Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (404)

Search Parameters:
Keywords = soil water movement

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
22 pages, 4938 KB  
Article
Soil Moisture and Growth Rates During Peak Yield Accumulation of Cassava Genotypes for Drought and Full Irrigation Conditions
by Passamon Ittipong, Supranee Santanoo, Nimitr Vorasoot, Sanun Jogloy, Kochaphan Vongcharoen, Piyada Theerakulpisut, Tracy Lawson and Poramate Banterng
Environments 2025, 12(11), 420; https://doi.org/10.3390/environments12110420 - 6 Nov 2025
Viewed by 352
Abstract
Climate change causes unpredictable weather patterns, leading to more frequent and severe droughts. Investigating the effects of drought and irrigation on soil water status and the performance of various cassava genotypes can provide valuable insights for mitigating drought through designing appropriate genotypes and [...] Read more.
Climate change causes unpredictable weather patterns, leading to more frequent and severe droughts. Investigating the effects of drought and irrigation on soil water status and the performance of various cassava genotypes can provide valuable insights for mitigating drought through designing appropriate genotypes and water management strategies. The objective of this research was to evaluate soil moisture, growth rates, and final yields (total dry weight, storage root dry weight, harvest index and starch yield) of six cassava genotypes cultivated under drought conditions during the late growth phase, as well as under full irrigation. The study utilized a split-plot randomized complete block design with four replications, conducted over two growing seasons (2022/2023 and 2023/2024). The main plots were assigned as two water regimes to prevent water movement between plots: full irrigation and drought treatments. The subplot consisted of six cassava genotypes. Measurements included soil properties before planting, weather data, soil moisture content, relative water content (RWC) in cassava leaves, and several growth rates: leaf growth rate (LGR), stem growth rate (SGR), storage root growth rate (SRGR), crop growth rate (CGR), relative growth rate (RGR), as well as final yields. The results revealed that low soil moisture contents for drought treatment led to variation in RWC, growth, and yield among cassava genotypes. Variations in soil and weather conditions between the 2022/2023 and 2023/2024 growing seasons resulted in differences in the performance of the genotypes. Kasetsart 50 (2022/2023) and CMR38–125–77 (2023/2024) were top performers under late drought stress regarding storage root dry weight and starch yield, showing vigorous recovery upon re-watering, evidenced by their significant increase in LGR (between 240 and 270 DAP) and their high RGR (240–360 DAP). Rayong 9 (2023/2024) demonstrated strong performance in both during the drought period (180–240 DAP), efficiently allocating resources under water scarcity, with SRGR and starch yield reduced by 26.4% and 9.5%, respectively, compared to full irrigation. These cassava genotypes are valuable genetic resources for cassava cultivation and can be used as parental material in breeding programs aimed at improving drought tolerance. Full article
Show Figures

Figure 1

18 pages, 4299 KB  
Article
The Effect of Shallow Water-Bearing Sand on the Surface Subsidence Characteristics Under Thick Loose Formations
by Qiang Fu, Qiukai Gai, Hongxu Song, Yubing Gao, Xiaoding Xu, Qing Ma, Hainan Gao and Zhun Li
Water 2025, 17(21), 3156; https://doi.org/10.3390/w17213156 - 4 Nov 2025
Viewed by 351
Abstract
This study investigates the influence of shallow water-bearing sand layers on surface subsidence characteristics in coal mining areas with thick loose strata, with the ultimate goal of contributing to sustainable environmental protection. Firstly, a numerical simulation test was designed to analyze and study [...] Read more.
This study investigates the influence of shallow water-bearing sand layers on surface subsidence characteristics in coal mining areas with thick loose strata, with the ultimate goal of contributing to sustainable environmental protection. Firstly, a numerical simulation test was designed to analyze and study the influence of the loose layer thickness, mining height, bedrock slope, and sand inclusion on the surface movement and deformation characteristics. Secondly, the mechanical model of seepage flow in the sand layer was established to study the influence mechanism of the internal stress distribution of the sand layer and the seepage of the water body after mining on the surface subsidence. Finally, by studying the law of surface subsidence corresponding to the mining of 3205 working face in a mine, it was found that mining caused the partial overlying soil layer to move integrally and generate a large displacement difference with the adjacent layer, which verifies the conclusions of numerical simulation and mechanical analysis. The results of the study show that the thickness of the loose layer is the main control factor that causes the surface subsidence range and the building damage to increase; the shallow water-bearing sand-bearing layer has two types of movements: displacement and flow. The critical hydraulic slope has not reached the sand. The layer has a linearly increasing horizontal displacement value in the thickness direction; when the critical hydraulic slope is reached, the sand layer cannot transmit the frictional force, causing the overlying soil layer to slide as a whole. Both forms are prone to tensile damage on the surface. The research results provide a theoretical basis and practical case for surface subsidence reduction and green mining under similar geological conditions. Full article
Show Figures

Figure 1

19 pages, 6085 KB  
Article
Study on Sustainable Sludge Utilization via the Combination of Electroosmotic Vacuum Preloading and Polyacrylamide Flocculation
by Heng Zhang, Chongzhi Tu and Cheng He
Sustainability 2025, 17(21), 9802; https://doi.org/10.3390/su17219802 - 3 Nov 2025
Viewed by 315
Abstract
Dredged sludge is characterized by a high water content, low permeability, and poor load-bearing capacity, which hinder its sustainable utilization as an engineering filler. During the stabilization process using vacuum preloading (VP), fine-grained sludge readily clogs drainage channels, thereby prolonging consolidation duration and [...] Read more.
Dredged sludge is characterized by a high water content, low permeability, and poor load-bearing capacity, which hinder its sustainable utilization as an engineering filler. During the stabilization process using vacuum preloading (VP), fine-grained sludge readily clogs drainage channels, thereby prolonging consolidation duration and compromising drainage efficiency. To address these persistent challenges, this study proposes an improved method that combines electroosmosis, VP, and polyacrylamide (PAM) to enhance the consolidation performance of dredged sludge. Column settling experiments demonstrated that the optimal application dosages of anionic polyacrylamide (APAM) and calcium chloride (CaCl2) were 0.25% and 4.0% of dry sludge mass, respectively. Excessive dosage of either APAM or CaCl2 disturbed the agglomeration and sedimentation of fine-grained particles due to surface charge inversion. Electroosmotic VP (EVP) facilitated the directional movement of pore water, which increased the cumulative water discharge mass by 37.3%. The combination of APAM and CaCl2 enhanced particle flocculation via adsorption and bridging effects, significantly improving soil permeability and dewatering performance. Driven by an electric field, Ca2+ ions transported water molecules toward the cathode. Subsequently, these Ca2+ ions participated in reactions to generate cementitious agents. Compared with VP, this integrated method increased the sludge shear strength by 108.1% and produced a much denser microstructure. Full article
(This article belongs to the Special Issue Soil Stabilization and Geotechnical Engineering Sustainability)
Show Figures

Figure 1

18 pages, 3181 KB  
Article
Effect of Matrix Properties and Pipe Characteristics on Internal Erosion in Unsaturated Clayey Sand Slope
by Olaniyi Afolayan, Anna Lancaster and Jack Montgomery
Geosciences 2025, 15(10), 405; https://doi.org/10.3390/geosciences15100405 - 17 Oct 2025
Viewed by 362
Abstract
Soil piping is the process by which subsurface water creates and enlarges channels, or “pipes,” within soil, enabling rapid and preferential flow beneath the surface. The collapse of these eroded pipes can lead to land degradation, gully formation, and potential damage to overlying [...] Read more.
Soil piping is the process by which subsurface water creates and enlarges channels, or “pipes,” within soil, enabling rapid and preferential flow beneath the surface. The collapse of these eroded pipes can lead to land degradation, gully formation, and potential damage to overlying infrastructure. While the structural consequences of pipe collapse are well recognized, there is limited understanding of the factors controlling pipe collapse and how water within the pipe influences moisture levels within a slope. This study used physical models of unsaturated slopes to examine how compaction conditions, pipe characteristics, and hydraulic conditions affect the progression of internal erosion. Models were created with different initial pipe sizes, moisture contents, densities at compaction and levels of pipe connectivity. Volumetric water content (VWC) sensors and cameras were used to monitor the slope response to subsurface flow, and measurements of pipe geometry were collected after the tests. Results showed that lower initial soil water content was more susceptible to pipe collapse, while higher water content showed improved pipe stability and sustained preferential flow. Fully connected pipes grew through erosion due to the pipe flow, while disconnected pipes grew mainly through local pipe collapse. Hydraulic equilibrium and soil erodibility affected the final pipe morphology more than the initial pipe size. These experimental results demonstrate that soil fabric and hydraulic connectivity of the pipe control the progression of piping, likelihood of collapse, and movement of water within the soil matrix. Full article
Show Figures

Figure 1

23 pages, 15996 KB  
Article
Laboratory Characterization and Discrete Element Modeling of Shrinkage and Cracking Behavior of Soil in Farmland
by Wei Qi, Yupu He, Zijun Mai, Wei Zhang, Nan Gu and Ce Wang
Agriculture 2025, 15(20), 2122; https://doi.org/10.3390/agriculture15202122 - 12 Oct 2025
Viewed by 478
Abstract
Soil desiccation cracks are common in farmland under dry conditions, which can alter soil water movement by providing preferential flow paths and thus affect water and fertilizer use efficiency. Understanding the mechanism of soil shrinkage and cracking is of great significance for optimizing [...] Read more.
Soil desiccation cracks are common in farmland under dry conditions, which can alter soil water movement by providing preferential flow paths and thus affect water and fertilizer use efficiency. Understanding the mechanism of soil shrinkage and cracking is of great significance for optimizing field management by crack utilization or prevention. The behavior of soil shrinkage and cracking was monitored during drying experiments and analyzed with the help of a digital image processing method. The results showed that during shrinkage, the changes in soil height and equivalent diameter with water content differed significantly. The height change consisted of a rapid decline stage and a residual stage, while the equivalent diameter had a stable stage before the rapid decline stage. The VG-Peng model was suitable to fit the soil shrinkage characteristic curves, and the curves revealed that the soil shrinkage contained structural shrinkage, proportional shrinkage, residual shrinkage, and zero shrinkage stages. According to the changes in evaporation intensity, soil water evaporation could be divided into three stages: stable stage, declining stage, and residual stage. Cracks first formed in the defect areas and edge areas of the soil, and they mainly propagated in the stable evaporation stage. Crack development was dominated by an increase in crack length during the early cracking stage, while the propagation of crack width played a major role during the later stage. At the end of drying, the contribution ratio of crack length and width to the crack area was approximately 30% and 70%, respectively. The box-counting fractal dimension of the stabilized cracks was approximately 1.65, indicating that the crack network had significant self-similarity. The experimental results were used to implement the discrete element method to model the process of soil shrinkage and cracking. The models could effectively simulate the variation characteristics of soil height and equivalent diameter during shrinkage, as well as the variation characteristics of crack ratio and length density during cracking, with acceptable relative errors. In particular, the modeled morphology of the crack network was highly similar to the experimental observation. Our results provide new insights into the characterization and simulation of soil desiccation cracks, which will be conducive to understanding crack evolution and soil water movement in farmland. Full article
(This article belongs to the Section Agricultural Soils)
Show Figures

Figure 1

25 pages, 1817 KB  
Article
Effect of Varying Dairy Cow Size and Live Weight on Soil Structure and Pasture Attributes
by Mary Negrón, Ignacio F. López, José Dörner, Andrew D. Cartmill, Oscar A. Balocchi and Eladio Saldivia
Agronomy 2025, 15(10), 2367; https://doi.org/10.3390/agronomy15102367 - 10 Oct 2025
Viewed by 1127
Abstract
Grazing systems’ production efficiency is a dynamic interaction between soil, pasture, livestock, and climate. The magnitude of the changes is related to the mechanical stress applied by the livestock and their feeding behaviour. In Southern Chile, dairy cattle present a high heterogeneity in [...] Read more.
Grazing systems’ production efficiency is a dynamic interaction between soil, pasture, livestock, and climate. The magnitude of the changes is related to the mechanical stress applied by the livestock and their feeding behaviour. In Southern Chile, dairy cattle present a high heterogeneity in breeds, size, live weight, and milk production. This study investigated whether cows of contrasting size/live weight can improve degraded pasture and positively modify soil (Andosol-Duric Hapludand) physical features. Three pasture types were used as follows: (i) cultivated fertilised Lolium perenne L. (perennial ryegrass) and Trifolium repens L. (white clover) mixture (BM); (ii) cultivated fertilised L. perenne, T. repens, Bromus valdivianus Phil. (pasture brome), Holcus lanatus L. (Yorkshire fog), and Dactylis glomerata L. (cocksfoot) mixture (MSM); and (iii) naturalised fertilised pasture Agrostis capillaris L. (browntop), B. valdivianus, and T. repens (NFP). Pastures were grazed with two groups of dairy cows of contrasting size and live weight: light cows (LC) [live weight: 464 ± 5.4 kg; height at the withers: 132 ± 0.6 cm (average ± s.e.m.)] and heavy cows (HC) [live weight: 600 ± 8.7 kg; height at the withers: 141 ± 0.9 cm (average ± s.e.m.)]. Hoof area was measured, and the pressure applied by cows on the soil was calculated. Soil differences in penetration resistance (PR) and macro-porosity (wCP > 50 μm) between pastures were explained by tillage and seeding, rather than as a result of livestock presence and movement (animal trampling). The PR variation during the year was associated with the soil water content (SWC). Grazing dairy cows of contrasting live weight caused changes in soil and pasture attributes, and they behaved differently during grazing. Light cows were linked to more intense grazing, a stable soil structure, and pastures with competitive species and greater tiller density. In MSM, pasture consumption increased, and the soil was more resilient to hoof compression. In general, grazing with heavy cows in these three different pasture systems did not negatively impact soil physical properties. These findings indicate that volcanic soils are resilient and that during renovation, the choice of pasture type has a greater initial impact on soil structure than the selection of cow size, but incorporating lighter cows can be a strategy to promote denser pasture swards in these grazing systems. Full article
(This article belongs to the Section Grassland and Pasture Science)
Show Figures

Figure 1

16 pages, 842 KB  
Article
Traceability and Heavy Metal Contamination in Agrosystems of Two Rice-Producing Areas of the Ecuadorian Coast
by Jairo Jaime-Carvajal, Jaime Naranjo-Morán, Kevin Cedeño Vinces, José Ballesteros, Fernando Espinoza-Lozano, Ivan Chóez-Guaranda and Simón Pérez-Martinez
Agronomy 2025, 15(10), 2359; https://doi.org/10.3390/agronomy15102359 - 9 Oct 2025
Viewed by 549
Abstract
Rice (Oryza sativa) plays a fundamental role in the Ecuadorian diet. This study evaluated traceability and contamination by heavy metals in two rice-producing areas of Ecuador. Microwave-assisted digestion was used to process samples from rice agrosystems including irrigation water, soil, roots, [...] Read more.
Rice (Oryza sativa) plays a fundamental role in the Ecuadorian diet. This study evaluated traceability and contamination by heavy metals in two rice-producing areas of Ecuador. Microwave-assisted digestion was used to process samples from rice agrosystems including irrigation water, soil, roots, stems, and leaves. Inductively coupled plasma optical emission spectroscopy (ICP-OES) was employed for elemental analysis. Arsenic (As), cadmium (Cd), lead (Pb), and chromium (Cr) were measured in samples collected in Daule and Ventanas. In soils, the concentrations of As (1.50–2.82 mg/kg) and Cd (1.22–1.45 mg/kg) exceeded the internationally recommended safety thresholds. In irrigation water, the content of As (0.85–1.12 mg/L), Pb (0.25–0.38 mg/L), and Cr (0.37–0.53 mg/L) surpass the international/national permissible limits. However, the limits established by Ecuadorian legislation indicate that As in soils did not exceed contamination thresholds. Additionally, the bioaccumulation of As and Pb in roots from Daule and Ventanas, respectively, was observed, along with the movement of Pb to aerial parts in Daule. Finally, preliminary As found in commercial rice grains suggest a potential health concern to the Ecuadorian population. These findings highlight the need for stricter heavy metal restrictions for rice agrosystems and effective agricultural pollution mitigation. Full article
(This article belongs to the Section Agroecology Innovation: Achieving System Resilience)
Show Figures

Figure 1

17 pages, 3143 KB  
Article
Investigation on Dewatering Scheme Optimization, Water Levels, and Support Layout Influences for Steel Sheet Pile Cofferdams
by Meng Xiao, Da-Shu Guan, Wen-Feng Zhang, Wei Chen, Xing-Ke Lin and Ming-Yang Zeng
Buildings 2025, 15(19), 3526; https://doi.org/10.3390/buildings15193526 - 1 Oct 2025
Viewed by 358
Abstract
Based on the steel sheet pile cofferdam project for the main bridge piers of a cross-sea bridge, finite element numerical simulations were conducted to analyze the influence of construction sequences in marine environments, as well as the effects of initial water levels and [...] Read more.
Based on the steel sheet pile cofferdam project for the main bridge piers of a cross-sea bridge, finite element numerical simulations were conducted to analyze the influence of construction sequences in marine environments, as well as the effects of initial water levels and support positions under various construction conditions on the stress and deformation behavior of steel sheet piles. Using a staged construction simulation with a Mohr–Coulomb soil model and stepwise activation of loads/excavation, this study delivers practically relevant trends: staged dewatering halves the sheet pile head displacement (top lateral movement <0.08 m vs. ~0.16 m in the original scheme) and mobilizes the support system earlier, while slightly increasing peak bending demand (~1800 kN·m) at the bracing elevation; the interaction between water head and brace elevation is explored through fitted response curves and summarized in figures/tables, and soil/structural properties are tabulated for reproducibility. The results indicate that a well-designed dewatering process, along with the coordination between water levels and internal support positions, plays a critical role in controlling deformation. The findings offer valuable references for the design and construction of sheet pile cofferdams in marine engineering under varying construction methods and water level conditions. Full article
(This article belongs to the Section Building Structures)
Show Figures

Figure 1

21 pages, 4685 KB  
Article
Influence of Soil Background Noise on Accuracy of Soil Moisture Content Inversion in Alfalfa Fields Based on UAV Multispectral Data
by Jinxi Chen, Yuanbo Jiang, Wenjing Yu, Guangping Qi, Yanxia Kang, Minhua Yin, Yanlin Ma, Yayu Wang, Jiapeng Zhu, Yanbiao Wang and Boda Li
Soil Syst. 2025, 9(3), 98; https://doi.org/10.3390/soilsystems9030098 - 12 Sep 2025
Cited by 1 | Viewed by 638
Abstract
Soil moisture plays a critical role in the global water cycle, the exchange of matter and energy within ecosystems, and the movement of water in plants. Accurate monitoring of soil moisture is essential for drought early warning systems, irrigation decision-making, and crop growth [...] Read more.
Soil moisture plays a critical role in the global water cycle, the exchange of matter and energy within ecosystems, and the movement of water in plants. Accurate monitoring of soil moisture is essential for drought early warning systems, irrigation decision-making, and crop growth assessment. The use of drone-based multispectral remote sensing technology for estimating the soil moisture content offers advantages such as wide coverage, high accuracy, and efficiency. However, the soil background can often interfere with the accuracy of these estimations. In specific environments, such as areas with strong winds, removing soil background noise may not necessarily enhance the precision of estimates. This study utilizes unmanned aerial vehicle (UAV) multispectral imagery and employs a vegetation index threshold method to remove soil background noise. It systematically analyzes the response relationship between spectral reflectance, spectral indices, and the soil moisture content in the top 0–10 cm layer of alfalfa; constructs K-Nearest Neighbors (KNN), Random Forest Regression (RFR), ridge regression (RR), and XG-Boost inversion models; and comprehensively evaluates model performance. The results indicate the following: (1) The XG-Boost model validation set had the highest R2 value (0.812) when spectral reflectance was used as the input variable, which was significantly better than the other models (R2 = 0.465 to 0.770), and the RFR model validation set had the highest R2 value when the spectral index was used as the input variable (0.632), which was significantly better than the other models (R2 = 0.366 to 0.535). (2) After removing soil background noise, the accuracy of the soil moisture estimates for each model did not show significant changes; specifically, the R2 value for the XG-Boost model decreased to 0.803 when using spectral reflectance as the input, and the R2 value for the RFR model dropped to 0.628 when using spectral indices. (3) Before and after removing the soil background noise, the spectral reflectance can provide more accurate data support for the inversion of the soil moisture content than the spectral index, and the XG-Boost model is the most effective in the inversion of the soil moisture content when using the spectral reflectance as the input variable. The research findings provide both theoretical and technical support for the retrieval of the surface soil moisture content in alfalfa using drone-based multispectral remote sensing. Additionally, they offer evidence that validates large-scale soil moisture remote sensing monitoring. Full article
(This article belongs to the Special Issue Research on Soil Management and Conservation: 2nd Edition)
Show Figures

Figure 1

26 pages, 3046 KB  
Article
Distribution Patterns of Humus and Mineral Composition in Dark-Brown, Meadow, and Paddy Soils in Northeast China
by Donghui Dai, Haihang Sun, Yubao Huang, Jingwei Gao, Bowen Song, Haoyu Gao, Baoyi Lu and Shuai Wang
Agronomy 2025, 15(9), 2108; https://doi.org/10.3390/agronomy15092108 - 31 Aug 2025
Viewed by 886
Abstract
This study aimed to investigate vertical variations in dissolved organic matter (DOM) properties, humus (HS) composition, humic acid (HA) characteristics, and clay mineral dynamics, with a particular focus on the vertical distribution of HS components and mineral composition across Dark-brown, Meadow, and Paddy [...] Read more.
This study aimed to investigate vertical variations in dissolved organic matter (DOM) properties, humus (HS) composition, humic acid (HA) characteristics, and clay mineral dynamics, with a particular focus on the vertical distribution of HS components and mineral composition across Dark-brown, Meadow, and Paddy soil profiles. Results indicated that: (1) DOM in all three soil types was predominantly endogenous, primarily derived from microbial metabolism with minimal contributions from plant residues. (2) Vertical trends in DOM carbon content (CDOM) were specific to soil type: in Dark-brown soil, CDOM slightly increased from the Ap to Bt layer, followed by a sharp increase in the C layer; Meadow soil exhibited a significant decrease in CDOM in the AB layer but remained relatively stable in other layers; Paddy soil showed a consistent decline in CDOM with increasing depth. (3) HS and its fractions exhibited vertical variability: Paddy soil showed higher HS content in surface layers; carbon contents of water-soluble substances, HA, and humic-extracted acid (CWSS, CHA, and CHE) decreased with depth in Dark-brown and Paddy soils, whereas they remained relatively stable in deeper layers of Meadow soil. (4) HA characteristics, including C/N ratio, functional groups, and aromaticity, were influenced by both depth and soil type: the Ap2 layer of Paddy soil effectively restricted the downward movement of organic matter; Fe3+ complexation played a key role in HA stabilization in Dark-brown soil; Meadow soil exhibited transitional HS properties. (5) Clay mineral assemblages were dominated by 2:1 type minerals (illite, smectite, illite–smectite interstratifications), showing distinct vertical weathering patterns: illite content decreased with depth due to hydrolysis, while proton-driven dissolution promoted kaolinite formation in surface layers, particularly in Dark-brown soil 2:1 minerals enhancing organic–mineral complexation in Meadow soil. The findings of this study provided a scientific basis for optimizing soil carbon pool management and offer insights into organic–mineral interactions that can enhance organic matter sequestration in agricultural soils. Full article
(This article belongs to the Section Soil and Plant Nutrition)
Show Figures

Figure 1

23 pages, 8620 KB  
Article
Experimental and Numerical Study on the Coupled Processes of Salt Migration and Moisture Movement Under Evaporation in the Vadose Zone
by Weijian Li, Jinguo Wang, Walter A. Illman, Hao Wang, Bo Chen and Yufan Dong
Water 2025, 17(17), 2536; https://doi.org/10.3390/w17172536 - 26 Aug 2025
Viewed by 929
Abstract
In arid and semi-arid regions, soil salinization has emerged as an escalating environmental challenge. Soil salinity not only alters the soil structure but also influences water movement and distribution. The coupled processes of water movement, heat transfer, and solute transport in the vadose [...] Read more.
In arid and semi-arid regions, soil salinization has emerged as an escalating environmental challenge. Soil salinity not only alters the soil structure but also influences water movement and distribution. The coupled processes of water movement, heat transfer, and solute transport in the vadose zone interact dynamically, warranting an in-depth investigation into coupled processes of matter and energy. This study developed a numerical model of coupled water-vapor–heat–salt transport in the vadose zone, validated through evaporation experiments and compared with a conventional model excluding osmotic potential. It is found that salt presence reduces evaporation rates while enhancing soil moisture movement. Liquid water movement is primarily governed by matric and osmotic potential gradient, whereas water vapor movement is dominated by temperature gradients. Matric potential influences water vapor movement only at the soil surface, and the impact of salt on water vapor movement diminishes with increasing water content. Notably, matric potential significantly affects water vapor movement only when soil water vapor relative humidity is below unity. The proposed model effectively describes multi-field coupling transport and clarifies the role of osmotic potential in regulating liquid and vapor water dynamics. Full article
(This article belongs to the Section Hydrology)
Show Figures

Figure 1

23 pages, 3759 KB  
Article
Intra-Aggregate Pore Network Stability Following Wetting-Drying Cycles in a Subtropical Oxisol Under Contrasting Managements
by Everton de Andrade, Talita R. Ferreira, José V. Gaspareto and Luiz F. Pires
Agriculture 2025, 15(16), 1725; https://doi.org/10.3390/agriculture15161725 - 11 Aug 2025
Cited by 1 | Viewed by 620
Abstract
One type of pore fundamental to water dynamics is the intra-aggregate pore, which holds water vital for plant and root system development, mainly in finer-textured soils such as clays. The distribution of intra-aggregate pores also influences the redistribution of water. Thus, it is [...] Read more.
One type of pore fundamental to water dynamics is the intra-aggregate pore, which holds water vital for plant and root system development, mainly in finer-textured soils such as clays. The distribution of intra-aggregate pores also influences the redistribution of water. Thus, it is important to study the dynamics of the intra-aggregate pore network under processes such as wetting and drying cycles (WDC). Changes in these pore types can play essential roles in organic matter protection, water movement, microbial activity, and aggregate stability. To date, there are few studies analyzing the impact of WDC on intra-aggregate pore dynamics. This study aims to provide results in this regard, analyzing changes in the pore architecture of a subtropical Oxisol under no-tillage (NT), conventional tillage (CT), and forest (F) after WDC application. Three-dimensional X-Ray microtomography images of soil aggregate samples (2–4 mm) subjected to 0 and 12 WDC were analyzed. The results showed that WDC did not affect (p > 0.05) the imaged porosity, number of pores, fractal dimension, tortuosity, and pore connectivity for the different soil management types. To analyze the permeability and hydraulic conductivity of the soil pore system, the most voluminous pore (MVP) was examined. No differences were observed in the imaged porosity, fraction of aggregate occupied by the MVP, connectivity, tortuosity, hydraulic radius, permeability, and hydraulic conductivity between 0 and 12 WDC for the MVP. Comparing soil management types after 12 WDCs, for example, F samples became more porous than CT and NT samples. In contrast, the pore system of NT had a lower fractal dimension and was more tortuous than that of CT and F samples. Our results show that for highly weathered soils such as the Brazilian Oxisol studied, the intra-aggregate pore network proved resistant to changes with WDC, regardless of the type of management adopted. Full article
(This article belongs to the Section Agricultural Soils)
Show Figures

Figure 1

14 pages, 1110 KB  
Article
Modular System for High-Precision Irrigation with Nutrients Addition
by Elena Serea, Codrin Donciu and Marinel Costel Temneanu
Appl. Sci. 2025, 15(16), 8819; https://doi.org/10.3390/app15168819 - 10 Aug 2025
Viewed by 956
Abstract
Precision agriculture necessitates irrigation systems capable of adapting to spatial variability and dynamic crop requirements. Existing systems often rely on costly infrastructures or lack the fine-grained control and integration of fertigation. This paper presents the development and experimental validation of a cost-effective, modular [...] Read more.
Precision agriculture necessitates irrigation systems capable of adapting to spatial variability and dynamic crop requirements. Existing systems often rely on costly infrastructures or lack the fine-grained control and integration of fertigation. This paper presents the development and experimental validation of a cost-effective, modular Irrigation Modular System (IMS) designed for deployment on pivot or linear movement automated irrigation infrastructure. The system enables high-precision irrigation with nutrient addition, supported by real-time environmental sensing and Power Line Communication (PLC) for data transfer. The IMS comprises five main components: electrovalve-controlled irrigation modules, soil and atmospheric sensor nodes, nutrient supply units, a PLC-based communication layer, and a centralized decision-making platform. Field trials on early tomatoes and autumn cauliflower demonstrated improved water and nutrient use efficiency, reduced input consumption, and increased yields. The IMS presents a scalable, retrofit-ready solution for efficient resource management in precision agriculture. Full article
Show Figures

Figure 1

18 pages, 3421 KB  
Article
Bisphenol E Neurotoxicity in Zebrafish Larvae: Effects and Underlying Mechanisms
by Kaicheng Gu, Lindong Yang, Yi Jiang, Zhiqiang Wang and Jiannan Chen
Biology 2025, 14(8), 992; https://doi.org/10.3390/biology14080992 - 4 Aug 2025
Viewed by 963
Abstract
As typical environmental hormones, endocrine-disrupting chemicals (EDCs) have become a global environmental health issue of high concern due to their property of interfering with the endocrine systems of organisms. As a commonly used substitute for bisphenol A (BPA), bisphenol E (BPE) has been [...] Read more.
As typical environmental hormones, endocrine-disrupting chemicals (EDCs) have become a global environmental health issue of high concern due to their property of interfering with the endocrine systems of organisms. As a commonly used substitute for bisphenol A (BPA), bisphenol E (BPE) has been frequently detected in environmental matrices such as soil and water in recent years. Existing research has unveiled the developmental and reproductive toxicity of BPE; however, only one in vitro cellular experiment has preliminarily indicated potential neurotoxic risks, with its underlying mechanisms remaining largely unelucidated in the current literature. Potential toxic mechanisms and action targets of BPE were predicted using the zebrafish model via network toxicology and molecular docking, with RT-qPCRs being simultaneously applied to uncover neurotoxic effects and associated mechanisms of BPE. A significant decrease (p < 0.05) in the frequency of embryonic spontaneous movements was observed in zebrafish at exposure concentrations ≥ 0.01 mg/L. At 72 hpf and 144 hpf, the larval body length began to shorten significantly from 0.1 mg/L to 1 mg/L, respectively (p < 0.01), accompanied by a reduced neuronal fluorescence intensity and a shortened neural axon length (p < 0.01). By 144 hpf, the motor behavior in zebrafish larvae was inhibited. Through network toxicology and molecular docking, HSP90AB1 was identified as the core target, with the cGMP/PKG signaling pathway determined to be the primary route through which BPE induces neurotoxicity in zebrafish larvae. BPE induces neuronal apoptosis and disrupts neurodevelopment by inhibiting the cGMP/PKG signaling pathway, ultimately suppressing the larval motor behavior. To further validate the experimental outcomes, we measured the expression levels of genes associated with neurodevelopment (elavl3, mbp, gap43, syn2a), serotonergic synaptic signaling (5-ht1ar, 5-ht2ar), the cGMP/PKG pathway (nos3), and apoptosis (caspase-3, caspase-9). These results offer crucial theoretical underpinnings for evaluating the ecological risks of BPE and developing environmental management plans, as well as crucial evidence for a thorough comprehension of the toxic effects and mechanisms of BPE on neurodevelopment in zebrafish larvae. Full article
(This article belongs to the Special Issue Advances in Aquatic Ecological Disasters and Toxicology)
Show Figures

Graphical abstract

19 pages, 8452 KB  
Article
Mass Movements in Wetlands: An Analysis of a Typical Amazon Delta-Estuary Environment
by Aline M. Meiguins de Lima, Vitor Gabriel Queiroz do Nascimento, Saulo Siqueira Martins, Arthur Cesar Souza de Oliveira and Yuri Antonio da Silva Rocha
GeoHazards 2025, 6(3), 40; https://doi.org/10.3390/geohazards6030040 - 29 Jul 2025
Viewed by 960
Abstract
This study aims to investigate the processes associated with mass movements and their relationship with the behavior of the Amazon River delta-estuary (ADE) wetlands. The methodological approach involves using water spectral indices and ground-penetrating radar (GPR) to diagnose areas of soil water saturation [...] Read more.
This study aims to investigate the processes associated with mass movements and their relationship with the behavior of the Amazon River delta-estuary (ADE) wetlands. The methodological approach involves using water spectral indices and ground-penetrating radar (GPR) to diagnose areas of soil water saturation and characterize regions affected by mass movements in Amazonian cities. It also involves identifying areas of critical saturation content and consequent mass movements. Analysis of risk and land use data revealed that the affected areas coincide with zones of high susceptibility to mass movements induced by water. The results showed the following: the accumulated annual precipitation ranged from 70.07 ± 55.35 mm·month−1 to 413.34 ± 127.51 mm·month−1; the response similarity across different sensors obtained an accuracy greater than 90% for NDWI, MNDWI, and AWEI for the same targets; and a landfill layer with a thickness variation between 1 and 2 m defined the mass movement concentration in Abaetetuba city. The interaction between infiltration, water saturation, and human-induced land alteration suggests that these areas act as wetlands with unstable dynamics. The analysis methodology developed for this study aimed to address this scenario by systematically mapping areas with mass movement potential and high-water saturation. Due to the absence of geological and geotechnical data, remote sensing was employed as an alternative, and in situ ground-penetrating radar (GPR) evaluation was suggested as a means of investigating the causes of a previously observed movement. Full article
Show Figures

Graphical abstract

Back to TopTop