulo, Pietro Calandra, Valeria Loise, Luciana Cimino, Claudio Clemente, Aliya Kenzhegaliyeva, Yerdos Ongarbayev, Cesare Oliviero Rossi, Mikołaj Pochilskj, Jacek Gapinski and Michela Alfè
Molecules 2025, 30(17), 3473; https://doi.org/10.3390/molecules30173473 (registering DOI) - 23 Aug 2025
Abstract
The use of solid products deriving from the pyrolysis of wastes as potential substitute of traditional binders in asphalt preparation is investigated with the final goal of reducing production costs, preserving non-renewable resources, and promoting an effective resource use as well as recovery [...] Read more.
The use of solid products deriving from the pyrolysis of wastes as potential substitute of traditional binders in asphalt preparation is investigated with the final goal of reducing production costs, preserving non-renewable resources, and promoting an effective resource use as well as recovery and recycling procedures, thus implementing a regenerative circular economy approach. Char derived from the pyrolysis of agricultural and aquaculture wastes has been explored as a novel alternative additive for asphalt production. Different feedstocks were used for the preparation of biochar by pyrolysis. The produced char samples, after an in-depth chemical and structural characterization, have been implemented in the preparation of asphalt mixtures, with their potential use as a binder evaluated by performing conventional rheological tests. To evaluate the potential anti-aging effect of char as an additive, bituminous formulations containing 3 to 6 wt.% char were subjected to short-term simulated aging using the Rolling Thin-Film Oven Test (RTFOT) method. The resulting mechanical properties were then assessed. The results indicate that the all the tested char samples have limited modifying properties towards the gel-to-sol transition temperature. Among the samples, lemon peel-derived char (LP-char) showed superior antioxidant properties against bitumen oxidative aging. This study suggests that certain chemical characteristics can serve as predictive indicators of antioxidant activity in biochars produced from biomass pyrolysis. Full article
(This article belongs to the Collection Recycling of Biomass Resources: Biofuels and Biochemicals)
33 pages, 5982 KiB  
Review
Sol–Gel-Synthesized Metal Oxide Nanostructures: Advancements and Prospects for Spintronic Applications—A Comprehensive Review
by Kais Iben Nassar, Sílvia Soreto Teixeira and Manuel P. F. Graça
Gels 2025, 11(8), 657; https://doi.org/10.3390/gels11080657 - 19 Aug 2025
Viewed by 293
Abstract
Spintronics, an interdisciplinary field merging magnetism and electronics, has attracted considerable interest due to its potential to transform data storage, logic devices, and emerging quantum technologies. Among the materials explored for spintronic applications, metal oxide nanostructures synthesized via sol–gel methods offer a unique [...] Read more.
Spintronics, an interdisciplinary field merging magnetism and electronics, has attracted considerable interest due to its potential to transform data storage, logic devices, and emerging quantum technologies. Among the materials explored for spintronic applications, metal oxide nanostructures synthesized via sol–gel methods offer a unique combination of low-cost processing, structural tunability, and defect-mediated magnetic control. This comprehensive review presents a critical overview of recent advances in sol–gel-derived magnetic oxides, such as Co-doped ZnO, La1−xSrxMnO3, Fe3O4, NiFe2O4, and transition-metal-doped TiO2, with emphasis on synthesis strategies, the dopant distribution, and room-temperature ferromagnetic behavior. Key spintronic functionalities, including magnetoresistance, spin polarization, and magnetodielectric effects, are systematically examined. Importantly, this review differentiates itself from the prior literature by explicitly connecting sol–gel chemistry parameters to spin-dependent properties and by offering a comparative analysis of multiple oxide systems. Critical challenges such as phase purity, reproducibility, and defect control are also addressed. This paper concludes by outlining future research directions, including green synthesis, the integration with 2D materials, and machine-learning-assisted optimization. Overall, this work bridges sol–gel synthesis and spintronic material design, offering a roadmap for advancing next-generation oxide-based spintronic devices. Full article
Show Figures

Figure 1

13 pages, 9916 KiB  
Article
Near-Infrared Dye-Loaded Thermosensitive Hydrogels as Novel Fluorescence Tissue Markers
by Seon Sook Lee and Yongdoo Choi
Gels 2025, 11(8), 649; https://doi.org/10.3390/gels11080649 - 15 Aug 2025
Viewed by 325
Abstract
Accurate intraoperative localization of deep-seated lesions remains a major challenge in minimally invasive procedures such as laparoscopic and robotic surgeries. Current marking strategies—including ink tattooing and metallic clips—are limited by dye diffusion, or poor intraoperative visibility. To address these issues, we developed and [...] Read more.
Accurate intraoperative localization of deep-seated lesions remains a major challenge in minimally invasive procedures such as laparoscopic and robotic surgeries. Current marking strategies—including ink tattooing and metallic clips—are limited by dye diffusion, or poor intraoperative visibility. To address these issues, we developed and evaluated four thermosensitive injectable hydrogel systems incorporating indocyanine green-human serum albumin (ICG-HSA) complexes: (1) hexanoyl glycol chitosan (HGC), (2) Pluronic F-127, (3) PCL–PEG–PCL, and (4) PLA–PEG–PLA. All hydrogel formulations exhibited sol–gel transitions at physiological temperatures, facilitating in situ dye entrapment and prolonged fluorescence retention. In vivo fluorescence imaging revealed that HGC and Pluronic F-127 hydrogels retained signals for up to five and two days, respectively. In contrast, polyester-based hydrogels (PCL–PEG–PCL and PLA–PEG–PLA) preserved fluorescence for up to 21–30 days. PLA–PEG–PLA showed the highest signal-to-background ratios and sustained intensity, while PCL–PEG–PCL also achieved long-term retention. These findings suggest that thermosensitive hydrogels incorporating ICG-HSA complexes represent promising tissue marker platforms for real-time, minimally invasive, and long-term fluorescence-guided lesion tracking. Full article
Show Figures

Figure 1

12 pages, 3343 KiB  
Article
Shape-Stabilized Phase Change Material via In Situ Solid–Liquid Host–Guest Composite Strategy
by Jian Chen and Afang Zhang
Molecules 2025, 30(16), 3376; https://doi.org/10.3390/molecules30163376 - 14 Aug 2025
Viewed by 320
Abstract
Solid–liquid phase change materials (PCMs) have attracted significant attention due to their high enthalpy, which enables superior energy storage density. However, it is difficult to maintain their original shapes in a molten state. Therefore, confining PCMs within porous materials is an important method, [...] Read more.
Solid–liquid phase change materials (PCMs) have attracted significant attention due to their high enthalpy, which enables superior energy storage density. However, it is difficult to maintain their original shapes in a molten state. Therefore, confining PCMs within porous materials is an important method, either through mixing molten polymers and PCMs or confining PCMs in pre-prepared porous materials (e.g., aerogels). The former method is straightforward and easy to execute but its stability is severely limited, and the latter is exactly the opposite. Herein, aerogel-confined functional liquid made via in situ solid–liquid host–guest composite strategy is reported. As a proof of concept, Nylon 66 and 1,6-hexanediol are selected as the solid and liquid phases, respectively. 1,6-hexanediol not only serves as a solvent to dissolve Nylon 66 but also induces sol–gel transition during the cooling process and acts as a PCM to store energy. Unlike aerogel-supported systems requiring multi-step processing, this approach integrates porous host formation and PCM encapsulation in one step. The resulting shape-stabilized PCMs (ss-PCMs) exhibit obscure leakage, high latent heat (160 J/g), mechanical robustness (compressive modulus of 3.6 MPa), and low thermal conductivity (0.081 W/(m·K)) above 75 wt% loading of 1,6-hexanediol. These ss-PCMs enable infrared stealth by delaying thermal detection and passive thermal buffering that suppress temperature fluctuations. The in situ solid–liquid host–guest composite strategy is straightforward, being achievable through a one-pot method involving heating and cooling cycles, with high raw material utilization and minimal waste generation, thus maximizing the conversion rate of raw materials into the final product. By combining the excellent liquid retention capability of aerogels with process simplicity, this methodology opens new avenues for the development of ss-PCMs. Full article
(This article belongs to the Section Materials Chemistry)
Show Figures

Graphical abstract

15 pages, 1514 KiB  
Article
Injectable Thermosensitive Hydrogel Containing Bakuchiol Reduces Periodontal Inflammation and Alveolar Bone Loss in a Rat Model
by Seong-Jin Shin, Gyu-Yeon Shim, Seong-Hee Moon, Yu-Jin Kim, Hyun-Jin Kim, Seunghan Oh, Jung-Hwan Lee and Ji-Myung Bae
J. Funct. Biomater. 2025, 16(8), 292; https://doi.org/10.3390/jfb16080292 - 13 Aug 2025
Viewed by 752
Abstract
This study aimed to develop and evaluate a bakuchiol-loaded thermosensitive hydrogel (BTH) as a novel local drug delivery system for the management of periodontitis. Bakuchiol, a natural phenolic compound extracted from Psoralea corylifolia, was incorporated into a hydrogel composed of poloxamers and [...] Read more.
This study aimed to develop and evaluate a bakuchiol-loaded thermosensitive hydrogel (BTH) as a novel local drug delivery system for the management of periodontitis. Bakuchiol, a natural phenolic compound extracted from Psoralea corylifolia, was incorporated into a hydrogel composed of poloxamers and carboxymethylcellulose. The gelation behavior, physicochemical properties, and drug release profile were analyzed. Additionally, antibacterial activity against Porphyromonas gingivalis was assessed. Cytotoxicity was evaluated in human gingival fibroblasts and RAW 264.7 cells. Anti-inflammatory effects were determined by measuring proinflammatory cytokine expression in lipopolysaccharide-stimulated RAW 264.7 macrophages. Furthermore, alveolar bone loss, cytokine expression, and histological findings were assessed in a rat model of ligature-induced periodontitis. BTH demonstrated sol–gel transition at body temperature, with sustained drug release over 15 days. Moreover, it exhibited significant antibacterial activity against P. gingivalis and was non-cytotoxic at an extract concentration of 6.25%. In vitro, it significantly downregulated inflammatory cytokines in activated macrophages. In vivo, BTH application reduced alveolar bone loss and interleukin-1β expression in gingival tissues. Histological analysis confirmed decreased inflammatory cell infiltration and alveolar bone destruction. Thus, BTH demonstrated both antibacterial and anti-inflammatory activities, exhibiting potential as a promising therapeutic strategy for localized periodontal treatment. Full article
(This article belongs to the Section Dental Biomaterials)
Show Figures

Figure 1

27 pages, 4071 KiB  
Article
Design and Development of a Sprayable Hydrogel Based on Thermo/pH Dual-Responsive Polymer Incorporating Azadirachta indica (Neem) Extract for Wound Dressing Applications
by Amlika Rungrod, Arthit Makarasen, Suwicha Patnin, Supanna Techasakul and Runglawan Somsunan
Polymers 2025, 17(15), 2157; https://doi.org/10.3390/polym17152157 - 7 Aug 2025
Viewed by 499
Abstract
Developing a rapidly gel-forming, in situ sprayable hydrogel with wound dressing functionality is essential for enhancing the wound healing process. In this study, a novel sprayable hydrogel-based wound dressing was developed by combining thermo- and pH- responsive polymers including Pluronic F127 (PF127) and [...] Read more.
Developing a rapidly gel-forming, in situ sprayable hydrogel with wound dressing functionality is essential for enhancing the wound healing process. In this study, a novel sprayable hydrogel-based wound dressing was developed by combining thermo- and pH- responsive polymers including Pluronic F127 (PF127) and N-succinyl chitosan (NSC). NSC was prepared by modifying chitosan with succinic anhydride, as confirmed by Fourier-transform infrared spectroscopy and nuclear magnetic resonance spectroscopy. The NSC synthesized using a succinic anhydride-to-chitosan molar ratio of 5:1 exhibited the highest degree of substitution, resulting in a water-soluble polymer effective over a broad pH range. The formulation process of the PF127:NSC sprayable hydrogel was optimized and evaluated based on its sol–gel phase transition behavior, clarity, gelation time, liquid and moisture management, stability, and cytotoxicity. These properties can be suitably tailored by adjusting the concentrations of PF127 and NSC. Moreover, the antioxidant capacity of the hydrogels was enhanced by incorporating Azadirachta indica (neem) extract, a bioactive compound, into the optimized sprayable hydrogel. Both neem release and antioxidant activity increased in a dose-dependent manner. Overall, the developed sprayable hydrogel exhibited favorable sprayability, appropriate gelation properties, controlled drug release, and antioxidant activity, underscoring its promising translational potential as a wound dressing. Full article
Show Figures

Graphical abstract

18 pages, 3577 KiB  
Article
Smart Thermoresponsive Sol–Gel Formulation of Polyhexanide for Rapid and Painless Burn and Wound Management
by Levent Alparslan, Gülşah Torkay, Ayca Bal-Öztürk, Çinel Köksal Karayıldırım and Samet Özdemir
Polymers 2025, 17(15), 2079; https://doi.org/10.3390/polym17152079 - 30 Jul 2025
Viewed by 598
Abstract
Traditional wound and burn treatments often fall short in balancing antimicrobial efficacy, patient comfort, and ease of application. This study introduces a novel, transparent, thermoresponsive sol–gel formulation incorporating polyhexamethylene biguanide (PHMB) for advanced topical therapy. Utilizing Poloxamer 407 as a biocompatible carrier, the [...] Read more.
Traditional wound and burn treatments often fall short in balancing antimicrobial efficacy, patient comfort, and ease of application. This study introduces a novel, transparent, thermoresponsive sol–gel formulation incorporating polyhexamethylene biguanide (PHMB) for advanced topical therapy. Utilizing Poloxamer 407 as a biocompatible carrier, the formulation remains a sprayable liquid at room temperature and instantly gels upon contact with body temperature, enabling painless, pressure-free application on sensitive, injured skin. Comprehensive in vitro and in vivo evaluations confirmed the formulation’s broad-spectrum antimicrobial efficacy (≥5 log10 reduction in 30 s), high biocompatibility (viability > 70% in fibroblasts), non-irritancy (OECD 425-compliant), and physical stability across three months. Importantly, the formulation maintained fibroblast migration capacity—crucial for wound regeneration—while exhibiting rapid sol-to-gel transition at ~34 °C. These findings highlight the system’s potential as a next-generation wound dressing with enhanced user compliance, transparent monitoring capability, and rapid healing support, particularly in disaster or emergency scenarios. Full article
(This article belongs to the Special Issue Functional Polymers and Novel Applications)
Show Figures

Graphical abstract

19 pages, 4549 KiB  
Article
Synthesis, Structure, and Magnetic Properties of (Co/Eu) Co-Doped ZnO Nanoparticles
by Adil Guler
Coatings 2025, 15(8), 884; https://doi.org/10.3390/coatings15080884 - 29 Jul 2025
Viewed by 394
Abstract
Transition-metal and rare-earth element co-doped ZnO nanoparticles have attracted significant attention due to their potential applications in spintronics and optoelectronics. In this study, Zn0.95Co0.01EuxO (x = 0.01–0.05) nanoparticles were synthesized using the sol–gel technique. The estimated stress, strain, and [...] Read more.
Transition-metal and rare-earth element co-doped ZnO nanoparticles have attracted significant attention due to their potential applications in spintronics and optoelectronics. In this study, Zn0.95Co0.01EuxO (x = 0.01–0.05) nanoparticles were synthesized using the sol–gel technique. The estimated stress, strain, and crystallite sizes of the synthesized Co/Eu co-doped ZnO nanoparticles were calculated using the Williamson–Hall method, and their electron spin resonance (ESR) properties were investigated to examine the effect on their magnetic and structural properties. X-ray diffraction (XRD) analysis confirmed the presence of a single-phase structure. Surface morphology, elemental composition, crystal quality, defect types, density, and magnetic behavior were characterized using scanning electron microscope (SEM), electron-dispersive spectroscopy (EDS), and ESR techniques, respectively. The effect of Eu concentration on the linewidth (ΔBpp) and g-factor in the ESR spectra was studied. By correlating ESR results with the obtained structural properties, room-temperature ferromagnetic behavior was identified. Full article
Show Figures

Figure 1

18 pages, 3426 KiB  
Article
XPS on Co0.95R0.05Fe2O4 Nanoparticles with R = Gd or Ho
by Adam Szatmari, Rareș Bortnic, Tiberiu Dragoiu, Radu George Hategan, Lucian Barbu-Tudoran, Coriolan Tiusan, Raluca Lucacel-Ciceo, Roxana Dudric and Romulus Tetean
Appl. Sci. 2025, 15(15), 8313; https://doi.org/10.3390/app15158313 - 25 Jul 2025
Viewed by 246
Abstract
Co0.95R0.05Fe2O4 nanoparticles were synthesized using a sol-gel approach incorporating bio-based agents and were found to be single phases adopting a cubic Fd-3m structure. XPS shows the presence of Gd3+ and Ho3+ ions. The spin–orbit [...] Read more.
Co0.95R0.05Fe2O4 nanoparticles were synthesized using a sol-gel approach incorporating bio-based agents and were found to be single phases adopting a cubic Fd-3m structure. XPS shows the presence of Gd3+ and Ho3+ ions. The spin–orbit splitting of about 15.4 eV observed in Co 2p core-level spectra is an indication that Co is predominantly present as Co3+ state, while the satellite structures located at about 6 eV higher energies than the main lines confirm the existence of divalent Co in Co0.95R0.05Fe2O4. The positions of the Co 3s and Fe 3s main peaks obtained by curve fitting and the exchange splitting obtained values for Co 3s and Fe 3s levels point to the high Co3+/Co2+ and Fe3+/Fe2+ ratios in both samples. The saturation magnetizations are smaller for the doped samples compared to the pristine ones. For theoretical magnetization calculation, we have considered that the heavy rare earths are in octahedral sites and their magnetic moments are aligned antiparallelly with 3d transition magnetic moments. ZFC-FC curves shows that some nanoparticles remain superparamagnetic, while the rest are ferrimagnetic, ordered at room temperature, and showing interparticle interactions. The MS/Ms ratio at room temperature is below 0.5, indicating the predominance of magnetostatic interactions. Full article
Show Figures

Figure 1

19 pages, 7965 KiB  
Article
The Influence of Light Rare-Earth Substitution on Electronic and Magnetic Properties of CoFe2O4 Nanoparticles
by Rareș Bortnic, Adam Szatmari, Tiberiu Dragoiu, Radu George Hategan, Roman Atanasov, Lucian Barbu-Tudoran, Coriolan Tiusan, Raluca Lucacel-Ciceo, Roxana Dudric and Romulus Tetean
Nanomaterials 2025, 15(15), 1152; https://doi.org/10.3390/nano15151152 - 25 Jul 2025
Viewed by 476
Abstract
Co0.95R0.05Fe2O4 nanoparticles with R = La, Pr, Nd, Sm, and Eu were synthesized via an environmentally friendly sol–gel method. The prepared samples were studied using X-ray diffraction measurements (XRD), transmission electron microscopy (TEM), X-ray photoelectron microscopy [...] Read more.
Co0.95R0.05Fe2O4 nanoparticles with R = La, Pr, Nd, Sm, and Eu were synthesized via an environmentally friendly sol–gel method. The prepared samples were studied using X-ray diffraction measurements (XRD), transmission electron microscopy (TEM), X-ray photoelectron microscopy (XPS), and magnetic measurements. All compounds were found to be single phases adopting a cubic Fd-3m structure. EDS analysis confirmed the presence of Co, Fe, R, and oxygen in all cases. The XPS measurements reveal that the Co 2p core-level spectra are characteristic for Co3+ ions, as indicated by the 2p3/2 and 2p1/2 binding energies and spin–orbit splitting values. The analysis of the Fe 2p core-level spectra reveals the presence of both Fe3+ and Fe2+ ions in the investigated samples. The doped samples exhibit lower saturation magnetizations than the pristine sample. Very good agreement with the saturation magnetization values was obtained if we assumed that the light rare-earth ions occupy octahedral sites and their magnetic moments align parallel to those of the 3d transition metal ions. The ZFC-FC curves indicate that some nanoparticles remain superparamagnetic, while others exhibit ferrimagnetic ordering at room temperature, suggesting the presence of interparticle interactions. The Mr/Ms ratio at room temperature reflects the dominance of magnetostatic interactions. Full article
(This article belongs to the Section Nanophotonics Materials and Devices)
Show Figures

Figure 1

20 pages, 1106 KiB  
Article
Synchrotron-Based Structural Analysis of Nanosized Gd2(Ti1−xZrx)2O7 for Radioactive Waste Management
by Marco Pinna, Andrea Trapletti, Claudio Minelli, Armando di Biase, Federico Bianconi, Michele Clemente, Alessandro Minguzzi, Carlo Castellano and Marco Scavini
Nanomaterials 2025, 15(14), 1134; https://doi.org/10.3390/nano15141134 - 21 Jul 2025
Viewed by 404
Abstract
Complex oxides with the general formula Gd2(Ti1−xZrx)2O7 are promising candidates for radioactive waste immobilization due to their capacity to withstand radiation by dissipating part of the free energy driving defect creation and phase transitions. [...] Read more.
Complex oxides with the general formula Gd2(Ti1−xZrx)2O7 are promising candidates for radioactive waste immobilization due to their capacity to withstand radiation by dissipating part of the free energy driving defect creation and phase transitions. In this study, samples with varying zirconium content (xZr = 0.00, 0.15, 0.25, 0.375, 0.56, 0.75, 0.85, 1.00) were synthesized via the sol–gel method and thermally treated at 500 °C to obtain nanosized powders mimicking the defective structure of irradiated materials. Synchrotron-based techniques were employed to investigate their structural properties: High-Resolution X-ray Powder Diffraction (HR-XRPD) was used to assess long-range structure, while Pair Distribution Function (PDF) analysis and Extended X-ray Absorption Fine Structure (EXAFS) spectroscopy provided insights into the local structure. HR-XRPD data revealed that samples with low Zr content (xZr ≤ 0.25) are amorphous. Increasing Zr concentration led to the emergence of a crystalline phase identified as defective fluorite (xZr = 0.375, 0.56). Samples with the highest Zr content (xZr ≥ 0.75) were fully crystalline and exhibited only the fluorite phase. The experimental G(r) functions of the fully crystalline samples in the low r range are suitably fitted by the Weberite structure, mapping the relaxations induced by structural disorder in defective fluorite. These structural insights informed the subsequent EXAFS analysis at the Zr-K and Gd-L3 edges, confirming the splitting of the cation–cation distances associated with different metal species. Moreover, EXAFS provided a local structural description of the amorphous phases, identifying a consistent Gd-O distance across all compositions. Full article
(This article belongs to the Section Physical Chemistry at Nanoscale)
Show Figures

Graphical abstract

33 pages, 7665 KiB  
Review
A Comprehensive Review of Thermosensitive Hydrogels: Mechanism, Optimization Strategies, and Applications
by Tianyang Lv, Yuzhu Chen, Ning Li, Xiaoyu Liao, Yumin Heng, Yayuan Guo and Kaijin Hu
Gels 2025, 11(7), 544; https://doi.org/10.3390/gels11070544 - 14 Jul 2025
Viewed by 1130
Abstract
Thermosensitive hydrogels undergo reversible sol-gel phase transitions in response to changes in temperature. Owing to their excellent biocompatibility, mild reaction conditions, and controllable gelation properties, these hydrogels represent a promising class of biomaterials suitable for minimally invasive treatment systems in diverse biomedical applications. [...] Read more.
Thermosensitive hydrogels undergo reversible sol-gel phase transitions in response to changes in temperature. Owing to their excellent biocompatibility, mild reaction conditions, and controllable gelation properties, these hydrogels represent a promising class of biomaterials suitable for minimally invasive treatment systems in diverse biomedical applications. This review systematically summarizes the gelation mechanisms of thermosensitive hydrogels and optimization strategies to enhance their performance for broader application requirements. In particular, we highlight recent advances in injectable thermosensitive hydrogels as a carrier within stem cells, bioactive substances, and drug delivery for treating various tissue defects and diseases involving bone, cartilage, and other tissues. Furthermore, we propose challenges and directions for the future development of thermosensitive hydrogels. These insights provide new ideas for researchers to explore novel thermosensitive hydrogels for tissue repair and disease treatment. Full article
Show Figures

Figure 1

26 pages, 8710 KiB  
Article
MOFs—Combining Fully Synthetic Injectable Hydrogel Scaffolds Exhibiting Higher Skeletal Muscle Regenerative Efficiency than Matrigel
by Sobuj Shahidul Islam, Tatsuya Dode, Soma Kawashima, Myu Fukuoka, Takaaki Tsuruoka and Koji Nagahama
Gels 2025, 11(7), 514; https://doi.org/10.3390/gels11070514 - 2 Jul 2025
Viewed by 475
Abstract
Due to its sarcoma-derived origin and the associated carcinogenic risks, as well as its lack of tissue-specific extracellular matrix biochemical cues, the use of the injectable gel scaffold Matrigel is generally restricted to research applications. Therefore, the development of new fully synthetic injectable [...] Read more.
Due to its sarcoma-derived origin and the associated carcinogenic risks, as well as its lack of tissue-specific extracellular matrix biochemical cues, the use of the injectable gel scaffold Matrigel is generally restricted to research applications. Therefore, the development of new fully synthetic injectable gel scaffolds that exhibit performance comparable to Matrigel is a high priority. In this study, we developed a novel fully synthetic injectable gel scaffold by combining a biodegradable PLGA-PEG-PLGA copolymer, clay nanoparticle LAPONITE®, and L-arginine-loaded metal–organic frameworks (NU-1000) at the nano level. An aqueous solution of the developed hybrid scaffold (PLGA-PEG-PLGA/LAPONITE®/L-Arg@NU-1000) exhibited rapid sol–gel transition at body temperature following simple injection and formed a continuous bulk-sized gel, demonstrating good injectability. Long-term sustained slow release of L-arginine from the resultant gels can be achieved because NU-1000 is a suitable reservoir for L-arginine. PLGA-PEG-PLGA/LAPONITE®/L-Arg@NU-1000 hybrid gels exhibited good compatibility with and promoted the growth of human skeletal muscle satellite cells. Importantly, in vivo experiments using skeletal muscle injury model mice demonstrated that the tissue regeneration efficiency of PLGA-PEG-PLGA/LAPONITE®/L-Arg@NU-1000 gels is higher than that of Matrigel. Specifically, we judged the higher tissue regeneration efficacy of our gels by histological analysis, including MYH3 immunofluorescent staining, H&E staining, and Masson’s trichrome staining. Taken together, these data suggest that novel hybrid hydrogels could serve as injectable hydrogel scaffolds for in vivo tissue engineering and ultimately replace Matrigel. Full article
(This article belongs to the Section Gel Applications)
Show Figures

Figure 1

17 pages, 1570 KiB  
Article
Overcoming Scaling Challenges in Sol–Gel Synthesis: A Microwave-Assisted Approach for Iron-Based Energy Materials
by Judith González-Lavín, Ana Arenillas and Natalia Rey-Raap
Microwave 2025, 1(2), 6; https://doi.org/10.3390/microwave1020006 - 30 Jun 2025
Viewed by 396
Abstract
There is currently an effort to scale up sol–gel nanomaterials without compromising quality, and microwave heating can pave the way for this due to its heating efficiency, resulting in a fast and homogeneous process. In this work, the sol–gel synthesis of transition metal [...] Read more.
There is currently an effort to scale up sol–gel nanomaterials without compromising quality, and microwave heating can pave the way for this due to its heating efficiency, resulting in a fast and homogeneous process. In this work, the sol–gel synthesis of transition metal aerogels, specifically iron-based aerogels, is studied using a microwave-assisted sol–gel methodology in an open-system multimode device as a potential route to scale-up production. Different approaches were tested to evaluate the best way to increase yield per batch, with different vessel shapes and volumes. It is shown that the shape and size of the vessel can be determinant in the interaction with microwaves and, thus, in the heating process, influencing the sol–gel reactions and the characteristics and homogeneity of the obtained nanomaterials. It has been found that a wide vessel is preferable to a tall and narrow one since the heating process is more homogeneous in the former and the sol–gel and cross-linking reactions take place earlier, which improves the mechanical properties of the final nanomaterial. For mass production of nanomaterials, the interaction of the reagents with the microwave field must be considered, and this depends not only on their nature but also on their volume, shape, and arrangement inside the cavity. Full article
Show Figures

Graphical abstract

26 pages, 3756 KiB  
Review
Recent Advances on Chitosan-Based Thermosensitive Hydrogels for Skin Wound Treatment
by Jin Wang, Lianghui Huang, Enguang Wu, Xiao Li, Yi Rao and Caiqing Zhu
Biology 2025, 14(6), 619; https://doi.org/10.3390/biology14060619 - 27 May 2025
Viewed by 1324
Abstract
Thermosensitive hydrogel, as a smart polymer material, showed great potential for application in the field of wound repair due to its unique external temperature responsiveness and excellent biocompatibility. Chitosan, a natural macromolecular polysaccharide derived from the deacetylation of chitin, possessed not only strong [...] Read more.
Thermosensitive hydrogel, as a smart polymer material, showed great potential for application in the field of wound repair due to its unique external temperature responsiveness and excellent biocompatibility. Chitosan, a natural macromolecular polysaccharide derived from the deacetylation of chitin, possessed not only strong interactions with biomolecules such as DNA, proteins, and lipids, but also unique biocompatibility and degradability. Chitosan-based thermosensitive hydrogels, prepared by compounding chitosan with surfactants, underwent sol–gel phase transitions at varying external temperatures, which provided an ideal healing environment for wounds. This comprehensive review was initiated by elucidating the sol–gel phase transformation mechanism underlying thermosensitive hydrogels and the intricate process of wound repair. In addition, this review provided a detailed overview of the prevalent types of chitosan-based thermosensitive hydrogels, highlighting their unique characteristics and applications in different types of wound repair. Finally, the challenges and development directions of chitosan-based thermosensitive hydrogels in wound repair were discussed, aiming to provide theoretical support and practical guidance for their future applications in wound healing. Full article
(This article belongs to the Special Issue Physiology and Pathophysiology of Skin)
Show Figures

Figure 1

Back to TopTop