Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (1,039)

Search Parameters:
Keywords = sol–gel composite

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
14 pages, 4979 KiB  
Article
Oxygen Vacancy-Engineered Ni:Co3O4/Attapulgite Photothermal Catalyst from Recycled Spent Lithium-Ion Batteries for Efficient CO2 Reduction
by Jian Shi, Yao Xiao, Menghan Yu and Xiazhang Li
Catalysts 2025, 15(8), 732; https://doi.org/10.3390/catal15080732 (registering DOI) - 1 Aug 2025
Abstract
Accelerated industrialization and surging energy demands have led to continuously rising atmospheric CO2 concentrations. Developing sustainable methods to reduce atmospheric CO2 levels is crucial for achieving carbon neutrality. Concurrently, the rapid development of new energy vehicles has driven a significant increase [...] Read more.
Accelerated industrialization and surging energy demands have led to continuously rising atmospheric CO2 concentrations. Developing sustainable methods to reduce atmospheric CO2 levels is crucial for achieving carbon neutrality. Concurrently, the rapid development of new energy vehicles has driven a significant increase in demand for lithium-ion batteries (LIBs), which are now approaching an end-of-life peak. Efficient recycling of valuable metals from spent LIBs represents a critical challenge. This study employs conventional hydrometallurgical processing to recover valuable metals from spent LIBs. Subsequently, Ni-doped Co3O4 (Ni:Co3O4) supported on the natural mineral attapulgite (ATP) was synthesized via a sol–gel method. The incorporation of a small amount of Ni into the Co3O4 lattice generates oxygen vacancies, inducing a localized surface plasmon resonance (LSPR) effect, which significantly enhances charge carrier transport and separation efficiency. During the photocatalytic reduction of CO2, the primary product CO generated by the Ni:Co3O4/ATP composite achieved a high production rate of 30.1 μmol·g−1·h−1. Furthermore, the composite maintains robust catalytic activity even after five consecutive reaction cycles. Full article
(This article belongs to the Special Issue Heterogeneous Catalysis in Air Pollution Control)
Show Figures

Figure 1

19 pages, 4549 KiB  
Article
Synthesis, Structure, and Magnetic Properties of (Co/Eu) Co-Doped ZnO Nanoparticles
by Adil Guler
Coatings 2025, 15(8), 884; https://doi.org/10.3390/coatings15080884 - 29 Jul 2025
Viewed by 166
Abstract
Transition-metal and rare-earth element co-doped ZnO nanoparticles have attracted significant attention due to their potential applications in spintronics and optoelectronics. In this study, Zn0.95Co0.01EuxO (x = 0.01–0.05) nanoparticles were synthesized using the sol–gel technique. The estimated stress, strain, and [...] Read more.
Transition-metal and rare-earth element co-doped ZnO nanoparticles have attracted significant attention due to their potential applications in spintronics and optoelectronics. In this study, Zn0.95Co0.01EuxO (x = 0.01–0.05) nanoparticles were synthesized using the sol–gel technique. The estimated stress, strain, and crystallite sizes of the synthesized Co/Eu co-doped ZnO nanoparticles were calculated using the Williamson–Hall method, and their electron spin resonance (ESR) properties were investigated to examine the effect on their magnetic and structural properties. X-ray diffraction (XRD) analysis confirmed the presence of a single-phase structure. Surface morphology, elemental composition, crystal quality, defect types, density, and magnetic behavior were characterized using scanning electron microscope (SEM), electron-dispersive spectroscopy (EDS), and ESR techniques, respectively. The effect of Eu concentration on the linewidth (ΔBpp) and g-factor in the ESR spectra was studied. By correlating ESR results with the obtained structural properties, room-temperature ferromagnetic behavior was identified. Full article
Show Figures

Figure 1

12 pages, 1916 KiB  
Article
Electrical Conductivity of High-Entropy Calcium-Doped Six- and Seven-Cation Perovskite Materials
by Geoffrey Swift, Sai Ram Gajjala and Rasit Koc
Crystals 2025, 15(8), 686; https://doi.org/10.3390/cryst15080686 - 28 Jul 2025
Viewed by 172
Abstract
Novel high-entropy perovskite oxide powders were synthesized using a sol-gel process. The B-site contained five cations: chromium, cobalt, iron, manganese, and nickel. The B-site cations were present on an equiatomic basis. The A-site cation was lanthanum, with calcium doping. The amount of A-site [...] Read more.
Novel high-entropy perovskite oxide powders were synthesized using a sol-gel process. The B-site contained five cations: chromium, cobalt, iron, manganese, and nickel. The B-site cations were present on an equiatomic basis. The A-site cation was lanthanum, with calcium doping. The amount of A-site doping varied from 0 to 30 at%, yielding a composition of La1−xCax(Co0.2Cr0.2Fe0.2Mn0.2Ni0.2)O3−δ. The resulting perovskite powders were pressurelessly sintered in air at 1400 °C for 2 h. Sintered densities were measured, and the grain structure was imaged via scanning electron microscopy to investigate the effect of doping. Samples were cut and polished, and their resistance was measured at varying temperatures in air to obtain the electrical conductivity and the mechanism that governs it. Plots of electrical conductivity as a function of composition and temperature indicate that the increased configurational entropy of the perovskite materials has a demonstrable effect. Full article
Show Figures

Figure 1

17 pages, 7274 KiB  
Article
Sol–Gel-Derived Silica/Alumina Particles for Enhancing the Mechanical Properties of Acrylate Composite Materials
by Khaled Altwair, Vladisav Tadić, Miloš Petrović, Andrija Savić, Vesna Radojević, Radmila Jančić Heinemann and Marija M. Vuksanović
Gels 2025, 11(8), 575; https://doi.org/10.3390/gels11080575 - 24 Jul 2025
Viewed by 235
Abstract
Silica/alumina composite particles were synthesized via the sol–gel method to promote fine dispersion and homogenous mixing. Aluminum chloride hydroxide served as the alumina precursor, while amorphous silica, obtained from rice husk, was directly incorporated into the alumina sol. Following synthesis, the material was [...] Read more.
Silica/alumina composite particles were synthesized via the sol–gel method to promote fine dispersion and homogenous mixing. Aluminum chloride hydroxide served as the alumina precursor, while amorphous silica, obtained from rice husk, was directly incorporated into the alumina sol. Following synthesis, the material was calcined at 1000 °C, yielding an α-cristobalite form of silica and corundum-phase alumina. These hybrid particles were introduced into polymer composites at reinforcement levels of 1 wt.%, 3 wt.%, and 5 wt.%. Mechanical behavior was evaluated through three-point bending tests, Shore D hardness measurements, and controlled-energy impact testing. Among the formulations, the 3 wt.% composite exhibited optimal performance, displaying the highest flexural modulus and strength, along with enhanced impact resistance. Hardness increased with rising particle content. Fractographic analysis revealed that the 3 wt.% loading produced a notably rougher fracture surface, correlating with improved energy absorption. In contrast, the 5 wt.% composite, although harder than the matrix and other composites, exhibited diminished toughness due to particle agglomeration. Full article
(This article belongs to the Special Issue Advances in Composite Gels (3rd Edition))
Show Figures

Figure 1

20 pages, 1106 KiB  
Article
Synchrotron-Based Structural Analysis of Nanosized Gd2(Ti1−xZrx)2O7 for Radioactive Waste Management
by Marco Pinna, Andrea Trapletti, Claudio Minelli, Armando di Biase, Federico Bianconi, Michele Clemente, Alessandro Minguzzi, Carlo Castellano and Marco Scavini
Nanomaterials 2025, 15(14), 1134; https://doi.org/10.3390/nano15141134 - 21 Jul 2025
Viewed by 273
Abstract
Complex oxides with the general formula Gd2(Ti1−xZrx)2O7 are promising candidates for radioactive waste immobilization due to their capacity to withstand radiation by dissipating part of the free energy driving defect creation and phase transitions. [...] Read more.
Complex oxides with the general formula Gd2(Ti1−xZrx)2O7 are promising candidates for radioactive waste immobilization due to their capacity to withstand radiation by dissipating part of the free energy driving defect creation and phase transitions. In this study, samples with varying zirconium content (xZr = 0.00, 0.15, 0.25, 0.375, 0.56, 0.75, 0.85, 1.00) were synthesized via the sol–gel method and thermally treated at 500 °C to obtain nanosized powders mimicking the defective structure of irradiated materials. Synchrotron-based techniques were employed to investigate their structural properties: High-Resolution X-ray Powder Diffraction (HR-XRPD) was used to assess long-range structure, while Pair Distribution Function (PDF) analysis and Extended X-ray Absorption Fine Structure (EXAFS) spectroscopy provided insights into the local structure. HR-XRPD data revealed that samples with low Zr content (xZr ≤ 0.25) are amorphous. Increasing Zr concentration led to the emergence of a crystalline phase identified as defective fluorite (xZr = 0.375, 0.56). Samples with the highest Zr content (xZr ≥ 0.75) were fully crystalline and exhibited only the fluorite phase. The experimental G(r) functions of the fully crystalline samples in the low r range are suitably fitted by the Weberite structure, mapping the relaxations induced by structural disorder in defective fluorite. These structural insights informed the subsequent EXAFS analysis at the Zr-K and Gd-L3 edges, confirming the splitting of the cation–cation distances associated with different metal species. Moreover, EXAFS provided a local structural description of the amorphous phases, identifying a consistent Gd-O distance across all compositions. Full article
(This article belongs to the Section Physical Chemistry at Nanoscale)
Show Figures

Graphical abstract

16 pages, 2901 KiB  
Article
SiO2-Al2O3-ZrO2-Ag Composite and Its Signal Enhancement Capacity on Raman Spectroscopy
by Jesús Alberto Garibay-Alvarado, Pedro Pizá-Ruiz, Armando Erasto Zaragoza-Contreras, Francisco Espinosa-Magaña and Simón Yobanny Reyes-López
Chemosensors 2025, 13(7), 266; https://doi.org/10.3390/chemosensors13070266 - 21 Jul 2025
Viewed by 256
Abstract
A ceramic–metal composite was synthesized using sol–gel and electrospinning methods to serve as a SERS substrate. The precursors used were tetraethyl orthosilicate, aluminum nitrate, and zirconium, and polyvinylpyrrolidone was added to electrospun nonwoven fibrous membranes. The membranes were sintered, decorated with silver nanoparticles. [...] Read more.
A ceramic–metal composite was synthesized using sol–gel and electrospinning methods to serve as a SERS substrate. The precursors used were tetraethyl orthosilicate, aluminum nitrate, and zirconium, and polyvinylpyrrolidone was added to electrospun nonwoven fibrous membranes. The membranes were sintered, decorated with silver nanoparticles. The enhancement substrates were made of fibers of cylindric morphology with an average diameter of approximately 190 nm, a smooth surface, and 9 nm spherical particles decorating the surface of the fibers. The enhancement capacity of the substrates was tested using pyridine, methyl orange, methylene blue, crystal violet, and Eriochrome black T at different concentrations with Raman spectroscopy to determine whether the size and complexity of the analyte has an impact on the enhancement capacity. Enhancement factors of 2.53 × 102, 3.06 × 101, 2.97 × 103, 4.66 × 103, and 1.45 × 103 times were obtained for the signal of pyridine, methyl orange, methylene blue, crystal violet, and Eriochrome black T at concentrations of 1 nM. Full article
(This article belongs to the Special Issue Spectroscopic Techniques for Chemical Analysis)
Show Figures

Graphical abstract

14 pages, 1039 KiB  
Article
Enhanced Magnetic and Dielectric Performance in Fe3O4@Li0.5Cr0.5Fe2O4 Core/Shell Nanoparticles
by Mohammed K. Al Turkestani
Nanomaterials 2025, 15(14), 1123; https://doi.org/10.3390/nano15141123 - 19 Jul 2025
Viewed by 298
Abstract
This study presents the first successful integration of Fe3O4 and Li0.5Cr0.5Fe2O4 into a well-defined core/shell nanostructure through a two-step synthesis that combines co-precipitation and sol–gel auto-combustion methods. Unlike conventional composites, the core/shell design [...] Read more.
This study presents the first successful integration of Fe3O4 and Li0.5Cr0.5Fe2O4 into a well-defined core/shell nanostructure through a two-step synthesis that combines co-precipitation and sol–gel auto-combustion methods. Unlike conventional composites, the core/shell design effectively suppresses the magnetic dead layer and promotes exchange coupling at the interface, leading to enhanced saturation magnetization, superior magnetic heating (specific absorption rate; SAR), and improved dielectric properties. Our research introduces a novel interfacial engineering strategy that simultaneously optimizes both magnetic and dielectric performance, offering a multifunctional platform for applications in magnetic hyperthermia, electromagnetic interference (EMI) shielding, and microwave devices. Full article
(This article belongs to the Section Nanoelectronics, Nanosensors and Devices)
Show Figures

Figure 1

32 pages, 6710 KiB  
Article
XPS Investigation of Sol–Gel Bioactive Glass Synthesized with Geothermal Water
by Helena Cristina Vasconcelos, Maria Meirelles and Reşit Özmenteş
Surfaces 2025, 8(3), 50; https://doi.org/10.3390/surfaces8030050 - 14 Jul 2025
Viewed by 183
Abstract
Bioactive glasses are known for their surface reactivity and ability to bond with bone tissue through the formation of hydroxyapatite. This study investigates the effects of substituting ultrapure water with natural geothermal waters from the Azores in the sol–gel synthesis of 45S5 and [...] Read more.
Bioactive glasses are known for their surface reactivity and ability to bond with bone tissue through the formation of hydroxyapatite. This study investigates the effects of substituting ultrapure water with natural geothermal waters from the Azores in the sol–gel synthesis of 45S5 and MgO-modified bioglasses. Using high-resolution X-ray photoelectron spectroscopy (XPS), we examined how the mineral composition of the waters influenced the chemical environment and network connectivity of the glass surface. The presence of trace ions, such as Mg2+, Sr2+, Zn2+, and B3+, altered the silicate structure, as evidenced by binding energy shifts and peak deconvolution in O 1s, Si 2p, P 2p, Ca 2p, and Na 1s spectra. Thermal treatment further promoted polymerization and reduced hydroxylation. Our findings suggest that mineral-rich waters act as functional agents, modulating the reactivity and structure of bioactive glass surfaces in eco-sustainable synthesis routes. Full article
(This article belongs to the Special Issue Bio-Inspired Surfaces)
Show Figures

Figure 1

20 pages, 3869 KiB  
Article
Dual-Mode Integration of a Composite Nanoparticle in PES Membranes: Enhanced Performance and Photocatalytic Potential
by Rund Abu-Zurayk, Nour Alnairat, Haneen Waleed, Aya Khalaf, Duaa Abu-Dalo, Ayat Bozeya and Razan Afaneh
Nanomaterials 2025, 15(14), 1055; https://doi.org/10.3390/nano15141055 - 8 Jul 2025
Viewed by 380
Abstract
Polyethersulfone (PES) membranes are essential in separation processes; however, their inherent hydrophobicity can limit their effectiveness in water-intensive applications. This study aims to enhance PES membranes by modifying them with a NiFe2O4–nanoclay composite nanoparticle to improve both their hydrophilicity [...] Read more.
Polyethersulfone (PES) membranes are essential in separation processes; however, their inherent hydrophobicity can limit their effectiveness in water-intensive applications. This study aims to enhance PES membranes by modifying them with a NiFe2O4–nanoclay composite nanoparticle to improve both their hydrophilicity and photocatalytic potential as a photocatalytic membrane. The nanoparticles were synthesized using the sol–gel auto-combustion method and incorporated into PES membranes through mixed-matrix embedding (1 wt% and 3 wt%) and surface coating. X-ray diffraction confirmed the cubic spinel structure of the composite nanoparticles, which followed the second order kinetic reaction during the photodegradation–adsorption of crystal violet. The mixed-matrix membranes displayed a remarkable 170% increase in water flux and a 25% improvement in mechanical strength, accompanied by a slight decrease in contact angle at 1 wt% of nanoparticle loading. In contrast, the surface-coated membranes demonstrated a significant reduction in contact angle to 18°, indicating a highly hydrophilic surface and increased roughness. All membranes achieved high dye removal rates of 98–99%, but only the coated membrane system exhibited approximately 50% photocatalytic degradation, following mixed kinetics. These results highlight the critical importance of surface modification in advancing PES membranes, as it significantly reduces fouling and enhances water–material interaction qualities essential for future filtration and photocatalytic applications. Exploring hybrid strategies that combine both embedding and coating approaches may yield even greater synergies in membrane functionality. Full article
(This article belongs to the Section Nanocomposite Materials)
Show Figures

Graphical abstract

11 pages, 2099 KiB  
Article
Biocompatible Composite Protective Thin Layer Containing Cellulose Fibers and Silica Cryogel
by Marius Horvath and Katalin Sinkó
Gels 2025, 11(7), 522; https://doi.org/10.3390/gels11070522 - 5 Jul 2025
Viewed by 267
Abstract
The aim of the present research was to synthesize protective composite layers from biodegradable cellulose and biocompatible, sol–gel-derived silica cryogel. An important task in the present work was to achieve good applicability on distinct (smooth and rough) surfaces of various materials (from metallic [...] Read more.
The aim of the present research was to synthesize protective composite layers from biodegradable cellulose and biocompatible, sol–gel-derived silica cryogel. An important task in the present work was to achieve good applicability on distinct (smooth and rough) surfaces of various materials (from metallic to ceramic). The aim was to utilize the composite layers as thermal and electric insulation coating. The investigation put some effort into the enhancement of mechanical strength and the elasticity of the thin layer as well as a reduction in its water solubility. The removal of the alkali content leads successfully to a significant reduction in water solubility (97 wt% → 1–3 wt%). Adhesion properties were measured using a specialized measurement technique developed in our laboratory. Treatments of the substrate surface, such as alkaline or acidic etching (i.e., Na2CO3, HF, water glass), mechanical roughening, or the application of a thin alkali-containing primer layer, strongly increase adhesion. SEM analyses revealed the interactions between the matrix and the reinforcement phase and their morphology. Full article
(This article belongs to the Special Issue Advances and Current Applications in Gel-Based Membranes)
Show Figures

Figure 1

48 pages, 9186 KiB  
Review
A Review on Design, Synthesis and Application of Composite Materials Based on MnO2 for Energy Storage
by Loukia Plakia and Ioannis A. Kartsonakis
Energies 2025, 18(13), 3455; https://doi.org/10.3390/en18133455 - 1 Jul 2025
Viewed by 455
Abstract
The design, synthesis, and application of composite materials based on manganese dioxide (MnO2) for energy storage are pivotal in advancing efficient, sustainable, and high-performance energy storage systems. The MnO2 is widely recognized for its abundance, low cost, environmental friendliness, and [...] Read more.
The design, synthesis, and application of composite materials based on manganese dioxide (MnO2) for energy storage are pivotal in advancing efficient, sustainable, and high-performance energy storage systems. The MnO2 is widely recognized for its abundance, low cost, environmental friendliness, and excellent electrochemical properties, making it a promising candidate for use in supercapacitors, batteries, fuel cells, and other energy storage systems. This study offers a comprehensive overview of how various materials influence the performance of MnO2 as an energy storage medium. Specifically, the design of composite materials is examined with respect to morphological control, integration with conductive additives, doping strategies, and structural engineering, all of which impact the final material properties. Additionally, the influence of diverse synthetic techniques—including hydrothermal synthesis, electrochemical deposition, sol–gel processing, co-precipitation, and templating methods—is evaluated. The latest attempts through which the developed composites showcase improved structural stability, inherent conductivity, and electron mobility compared to the original first material are presented in this review article. The presented results have been quite promising for the synthesis of great-performing materials with improved electrochemical data compared to that of MnO2 alone, competing with other significant energy storage materials. This review highlights future prospects for the development of state-of-the-art devices, large-scale production applications, and the use of environmentally friendly materials and methods. It is anticipated that this research will provide valuable insights to facilitate further improvements in performance and broaden the scope of practical applications in this rapidly evolving field of composite materials. Full article
(This article belongs to the Special Issue Advances in Electrochemical Power Sources: Systems and Applications)
Show Figures

Figure 1

12 pages, 3013 KiB  
Article
Investigation of Poling for Pb(Zr, Ti)O3/Pb(Zr, Ti)O3 Sol–Gel Composite
by Mako Nakamura, Ryota Ono and Makiko Kobayashi
Micromachines 2025, 16(7), 760; https://doi.org/10.3390/mi16070760 - 28 Jun 2025
Viewed by 472
Abstract
Phased-array ultrasonic transducers using sol–gel composites face challenges in terms of polarization uniformity when using conventional corona poling. Pb(Zr, Ti)O3 (PZT)/PZT composites with a thickness of 25 µm were fabricated on 3 mm thick titanium substrates, and the samples were poled by [...] Read more.
Phased-array ultrasonic transducers using sol–gel composites face challenges in terms of polarization uniformity when using conventional corona poling. Pb(Zr, Ti)O3 (PZT)/PZT composites with a thickness of 25 µm were fabricated on 3 mm thick titanium substrates, and the samples were poled by AC poling, DC poling, and corona discharge poling at RT. It was found that the polarization direction could be controlled by the voltage off-phase angle. When poling was performed with a voltage off-phase angle of 90°, applied voltage of 200 V (rms), 10 cycles, and frequency of 1 Hz, average values and standards of measured piezoelectric constant d33 of −35.1 ± 0.8 pC/N and ultrasonic sensitivity of 11.4 ± 0.1 dB were obtained. Furthermore, the AC-poled samples demonstrated smaller variations in d33 and ultrasonic sensitivity compared with the corona-poled samples, and higher values of d33 and ultrasonic sensitivity compared with the DC-poled samples, indicating the potential of AC poling for PZT/PZT sol–gel composites with large areas. Full article
(This article belongs to the Special Issue Acoustic Transducers and Their Applications, 2nd Edition)
Show Figures

Figure 1

16 pages, 5477 KiB  
Article
Enhanced Triethylamine-Sensing Characteristics of SnS2/LaFeO3 Composite
by Hong Wu, Xiaobing Wang, Yuxiang Chen and Xiaofeng Wang
Chemosensors 2025, 13(7), 228; https://doi.org/10.3390/chemosensors13070228 - 23 Jun 2025
Viewed by 412
Abstract
Triethylamine (TEA), a volatile organic compound (VOC), has important applications in industrial production. However, TEA has an irritating odor and potential toxicity, making it necessary to develop sensitive TEA gas sensors with high efficiency. This study focused on preparing LaFeO3 nanoparticles modified [...] Read more.
Triethylamine (TEA), a volatile organic compound (VOC), has important applications in industrial production. However, TEA has an irritating odor and potential toxicity, making it necessary to develop sensitive TEA gas sensors with high efficiency. This study focused on preparing LaFeO3 nanoparticles modified by SnS2 nanosheets (SnS2/LaFeO3 composite) using a hydrothermal method together with sol–gel technique. According to the comparison results of the gas-sensing performance between pure LaFeO3 and SnS2/LaFeO3 composite with varying composition ratios, 5% SnS2/LaFeO3 sensor had a sensitivity for TEA that was 3.2 times higher than pure LaFeO3 sensor. The optimized sensor operates at 140 °C and demonstrates strong stability, selectivity, and long-term durability. Detailed analyses revealed that the SnS2 nanosheets enhanced oxygen vacancy (OV) content and carrier mobility through heterojunction formation with LaFeO3. This study provides insights into improving gas-sensing performance via p-n heterostructure design and proposes a novel LaFeO3-based material for TEA detection. Full article
(This article belongs to the Special Issue Advanced Chemical Sensors for Gas Detection)
Show Figures

Graphical abstract

13 pages, 6776 KiB  
Article
Bimetallic Ir-Sn Non-Carbon Supported Anode Catalysts for PEM Water Electrolysis
by Iveta Boshnakova, Elefteria Lefterova, Galin Borisov, Denis Paskalev and Evelina Slavcheva
Inorganics 2025, 13(7), 210; https://doi.org/10.3390/inorganics13070210 - 20 Jun 2025
Viewed by 393
Abstract
Nanostructured bimetallic IrSn composites deposited on the natural aluminosilicate montmorillonite were synthesized and evaluated as anode electrocatalysts for polymer electrolyte membrane electrolysis cells (PEMECs). The test series prepared via the sol–gel method consisted of samples with 30 wt. % total metal content and [...] Read more.
Nanostructured bimetallic IrSn composites deposited on the natural aluminosilicate montmorillonite were synthesized and evaluated as anode electrocatalysts for polymer electrolyte membrane electrolysis cells (PEMECs). The test series prepared via the sol–gel method consisted of samples with 30 wt. % total metal content and varying Ir:Sn ratio. The performed X-ray diffraction analysis and high-resolution transmission electron icroscopy registered very fine nanostructure of the composites with metal particles size of 2–3 nm homogeneously dispersed on the support surface and also intercalated in the basal space of its layered structure. The electrochemical behavior was investigated by cyclic voltammetry and steady-state polarization techniques. The initial screening was performed in 0.5 M H2SO4. Then, the catalysts were integrated as anodes in membrane electrode assemblies (MEAs) and tested in a custom-made PEMEC. The electrochemical tests revealed that the catalysts with Ir:Sn ratio 15:15 and 18:12 wt. % demonstrated high efficiency toward the oxygen evolution reaction during repetitive potential cycling and sustainable performance with current density in the range 140–120 mA cm−2 at 1.6 V vs. RHE during long-term stability tests. The results obtained give credence to the studied IrSn/MMT nanocomposites to be considered promising, cost-efficient catalysts for the oxygen evolution reaction (OER). Full article
Show Figures

Graphical abstract

17 pages, 2398 KiB  
Article
Mesoporous SBA-15-Supported Ceria–Cadmium Composites for Fast Degradation of Methylene Blue in Aqueous Systems
by Dănuţa Matei, Abubakar Usman Katsina, Diana-Luciana Cursaru and Sonia Mihai
Water 2025, 17(12), 1834; https://doi.org/10.3390/w17121834 - 19 Jun 2025
Viewed by 471
Abstract
A composite photocatalyst of ceria–cadmium supported on mesoporous SBA-15 silica was synthesized and employed for the aqueous methylene blue (MB) degradation. The composites were prepared using an incipient wetness impregnation technique and a conventional sol–gel approach with triblock copolymer P123 as a structure-directing [...] Read more.
A composite photocatalyst of ceria–cadmium supported on mesoporous SBA-15 silica was synthesized and employed for the aqueous methylene blue (MB) degradation. The composites were prepared using an incipient wetness impregnation technique and a conventional sol–gel approach with triblock copolymer P123 as a structure-directing agent for SBA-15 preparation, enabling the uniform dispersion of CeO2 and Cd species within the SBA-15 framework. The physicochemical properties of both CeO2/SBA-15 and Cd-CeO2/SBA-15 composites were analyzed using small-angle and wide-angle XRD, FT-IR spectroscopy, SEM, TEM, EDX spectroscopy, N2 physisorption at 77 K, and UV-Vis spectroscopy. The findings revealed that the SBA-15 support retained its well-ordered hexagonal mesostructure in both the ceria–SBA-15 and SBA-15-supported cadmium–ceria (Cd-CeO2) composites. The highest degradation efficiency of 96.40% was achieved under optimal conditions, and kinetic analysis using the Langmuir–Hinshelwood model indicated that the MB degradation process followed pseudo-first-order kinetics, with a strong correlation coefficient (R2 = 0.9925) and a rate constant (k) of 0.02532 min−1. Under irradiation, the Cd-CeO2/SBA-15 composites exhibited superior photocatalytic activity compared to the pristine components, owing to the synergistic interaction between ceria and cadmium, enhanced light absorption, and improved charge carrier separation. The recyclability test demonstrated that the degradation efficiency decreased slightly from 96.40% to 94.86% after three cycles, confirming the stability and reusability of Cd-CeO2/SBA-15 composites. The photocatalytic process demonstrated a favorable electrical energy per order (EE/O) value of 281.8 kWh m−3, indicating promising energy efficiency for practical wastewater treatment. These results highlight the excellent photocatalytic performance and durability of the synthesized Cd-CeO2/SBA-15 composites, making them promising candidates for facilitating the photocatalytic decomposition of MB and other dye molecules in water treatment applications. Full article
Show Figures

Figure 1

Back to TopTop