Study on Sustainable Sludge Utilization via the Combination of Electroosmotic Vacuum Preloading and Polyacrylamide Flocculation
Abstract
1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Column Settling Experiment
2.3. Electroosmotic Vacuum Preloading System
2.4. Sludge Sample Preparation
3. Results and Discussion
3.1. Water Discharge and Current
3.2. Vacuum Pressure
3.3. Surface Settlement
3.4. Water Content
3.5. Vane Shear Strength
3.6. Microstructure and XRD Pattern
4. Sustainability and Economic Evaluation
- (1)
- With the real-time electricity price at 0.08$ per kilowatt-hour (kWh), the additional energy cost for sludge treatment is 2.9$·t−1 (calculated as: 35.7 kWh·t−1 × 0.08$·kWh−1 ≈ 2.9$·t−1).
- (2)
- For industrial-grade additives, APAM is priced at 100$·t−1 and CaCl2 at 170$·t−1. Based on optimal dosages identified in experiments (0.25% APAM and 4.0% CaCl2), the additive cost per tonne of dry sludge is approximately 7.05 $ (calculated as: 100$·t−1 × 0.0025 + 170$·t−1 × 0.04 ≈ 7.1$·t−1).
5. Conclusions
- The combination of APAM and CaCl2 exhibits more efficient flocculation performance than their individual use. For the dredged sludge studied in this research, the optimal dosages of APAM and CaCl2 were confirmed to be 0.25% and 4.0% of the dry sludge mass, respectively.
- The EVP method simultaneously extracts free water and weakly bound water from sludge, thereby further increasing vacuum drainage mass and enhancing sludge consolidation efficiency. Notably, the consolidation degree in the vicinity of the electrodes is higher compared to other regions.
- Compared to the sole VP treatment, the combined application of APAM-CaCl2 significantly improves sludge permeability through aggregating fine particles into large flocs, increasing the vacuum drainage mass by 30.7% and the average shear strength by 17.3%.
- The combination of EVP and APAM-CaCl2 further enhances the efficiency and effectiveness of sludge consolidation. Specifically, EVP accelerates water discharge and promotes the synthesis of cementitious substances, APAM-CaCl2 improves sludge permeability and strengthens the bonding force between particles. As a result, the final drainage mass and the shear strength of the sludge are increased by 53% and 108%, respectively.
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Svensson, N.; Norén, A.; Modin, O.; Fedje, K.K.; Rauch, S.; Strömvall, A.-M.; Andersson-Sköld, Y. Integrated cost and environmental impact assessment of management options for dredged sediment. Waste Manag. 2022, 138, 30–40. [Google Scholar] [CrossRef] [PubMed]
- Anda, R.; Fu, H.T.; Wang, J.; Lei, H.Y.; Hu, X.Q.; Ye, Q.; Cai, Y.Q.; Xie, Z.W. Effects of pressurizing timing on air booster vacuum consolidation of dredged slurry. Geotext. Geomembr. 2020, 48, 491–503. [Google Scholar] [CrossRef]
- Chen, H.; Chu, J.; Guo, W.; Wu, S. Land reclamation using the horizontal drainage enhanced geotextile sheet method. Geotext. Geomembr. 2023, 51, 131–150. [Google Scholar] [CrossRef]
- Chen, D.S.; Wu, Y.D.; Liu, Y.; Wu, H.G.; Zhu, Y.Y. Sensitivity Analysis of the Factors Affecting the Ground Heave Caused by Jet Grouting. Buildings 2024, 14, 2610. [Google Scholar] [CrossRef]
- Wu, P.C.; Feng, W.Q.; Yin, J.H. Numerical study of creep effects on settlements and load transfer mechanisms of soft soil improved by deep cement mixed soil columns under embankment load. Geotext. Geomembr. 2020, 48, 331–348. [Google Scholar] [CrossRef]
- Tan, X.; Zhao, M.H.; Chen, W. Numerical Simulation of a Single Stone Column in Soft Clay Using the Discrete-Element Method. Int. J. Geomech. 2018, 18, 04018176. [Google Scholar] [CrossRef]
- Mesri, G.; Khan, A.Q. Ground Improvement Using Vacuum Loading Together with Vertical Drains. J. Geotech. Geoenvironmental Eng. 2012, 138, 680–689. [Google Scholar] [CrossRef]
- Sexton, B.G.; Sivakumar, V.; McCabe, B.A. Creep improvement factors for vibro-replacement design. Proc. Inst. Civ. Eng.-Ground Improv. 2017, 170, 35–56. [Google Scholar] [CrossRef]
- Indraratna, B.C.; Rujikiatkamjorn, R.K.; Buys, H. Soft soil foundation improved by vacuum and surcharge loading. Proc. Inst. Civ. Eng.-Ground Improv. 2012, 165, 87–96. [Google Scholar] [CrossRef]
- Lei, H.; Toma, A.; Bo, Y.; Wang, L.; Wu, H. Reinforcement effect of the stepped-alternating vacuum preloading method on dredged fills. Int. J. Geomech. 2024, 24, 04023272. [Google Scholar] [CrossRef]
- Zhang, X.; Ye, P.; Wu, Y.J. Enhanced technology for sewage sludge advanced dewatering from an engineering practice perspective: A review. J. Environ. Manag. 2022, 321, 115938. [Google Scholar] [CrossRef]
- Zhang, X.D.; Huang, T.W.; Wu, Y.J. Soil drainage clogging mechanism under vacuum preloading: A review. Transp. Geotech. 2024, 45, 101178. [Google Scholar] [CrossRef]
- Liu, S.; Cai, Y.; Sun, H.; Geng, X.; Shi, L.; Pan, X. Consolidation considering clogging effect under uneven strain assumption. Int. J. Geomech. 2021, 21, 04020239. [Google Scholar] [CrossRef]
- Zhou, Y.; Chen, S.; Guo, W.; Ren, Y.; Xu, G. Recent developments in the vacuum preloading technique in China. Sustainability 2022, 14, 13897. [Google Scholar] [CrossRef]
- Hu, J.; Li, X.; Zhang, D.; Wang, J.; Hu, X.; Cai, Y. Experimental Study on the Effect of Additives on Drainage Consolidation in Vacuum Preloading Combined with Electroosmosis. KSCE J. Civ. Eng. 2020, 24, 2599–2609. [Google Scholar] [CrossRef]
- Zhang, G. Soil Nanoparticles and Their Influence on Engineering Properties of Soils. Adv. Meas. Model. Soil Behav. ASCE 2007, 173, 1–13. [Google Scholar] [CrossRef]
- Liu, X.Y.; Zhuang, Y.F. Evaluation of Electroosmotic Permeability Using Different Models and Investigation of Its Effect on Chromium Removal. Sustainability 2023, 15, 12706. [Google Scholar] [CrossRef]
- Zhou, J.; Gan, Q.; Tao, Y. Electro-osmotic permeability model based on ions migration. Acta Geotech. 2022, 17, 2379–2393. [Google Scholar] [CrossRef]
- Zhang, H.; Lu, S.C.; Tu, C.Z.; Guo, L.F. Experimental study on synergistic effects of electroosmosis and CaCl2 on inhibiting the expansion behaviors of sodium sulfate saline soil. Case Stud. Constr. Mat. 2025, 22, e04906. [Google Scholar] [CrossRef]
- Wang, J.; Zhao, R.; Cai, Y.Q. Vacuum preloading and electro-osmosis consolidation of dredged slurry pre-treated with flocculants. Eng. Geol. 2018, 246, 123–130. [Google Scholar] [CrossRef]
- Latifi, N.; Marto, A.; Eisazadeh, A. Physicochemical behavior of tropical laterite soil stabilized with non-traditional additive. Acta Geotech. 2016, 11, 433–443. [Google Scholar] [CrossRef]
- Dwari, R.K.; Angadi, S.I.; Tripathy, S.K. Studies on flocculation characteristics of chromite’s ore process tailing: Effect of flocculants ionicity and molecular mass. Colloid. Surface. A. 2018, 537, 467–477. [Google Scholar] [CrossRef]
- Lei, H.Y.; Xu, Y.G.; Li, X.; Jiang, M.J.; Liu, L.Z. Effect of Polyacrylamide on Improvement of Dredger Fill with Vacuum Preloading Method. J. Mater. Civ. Eng. 2019, 31, 04019193. [Google Scholar] [CrossRef]
- Latifi, N.; Meehan, C.L.; Majid, M.Z.A.; Horpibulsuk, S. Strengthening montmorillonitic and kaolinitic clays using a calcium-based non-traditional additive: A micro-level study. Appl. Clay Sci. 2016, 132, 182–193. [Google Scholar] [CrossRef]
- Lee, K.E.; Teng, T.T.; Morad, N.; Poh, B.T.; Mahalingam, M. Flocculation activity of novel ferric chloride-polyacrylamide (FeCl3-PAM) hybrid polymer. Desalination 2011, 266, 108–113. [Google Scholar] [CrossRef]
- Kang, X.; Bate, B.; Chen, R.P.; Yang, W.; Wang, F. Physicochemical and Mechanical Properties of Polymer-Amended Kaolinite and Fly Ash-Kaolinite Mixtures. J. Mater. Civ. Eng. 2019, 31, 04019064. [Google Scholar] [CrossRef]
- Wang, J.; Huang, G.; Fu, H.T.; Cai, Y.Q.; Hua, X.X.; Lou, X.M.; Jing, Y.W.; Hai, J.; Ni, J.F.; Zou, J. Vacuum preloading combined with multiple-flocculant treatment for dredged fill improvement. Eng. Geol. 2019, 259, 105194. [Google Scholar] [CrossRef]
- Zhang, H.; Ma, Q.G.; Su, W.J. On the dewatering of electroosmotic soil using intermittent current incorporated with calcium chloride. Dry. Technol. 2021, 42, 468–478. [Google Scholar] [CrossRef] [PubMed]
- Chang, T.H.; Chang, H.W. Improvement of Liquefaction Resistance of Reclaimed Sand in Water—An Experimental Study. J. Geo-Eng. 2010, 5, 39–49. [Google Scholar] [CrossRef]
- Zhang, H.; Guo, L.; Tu, C. Experimental Investigation on the Improvement of Dredged Sludge Using Air-Booster Vacuum Preloading with Polyacrylamide Addition. Materials 2025, 18, 2065. [Google Scholar] [CrossRef] [PubMed]
- D4318-10; Standard Test Methods for Liquid Limit, Plastic Limit, and Plasticity Index of Soils. ASTM International: West Conshohocken, PA, USA, 2010. [CrossRef]
- D2487-10; Standard Practice for Classification of Soils for Engineering Purposes (Unified Soil Classification System). ASTM International: West Conshohocken, PA, USA, 2010. [CrossRef]
- Choi, Y.I.; Jung, B.G.; Son, H.J.; Jung, Y.J. Determination of optimum coagulants (ferric chloride and alum) for arsenic and turbidity removal by coagulation. J. Environ. Sci. Int. 2010, 19, 931–940. [Google Scholar] [CrossRef]
- Wong, S.S.; Teng, T.T.; Ahmad, A.L.; Zuhairi, A.; Najafpour, G. Treatment of pulp and paper mill wastewater by polyacrylamide (PAM) in polymer induced flocculation. J. Hazard. Mater. 2006, 135, 378–388. [Google Scholar] [CrossRef]
- Tao, Y.; Zhou, J.; Gong, X.; Chen, Z. Influence of polarity reversal and current intermittence on electro-osmosis. In Proceedings of the Geo-Shanghai in Ground Improvement and Geosynthetics, ASCE, Shanghai, China, 22 May 2014; Volume 238, pp. 198–208. [Google Scholar] [CrossRef]
- Chai, J.; Hong, Z.; Shen, S. Vacuum-drain consolidation induced pressure distribution and ground deformation. Geotext. Geomembr. 2010, 28, 525–535. [Google Scholar] [CrossRef]
- Cao, Y.; Zhang, R.; Xu, G.; Xu, J. Axisymmetric large strain consolidation by vertical drains considering well resistance under vacuum pressure. Arab. J. Geosci. 2021, 14, 2016. [Google Scholar] [CrossRef]
- Wang, J.; Ma, J.; Liu, F.; Mi, W.; Cai, Y.; Fu, H. Experimental study on the improvement of marine clay slurry by electroosmosis-vacuum preloading. Geotext. Geomembr. 2016, 44, 615–622. [Google Scholar] [CrossRef]
- Jiao, Y.; He, J.; Zhou, P.; Cao, Z. Potential of Flocculant-Aided Soil Slurry Dewatering in Land Reclamation: Laboratory Investigations. Adv. Civ. Eng. 2018, 2018, 8040193. [Google Scholar] [CrossRef]
- Wang, J.; Shi, W.; Wu, W.; Liu, F.; Fu, H.; Cai, Y. Influence of composite flocculant FeCl3-APAM on vacuum drainage of river-dredged sludge. Can. Geotech. J. 2019, 56, 868–875. [Google Scholar] [CrossRef]
- Liu, F.; Li, Z.; Yuan, G.; Hu, X.; Zhang, D.; Du, Y. Improvement of dredger fill by stepped vacuum preloading combined with stepped voltage electro-osmosis. Mar. Georesour. Geotechnol. 2020, 39, 822–831. [Google Scholar] [CrossRef]
- Hu, X.; Gao, Z.; Liu, F.; Tao, Y.; Xu, D.; Du, Y. The optimal combination form of vacuum pre-loading combined with electro-osmosis and with dynamic compaction method on the improvement of dredged slurry. Mar. Georesour. Geotechnol. 2020, 39, 1192–1204. [Google Scholar] [CrossRef]
- Wu, J.; Liu, X.; Luo, X.; Fu, H.; Li, X.; Cai, Y. Improvement of marine slurry by vacuum preloading and air-booster via a reverse prefabricated vertical drain. Mar. Georesour. Geotechnol. 2022, 42, 149–160. [Google Scholar] [CrossRef]
- Xu, B.H.; He, N.; Jiang, Y.B.; Zhou, Y.Z.; Zhan, X.J. Experimental study on the clogging effect of dredged fill surrounding the PVD under vacuum preloading. Geotext. Geomembr. 2020, 48, 614–624. [Google Scholar] [CrossRef]
- Sojka, R.E.; Bjorneberg, D.L.; Entry, J.A.; Lentz, R.D.; Orts, W.J. Polyacrylamide (PAM) in agriculture and environmental land management. Adv. Agron. 2007, 92, 75–162. [Google Scholar] [CrossRef]
- Xiong, B.; Loss, R.D.; Shields, D.; Pawlik, T.; Hochreiter, R.; Zydney, A.L.; Kumar, M. Polyacrylamide degradation and its implications in environmental systems. Npj Clean Water 2018, 1, 17. [Google Scholar] [CrossRef]














| Initial Water Content | Density | Specific Gravity | Saturation | Void Ratio | Liquid Limit | Plastic Limit |
|---|---|---|---|---|---|---|
| w0/% | ρ/g·cm−3 | Gs | Sr/% | e0 | wL/% | wP/% |
| 70.8 | 1.62 | 2.71 | 100 | 1.92 | 42.6 | 20.2 |
| Group ID | Vacuum Pressure (kPa) | Electric Voltage (V) | APAM (%) | CaCl2 (%) |
|---|---|---|---|---|
| T1 | −85 kPa | / | / | / |
| T2 | −85 kPa | 8 V | / | / |
| T3 | −85 kPa | / | 0.25 | 4.0 |
| T4 | −85 kPa | 8 V | 0.25 | 4.0 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhang, H.; Tu, C.; He, C. Study on Sustainable Sludge Utilization via the Combination of Electroosmotic Vacuum Preloading and Polyacrylamide Flocculation. Sustainability 2025, 17, 9802. https://doi.org/10.3390/su17219802
Zhang H, Tu C, He C. Study on Sustainable Sludge Utilization via the Combination of Electroosmotic Vacuum Preloading and Polyacrylamide Flocculation. Sustainability. 2025; 17(21):9802. https://doi.org/10.3390/su17219802
Chicago/Turabian StyleZhang, Heng, Chongzhi Tu, and Cheng He. 2025. "Study on Sustainable Sludge Utilization via the Combination of Electroosmotic Vacuum Preloading and Polyacrylamide Flocculation" Sustainability 17, no. 21: 9802. https://doi.org/10.3390/su17219802
APA StyleZhang, H., Tu, C., & He, C. (2025). Study on Sustainable Sludge Utilization via the Combination of Electroosmotic Vacuum Preloading and Polyacrylamide Flocculation. Sustainability, 17(21), 9802. https://doi.org/10.3390/su17219802
