Biocompatible Composite Protective Thin Layer Containing Cellulose Fibers and Silica Cryogel
Abstract
1. Introduction
2. Results and Discussion
2.1. Characterization of the Composite’s Water Solubility
2.2. Characterization of Adhesion
2.3. Characterization of the Composite Structure
2.4. Characterization of Thermal Conductivity
3. Conclusions
4. Materials and Methods
4.1. Synthesis of Silica Cryogels
4.2. Preparation of Silica Cryogel–Cellulose Fiber Composites
4.3. Characterization
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Zeynali, E.; Bridges, R.; Kordi, B. Electrical Insulation of Conformally Coated Printed Circuit Boards: An Overview and a Study of the Influence of Pollution. IEEE Elect. Insul. Mag. 2021, 37, 6–17. [Google Scholar] [CrossRef]
- Zhan, S.; Azarian, M.H.; Pecht, M. Surface Insulation Resistance of Conformally Coated Printed Circuit Boards Processed with No-Clean Flux. IEEE Trans. Electron. Packag. Manuf. 2006, 29, 217–223. [Google Scholar] [CrossRef]
- Chowdhury, P.R.; Suhling, J.C.; Lall, P. Mechanical Characterization of Solder Mask Materials. In Proceedings of the 2018 17th IEEE Intersociety Conference on Thermal and Thermomechanical Phenomena in Electronic Systems (ITherm), San Diego, CA, USA, 29 May–1 June 2018; pp. 1133–1142. [Google Scholar] [CrossRef]
- Lim, W.Y.L.; Jaafar, M.; Ku Ishak, K.M.; Chinniah, K.; Chan, W.K. Recent Developments in Advanced Polymeric Materials for Solder Mask Application: Progress and Challenges. J. Sci. Adv. Mater. Devices 2023, 8, 100567. [Google Scholar] [CrossRef]
- Su, L.F.; Miao, L.; Tanemura, S.; Xu, G. Low-Cost and Fast Synthesis of Nanoporous Silica Cryogels for Thermal Insulation Applications. Sci. Technol. Adv. Mater. 2012, 13, 035003. [Google Scholar] [CrossRef]
- Stojanović, A.; Zhao, S.; Angelica, E.; Malfait, W.J.; Koebel, M.M. Three Routes to Superinsulating Silica Aerogel Powder. J. Sol-Gel Sci. Technol. 2019, 90, 57–66. [Google Scholar] [CrossRef]
- Pons, A.; Casas, L.; Estop, E.; Molins, E.; Harris, K.D.M.; Xu, M. A New Route to Aerogels: Monolithic Silica Cryogels. J. Non-Cryst. Solids 2012, 358, 461–469. [Google Scholar] [CrossRef]
- Kalinin, S.V.; Kheifets, L.I.; Mamchik, A.I.; Knot’ko, A.G.; Vertigel, A.A. Influence of the Drying Technique on the Structure of Silica Gels. J. Sol-Gel Sci. Technol. 1999, 15, 31–35. [Google Scholar] [CrossRef]
- Ma, Y.; Zhu, Z.; Zhang, H.; Kallel, M.; Yang, Z.; Ren, J.; El-Bahy, S.M.; Chen, Z.; El-Bahy, Z.M.; Zhang, H.; et al. Synthesis of Superhydrophobic Crack-Free Monolithic Silica Aerogels via a Vacuum Freeze-Drying Process. J. Am. Ceram. Soc. 2025, 108, e20401. [Google Scholar] [CrossRef]
- Di Luigi, M.; Guo, Z.; An, L.; Armstrong, J.N.; Zhou, C.; Ren, S. Manufacturing Silica Aerogel and Cryogel Through Ambient Pressure and Freeze Drying. RSC Adv. 2022, 12, 21213–21222. [Google Scholar] [CrossRef]
- Padmanabhan, S.K.; Ul Haq, E.; Licciulli, A. Synthesis of Silica Cryogel–Glass Fiber Blanket by Vacuum Drying. Ceram. Int. 2016, 42, 7216–7222. [Google Scholar] [CrossRef]
- Eyholzer, C.; Tingaut, P.; Zimmermann, T.; Oksman, K. Dispersion and Reinforcing Potential Of Carboxymethylated Nanofibrillated Cellulose Powders Modified With 1-Hexanol In Extruded Poly(Lactic Acid) (PLA) Composites. J. Polym. Environ. 2012, 20, 1052–1062. [Google Scholar] [CrossRef]
- Xu, J.; Manepalli, P.H.; Zhu, L.; Narayan-Sarathy, S.; Alavi, S. Morphological and Performance Characteristics of Nanocomposite Films Based on Poly(Lactic Acid) Compounded with Nanocrystalline Cellulose and Chitin Whiskers Using Melt Extrusion. Cellulose 2020, 27, 7523–7534. [Google Scholar] [CrossRef]
- Horváth, M.; Ádám, P.; Sinkó, K. SiO2 Cryogel—Cellulose Composite Thin Layer. J. Mol. Liq. 2023, 382, 121917. [Google Scholar] [CrossRef]
- Lee, K.-J.; Lee, J.M.; Nam, K.S.; Hwang, H. Thermal Gelation for Synthesis of Surface-Modified Silica Aerogel Powders. Gels 2021, 7, 242. [Google Scholar] [CrossRef] [PubMed]
- Wang, F.; Balasubramanya, N.; Qin, Q.; Youngman, R.E.; Mukherjee, P.; Stone-Weiss, N.; Goel, A. Multiscale Investigation of the Mechanisms Controlling the Corrosion of Borosilicate Glasses in Hyper-Alkaline Media. J. Phys. Chem. C 2020, 124, 27542–27557. [Google Scholar] [CrossRef]
- Rosa, M.F.; Medeiros, E.S.; Malmonge, J.A.; Gregorski, K.S.; Wood, D.F.; Mattoso, L.H.C.; Glenn, G.; Orts, W.J.; Imam, S.H. Cellulose Nanowhiskers From Coconut Husk Fibers: Effect of Preparation Conditions on Their Thermal and Morphological Behavior. Carbohydr. Polym. 2010, 81, 83–92. [Google Scholar] [CrossRef]
- Sánchez-Calderón, I.; Bernardo, V.; Martín-de-León, J.; Rodríguez-Pérez, M. Thermal Conductivity of Low-Density Micro- and Nanocellular Poly(Methyl-Methacrylate) (PMMA): Experimental and Modeling. Mater. Des. 2022, 221, 110938. [Google Scholar] [CrossRef]
- Elimat, Z.M.; Zihlif, A.M.; Avella, M. Thermal and Optical Properties of Poly(Methyl Methacrylate)/Calcium Carbonate Nanocomposite. J. Exp. Nanosci. 2008, 3, 259–269. [Google Scholar] [CrossRef]
- Rastegar, N.; Golbabaei, F.; Kalantary, S.; Sangpour, P.; Azam, K.; Monazzam, M.R. Characterization of Thermal Conductivity of Cellulose Acetate/Nano-SiO2 Electrospun Nanofiber Composites for Energy-Saving Using an Oxygen-Enriched Method. Polym. Sci. Ser. A 2024, 66, 411–420. [Google Scholar] [CrossRef]
- Spitzmüller, L.; Nitschke, F.; Rudolph, B.; Berson, J.; Schimmel, T.; Kohl, T. Dissolution Control and Stability Improvement of Silica Nanoparticles in Aqueous Media. J. Nanoparticle Res. 2023, 25, 40. [Google Scholar] [CrossRef]
- Cai, J.; Zhang, L. Rapid Dissolution of Cellulose in LiOH/Urea and NaOH/Urea Aqueous Solutions. Macromol. Biosci. 2005, 5, 539–548. [Google Scholar] [CrossRef] [PubMed]
- Xiong, B.; Zhao, P.; Hu, K.; Zhang, L.; Cheng, G. Dissolution of Cellulose in Aqueous NaOH/Urea Solution: Role of Urea. Cellulose 2014, 21, 1183–1192. [Google Scholar] [CrossRef]
- Duchemin, B.; Le Corre, D.; Leray, N.; Dufresne, A.; Staiger, M.P. All-Cellulose Composites Based on Microfibrillated Cellulose and Filter Paper via a NaOH-Urea Solvent System. Cellulose 2016, 23, 593–609. [Google Scholar] [CrossRef]
Composite Material | Measured Adhesion/mN |
---|---|
Alkali-containing composite | 7972 ± 200 |
Alkali-free composite | 5005 ± 100 |
Material | Treatment Type | Treatment Time/min | Measured Adhesion/mN |
---|---|---|---|
Alkali-containing sample | - | - | 7972 ± 200 |
Alkali-free composites | - | - | 5005 ± 200 |
Grinding by Al2O3 suspension | - | 5509 ± 100 | |
Water glass | 10 | 7428 ± 200 | |
Roughening with sandpaper | - | ||
Na2CO3 | 30 | 8137 ± 200 | |
Primer alkali-containing composite thin layer | - | 8701 ± 200 |
Material | Treatment Type | Treatment Time/min | Measured Adhesion/mN |
---|---|---|---|
Original alkali-containing sample | - | - | 0 |
Water glass | 10 | 5174 ± 100 | |
Alkali-free composite | - | - | 7448 ± 200 |
Na2CO3 | 30 | 5070 ± 100 |
Material | Treatment Type | Treatment Time/min | Measured Adhesion/mN |
---|---|---|---|
Original alkali-containing sample | - | - | 11,413 ± 250 |
Alkali-free composite | - | - | 4256 ± 50 |
Water glass | 10 | 5143 ± 50 | |
HF | 0.2 | 10,271 ± 250 | |
Thin primer layer of alkali-containing sample | - | 10,931 ± 250 |
Material | Treatment Type | Treatment Time/min | Measured Adhesion/mN |
---|---|---|---|
Original alkali-containing sample | - | - | 14,540 ± 250 |
Composite prepared by the removal of NaOH during the prep (alkali-free composite) | - | - | 6280 ± 100 |
Na2CO3 | 30 | 7407 ± 200 | |
Thin layer of alkali-containing composite | - | 16,901 ± 300 |
Temp. (°C) | Thermal Conductivity, λ (W/(m·K) | |||
---|---|---|---|---|
Cellulose Fibers | SiO2 Cryogel | Alkali-Containing Composite | Alkali-Free Composite | |
20 | 0.087 | 0.033 | 0.068 | 0.064 |
50 | 0.089 | 0.036 | 0.070 | 0.062 |
100 | – | 0.041 | 0.071 | 0.063 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Horvath, M.; Sinkó, K. Biocompatible Composite Protective Thin Layer Containing Cellulose Fibers and Silica Cryogel. Gels 2025, 11, 522. https://doi.org/10.3390/gels11070522
Horvath M, Sinkó K. Biocompatible Composite Protective Thin Layer Containing Cellulose Fibers and Silica Cryogel. Gels. 2025; 11(7):522. https://doi.org/10.3390/gels11070522
Chicago/Turabian StyleHorvath, Marius, and Katalin Sinkó. 2025. "Biocompatible Composite Protective Thin Layer Containing Cellulose Fibers and Silica Cryogel" Gels 11, no. 7: 522. https://doi.org/10.3390/gels11070522
APA StyleHorvath, M., & Sinkó, K. (2025). Biocompatible Composite Protective Thin Layer Containing Cellulose Fibers and Silica Cryogel. Gels, 11(7), 522. https://doi.org/10.3390/gels11070522