Experimental and Numerical Study on the Coupled Processes of Salt Migration and Moisture Movement Under Evaporation in the Vadose Zone
Abstract
1. Introduction
2. Materials and Methods
2.1. Experimental Setup and Approach
2.2. Numerical Model
2.2.1. Water Vapor Transport
2.2.2. Liquid Water Transport
2.2.3. Moisture Transport Governing Equation
2.2.4. Heat Transport Governing Equation
2.2.5. Solute Transport Governing Equation
2.2.6. Hydraulic Properties
2.2.7. Initial and Boundary Conditions
3. Results and Discussion
3.1. Experiment and Model Results
3.2. Spatiotemporal Variation of Soil Water Content Distribution
3.3. Temporal Variation Characteristics of Soil Hydraulic Parameters
3.4. Temporal Variation of Soil Water Flux
4. Conclusions
- (1)
- The presence of salt decreases evaporation rates and enhances upward water movement. Comparative analysis of experimental data with the WVHS and WVH models reveals that the WVH model consistently underestimates soil water content. Specifically, the WVHS model exhibits smaller variations in water content at the same depth compared to the WVH model, indicating that salt in the vadose zone enhances upward soil moisture transport.
- (2)
- Calculations of soil moisture fluxes and hydraulic conductivities show that liquid water fluxes increase with depth, while water vapor fluxes decrease with depth. Throughout the soil profile, liquid water fluxes are dominated by isothermal liquid water fluxes (qhl) and osmotic liquid water fluxes (qCl). At the soil surface, water vapor fluxes consist of thermal vapor fluxes (qTv) and isothermal vapor flux (qhv), whereas thermal vapor fluxes (qTv) represent the primary vapor fluxes at other depths. These findings indicate that liquid water movement is governed by matric and osmotic potentials, while water vapor transport is primarily controlled by temperature. The influence of matric potential on water vapor movement occurs exclusively at the soil surface.
- (3)
- The influence of osmotic potential on water vapor transport diminishes as water content increases. Osmotic potential affects water vapor relative humidity only when soil water content approaches the residual water content. When water vapor relative humidity is below unity, soil water vapor movement is significantly governed by matric potential.
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Zhang, X.D.; Shu, C.J.; Wu, Y.J.; Ye, P.; Du, D. Advances of coupled water-heat-salt theory and test techniques for soils in cold and arid regions: A review. Geoderma 2023, 432, 116378. [Google Scholar] [CrossRef]
- Hassani, A.; Azapagic, A.; Shokri, N. Global predictions of primary soil salinization under changing climate in the 21st century. Nat. Commun. 2021, 12, 6663. [Google Scholar] [CrossRef]
- Purandara, B.K.; Varadarajan, N.; Venkatesh, B. Simultaneous transport of water and solutes under transient unsaturated flow conditions—A case study. J. Earth Syst. Sci. 2008, 117, 477–487. [Google Scholar] [CrossRef]
- Wen, W.; Lai, Y.M.; You, Z.M. A modified numerical model for moisture-salt transport in unsaturated sandy soil under evaporation. Sci. Cold Arid. Reg. 2020, 12, 125–133. [Google Scholar]
- Zhou, L.Z.; Zhou, F.X.; Ying, S.; Li, S. Study on water and salt migration and deformation properties of unsaturated saline soil under a temperature gradient considering salt adsorption: Numerical simulation and experimental verification. Comput. Geotech. 2021, 134, 104094. [Google Scholar] [CrossRef]
- Richter, D.D.; Mobley, M.L. Monitoring earth’s critical zone. Science 2009, 326, 1067–1068. [Google Scholar] [CrossRef]
- Novak, M.D. Importance of soil heating, liquid water loss, and vapor flow enhancement for evaporation. Water Resour. Res. 2016, 52, 8023–8038. [Google Scholar] [CrossRef]
- Novak, M.D. Dynamics of the near-surface evaporation zone and corresponding effects on the surface energy balance of a drying bare soil. Agric. For. Meteorol. 2010, 150, 1358–1365. [Google Scholar] [CrossRef]
- Bittelli, M.; Ventura, F.; Campbell, G.S.; Snyder, R.L.; Gallegati, F.; Pisa, P.R. Coupling of heat, water vapor, and liquid water fluxes to compute evaporation in bare soils. J. Hydrol. 2008, 362, 191–205. [Google Scholar] [CrossRef]
- Deb, S.K.; Shukla, M.K.; Sharma, P.; Mexal, J.G. Coupled liquid water, water vapor, and heat transport simulations in an unsaturated zone of a sandy loam field. Soil Sci. 2011, 176, 387–398. [Google Scholar] [CrossRef]
- Noborio, K.; Mcinnes, K.J.; Heilman, J.L. Two-dimensional model for water, heat, and solute transport in furrow-irrigated soil: I. Theory. Soil Sci. Soc. Am. J. 1996, 60, 1001–1009. [Google Scholar] [CrossRef]
- Lu, Y.H.; Hu, J.; Fu, B.J.; Harris, P.; Wu, L.; Tong, X.; Bai, Y.; Comber, A.J. A framework for the regional critical zone classification: The case of the Chinese Loess Plateau. Natl. Sci. Rev. 2019, 6, 14–18. [Google Scholar] [CrossRef]
- Lin, H. Earth’s Critical Zone and hydropedology: Concepts, characteristics, and advances. Hydrol. Earth Syst. Sci. 2010, 14, 25–45. [Google Scholar] [CrossRef]
- Oad, V.K.; Szymkiewicz, A.; Berezowski, T.; Gumuła-Kawęcka, A.; Šimůnek, J.; Jaworska-Szulc, B.; Therrien, R. Incorporation of Horizontal Aquifer Flow into a Vertical Vadose Zone Model to Simulate Natural Groundwater Table Fluctuations. Water 2025, 17, 2046. [Google Scholar] [CrossRef]
- Philip, J.R.; De Vries, D.A. Moisture movement in porous materials under temperature gradients. Trans. Am. Geophys. Union 1957, 38, 222–232. [Google Scholar] [CrossRef]
- Milly, P.C.D. Moisture and heat transport in hysteretic, inhomogeneous porous media: A matric head-based formulation and a numerical model. Water Resour. Res. 1982, 18, 489–498. [Google Scholar] [CrossRef]
- Saito, H.; Simunek, J.; Mohanty, B.P. Numerical analysis of coupled water, vapor, and heat transport in the vadose zone. Vadose Zone J. 2006, 5, 784–800. [Google Scholar] [CrossRef]
- Simunek, J.; Huang, K.; Van Genuchten, M.T. The HYDRUS Code for Simulating the One-Dimensional Movement of Water, Heat, and Multiple Solutes in Variably-Saturated Media; Research Report 144; US Salinity Laboratory: Riverside, CA, USA, 1998. [Google Scholar]
- Nassar, I.N.; Horton, R. Water transport in unsaturated nonisothermal salty soil: II. Theoretical development. Soil Sci. Soc. Am. J. 1989, 53, 1330–1337. [Google Scholar] [CrossRef]
- Suarez, D.L.; Simunek, J. UNSATCHEM: Unsaturated water and solute transport model with equilibrium and kinetic chemistry. Soil Sci. Soc. Am. J. 1997, 61, 1633–1646. [Google Scholar] [CrossRef]
- Kumahor, S.K.; De Rooij, G.H.; Schluter, S.; Vogel, H.-J. Water flow and solute transport in unsaturated sand—A comprehensive experimental approach. Vadose Zone J. 2015, 14. [Google Scholar] [CrossRef]
- Healy, R.W.; Haile, S.S.; Parkhurst, D.L.; Charlton, S.R. VS2DRTI: Simulating heat and reactive solute transport in variably saturated porous media. Ground Water 2018, 56, 810–815. [Google Scholar] [CrossRef] [PubMed]
- Wen, W.; Lai, Y.; You, Z. Numerical modeling of water–heat–vapor–salt transport in unsaturated soil under evaporation. Int. J. Heat Mass Transf. 2020, 159, 120114. [Google Scholar] [CrossRef]
- Marshall, T.J.; Holmes, J.W. Soil Physics; Cambridge University Press: London, UK, 1979. [Google Scholar]
- Noggle, J.H. Physical Chemistry; Little, Brown and Company: Boston, MA, USA, 1985. [Google Scholar]
- Millington, R.J.; Quirk, J.P. Permeability of porous media. Nature 1959, 183, 387–388. [Google Scholar] [CrossRef]
- Campbell, G.S. Soil Physics with BASIC: Transport Models for Soil-Plant Systems; Elsevier: New York, NY, USA, 1985. [Google Scholar]
- Cass, A.; Campbell, G.S.; Jones, T.L. Enhancement of thermal water vapor diffusion in soil. Soil Sci. Soc. Am. J. 1984, 48, 25–32. [Google Scholar] [CrossRef]
- Monteith, J.; Unsworth, M. Principles of Environmental Physics; Routledge Chapman and Hall: New York, NY, USA, 1990. [Google Scholar]
- Chung, S.O.; Horton, R. Soil heat and water-flow with a partial surface mulch. Water Resour. Res. 1987, 23, 2175–2186. [Google Scholar] [CrossRef]
- Zhang, C.M.; Li, L.; Lockington, D. Numerical study of evaporation-induced salt accumulation and precipitation in bare saline soils: Mechanism and feedback. Water Resour. Res. 2014, 50, 8084–8106. [Google Scholar] [CrossRef]
- Van Genuchten, M.T. A closed-form equation for predicting the hydraulic conductivity of unsaturated soils. Soil Sci. Soc. Am. J. 1980, 44, 892–898. [Google Scholar] [CrossRef]
- Mualem, Y. A new model for predicting the hydraulic conductivity of unsaturated porous media. Water Resour. Res. 1976, 12, 513–522. [Google Scholar] [CrossRef]
- Simunek, J.; Van Genuchten, M.T.; Sejna, M. The HYDRUS-1D Software Package for Simulating the One-Dimensional Movement of Water, Heat, and Multiple Solutes in Variably-Saturated Media; University of California Riverside: Riverside, CA, USA, 2005. [Google Scholar]
- Robinson, R.A.; Stokes, R.H. Electrolyte Solutions; Dover Publications: New York, NY, USA, 2002. [Google Scholar]
- Han, J.B.; Zhou, Z.F.; Fu, Z.M.; Wang, J.G. Vadose-zone moisture dynamics under radiation boundary conditions during a drying process. J. Hydrodyn. 2014, 26, 734–744. [Google Scholar] [CrossRef]
- Novak, M.D. Effects of gravity on evaporation for soil-limited conditions. Water Resour. Res. 2022, 58, 19. [Google Scholar] [CrossRef]
- Li, W.; Wang, J.; Illman, W.A.; Zhuo, Y. Experimental and numerical studies of dynamic variation of liquid water and water vapor flow in the vadose zone. J. Hydrol. 2023, 623, 129775. [Google Scholar] [CrossRef]
- Hernandez-Lopez, M.F.; Gironas, J.; Braud, I.; Suárez, F.; Muñoz, J.F. Assessment of evaporation and water fluxes in a column of dry saline soil subject to different water table levels. Hydrol. Process. 2014, 28, 3655–3669. [Google Scholar] [CrossRef]
Parameter | Symbol | Unit | Value | Source |
---|---|---|---|---|
VG model parameter | α | 1/m | 2.368 | Fitted |
VG model parameter | n | - | 5.42 | Fitted |
VG model parameter | l | - | 0.5 | Fitted |
Volumetric saturated water content | θs | m3 m−3 | 0.304 | Measured |
Volumetric residual water content | θa | m3 m−3 | 0.027 | Fitted |
Volumetric heat capacities of solid phase | Cs | J m−3 K−1 | 1.92 × 10−6 | a |
Volumetric heat capacities of liquid water | Cw | J m−3 K−1 | 4.12 × 10−6 | a |
Volumetric heat capacities of water vapor | Cv | J m−3 K−1 | 1.87 × 10−3 | a |
Empirical parameter related to thermal conductivity | b1 | W m−1 K−1 | 0.228 | a |
Empirical parameter related to thermal conductivity | b2 | W m−1 K−1 | −2.406 | a |
Empirical parameter related to thermal conductivity | b3 | W m−1 K−1 | 4.909 | a |
Saturated hydraulic conductivity | Ks | m s−1 | 1.9 × 10−5 | Measured |
Gravitational acceleration | g | m s−2 | 9.81 | - |
Molecular weight of liquid water | M | kg mol−1 | 0.018015 | - |
Gas constant | R | J mol−1 K−1 | 8.314 | - |
Surface tension of soil water at 25 °C | γ0 | N m−1 | 0.07189 | a |
Molecular diffusion coefficient of Na+ | Di | m2 s−1 | 5 × 10−11 | b |
Longitudinal dispersity | ld | m | 0.01 | b |
Number of ions | v | - | 2 | |
Osmotic coefficient | ϕ | - | 0.932 | c |
Hydrated radius of NaCl | ls | m | 3.58 × 10−10 | c |
Radius of water molecule | lw | m | 2 × 10−10 | c |
Hamaker constant | Asvl | J | 6 × 10−20 | b |
Empirical parameter related to enhancement factor | a | - | 2.3 | d |
Aerodynamic resistance | ra | s m−1 | 364.1 | e |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Li, W.; Wang, J.; Illman, W.A.; Wang, H.; Chen, B.; Dong, Y. Experimental and Numerical Study on the Coupled Processes of Salt Migration and Moisture Movement Under Evaporation in the Vadose Zone. Water 2025, 17, 2536. https://doi.org/10.3390/w17172536
Li W, Wang J, Illman WA, Wang H, Chen B, Dong Y. Experimental and Numerical Study on the Coupled Processes of Salt Migration and Moisture Movement Under Evaporation in the Vadose Zone. Water. 2025; 17(17):2536. https://doi.org/10.3390/w17172536
Chicago/Turabian StyleLi, Weijian, Jinguo Wang, Walter A. Illman, Hao Wang, Bo Chen, and Yufan Dong. 2025. "Experimental and Numerical Study on the Coupled Processes of Salt Migration and Moisture Movement Under Evaporation in the Vadose Zone" Water 17, no. 17: 2536. https://doi.org/10.3390/w17172536
APA StyleLi, W., Wang, J., Illman, W. A., Wang, H., Chen, B., & Dong, Y. (2025). Experimental and Numerical Study on the Coupled Processes of Salt Migration and Moisture Movement Under Evaporation in the Vadose Zone. Water, 17(17), 2536. https://doi.org/10.3390/w17172536