Soil Moisture and Growth Rates During Peak Yield Accumulation of Cassava Genotypes for Drought and Full Irrigation Conditions
Abstract
1. Introduction
2. Materials and Methods
2.1. Experimental Design and Plant Materials
2.2. Data Collection
2.3. Statistical Analysis
3. Results
3.1. Climatic Conditions
3.2. Soil Moisture Content and Leaf Relative Water Content (RWC)
3.3. Analysis of Variance for Growth Rates
3.4. Cassava Performances
3.5. Relationship Between Crop Characteristics
4. Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
| CGR | Crop growth rate |
| DAP | Days after planting |
| HI | Harvest index |
| LGR | Leaf growth rate |
| RGR | Relative growth rate |
| RWC | Relative water content |
| SGR | Stem growth rate |
| SRGR | Storage root growth rate |
Appendix A
| Genotypes (G) | LGR (g m–2 day–1) | SGR (g m–2 day–1) | ||||||||||||||||||||||
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| 180–240 | 240–270 | 270–360 | 180–240 | 240–270 | 270–360 | |||||||||||||||||||
| Irrigation | Drought | Irrigation | Drought | Irrigation | Drought | Irrigation | Drought | Irrigation | Drought | Irrigation | Drought | |||||||||||||
| 2022/2023 | ||||||||||||||||||||||||
| Kasetsart 50 | −1.6 | B | −2.0 | C | 0.9 | B | 1.5 | A | 3.2 | B | 0.6 | B | 3.2 | D | 9.5 | C | 26.8 | D | 32.7 | C | 0.8 | D | 6.7 | C |
| Rayong 9 | −0.8 | A | 0.7 | A | 0.2 | C | 1.4 | A | 0.8 | D | 1.9 | A | 4.6 | C | 3.1 | E | 45.6 | B | 28.7 | D | 0.8 | D | 14.5 | A |
| Rayong 72 | −0.8 | A | −0.9 | B | −1.5 | D | −1.9 | C | 2.0 | C | 0.6 | B | 1.5 | E | 5.4 | D | 6.4 | F | 27.6 | E | 1.7 | D | 2.6 | D |
| CMR38–125–77 | −0.9 | A | −1.1 | B | 1.3 | B | −1.1 | B | 1.7 | C | 1.5 | A | 8.6 | B | 10.7 | B | 33.9 | C | 47.1 | A | 6.2 | B | 2.3 | D |
| CMR35–91–63 | −1.8 | BC | −1.3 | B | 2.9 | A | −5.6 | D | 0.8 | D | 2.0 | A | 2.3 | E | 14.7 | A | 54.7 | A | 14.0 | F | 3.1 | C | 3.0 | D |
| CM523–7 | −2.2 | C | −3.7 | D | −2.5 | E | −1.3 | B | 6.3 | A | 1.9 | A | 9.6 | A | 9.3 | C | 18.7 | E | 40.1 | B | 11.1 | A | 8.5 | B |
| F-test (G) | ** | ** | ** | ** | ** | ** | ** | ** | ** | ** | ** | ** | ||||||||||||
| Water regime (W) | −1.3 | −1.4 | 0.2 | a | −1.2 | b | 2.5 | a | 1.4 | b | 5.0 | b | 8.8 | a | 31.0 | 31.7 | 3.9 | b | 6.3 | a | ||||
| F-test (W) | ns | ** | ** | ** | ns | ** | ||||||||||||||||||
| 2023/2024 | ||||||||||||||||||||||||
| Kasetsart 50 | 8.3 | B | 3.8 | B | 0.9 | E | 4.2 | C | 1.4 | C | 2.5 | B | 14.3 | B | 12.0 | B | 43.8 | B | 26.6 | D | 10.7 | B | 4.9 | C |
| Rayong 9 | 0.5 | F | 5.2 | A | 4.1 | C | 5.3 | B | 2.2 | B | 1.8 | BC | 10.4 | C | 10.7 | C | 22.7 | C | 32.1 | BC | 13.0 | A | 5.0 | C |
| Rayong 72 | 1.4 | E | 1.2 | C | 11.5 | A | 5.5 | B | 1.9 | BC | 0.9 | D | 10.1 | C | 4.7 | D | 7.7 | F | 12.9 | E | 3.6 | C | 3.7 | D |
| CMR38–125–77 | 2.6 | D | 1.5 | C | 2.3 | D | 6.3 | A | 1.6 | BC | 1.7 | C | 40.1 | A | 11.3 | BC | 20.1 | D | 29.0 | CD | 4.1 | C | 7.9 | B |
| CMR35–91–63 | 4.3 | C | 5.8 | A | 2.3 | D | 0.9 | D | 1.6 | BC | 2.1 | BC | 15.4 | B | 2.6 | E | 11.2 | E | 34.4 | B | 12.9 | A | 3.1 | D |
| CM523–7 | 9.1 | A | 2.8 | B | 8.6 | B | 4.1 | C | 5.2 | A | 4.6 | A | 15.3 | B | 18.6 | A | 64.1 | A | 76.1 | A | 1.1 | D | 12.5 | A |
| F-test (G) | ** | ** | ** | ** | ** | ** | ** | ** | ** | ** | ** | ** | ||||||||||||
| Water regime (W) | 4.4 | a | 3.4 | b | 5.0 | a | 4.4 | b | 2.3 | 2.3 | 17.6 | a | 10.0 | b | 28.3 | b | 35.2 | a | 7.6 | 6.2 | ||||
| F-test (W) | ** | * | ns | ** | ** | ns | ||||||||||||||||||
| Genotypes (G) | SRGR (g m–2 day–1) | CGR (g m–2 day–1) | ||||||||||||||||||||||
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| 180–240 | 240–270 | 270–360 | 180–240 | 240–270 | 270–360 | |||||||||||||||||||
| Irrigation | Drought | Irrigation | Drought | Irrigation | Drought | Irrigation | Drought | Irrigation | Drought | Irrigation | Drought | |||||||||||||
| 2022/2023 | ||||||||||||||||||||||||
| Kasetsart 50 | 26.5 | D | 27.4 | B | 39.0 | C | 52.9 | B | 24.1 | B | 6.7 | F | 42.4 | B | 37.4 | B | 41.7 | C | 76.7 | A | 21.5 | C | 19.0 | C |
| Rayong 9 | 37.6 | A | 14.4 | C | 42.5 | B | 25.9 | F | 23.1 | C | 13.4 | C | 38.4 | C | 39.9 | A | 59.2 | A | 34.5 | F | 18.0 | CD | 10.8 | E |
| Rayong 72 | 33.9 | B | 28.4 | A | 44.7 | A | 47.4 | C | 16.4 | E | 12.5 | D | 48.6 | A | 33.9 | C | 27.5 | D | 56.7 | D | 35.2 | A | 30.9 | A |
| CMR38–125–77 | 22.6 | E | 7.7 | D | 36.3 | D | 43.0 | D | 18.9 | D | 23.6 | B | 29.6 | D | 17.1 | E | 44.3 | C | 62.8 | C | 13.7 | D | 14.8 | D |
| CMR35–91–63 | 28.5 | C | 6.8 | E | 5.4 | F | 28.3 | E | 32.9 | A | 11.2 | E | 35.2 | C | 30.4 | D | 54.7 | B | 43.7 | E | 29.3 | B | 29.5 | AB |
| CM523–7 | 16.5 | F | 4.7 | F | 21.8 | E | 65.6 | A | 11.0 | F | 25.9 | A | 12.3 | E | 15.1 | E | 19.8 | E | 69.2 | B | 22.1 | C | 25.7 | B |
| F-test (G) | ** | ** | ** | ** | ** | ** | ** | ** | ** | ** | ** | ** | ||||||||||||
| Water regime (W) | 27.6 | a | 14.9 | b | 31.6 | b | 43.9 | a | 21.2 | a | 15.5 | b | 34.4 | a | 29.0 | b | 41.2 | b | 57.3 | a | 23.3 | 21.8 | ||
| F-test (W) | ** | ** | ** | ** | ** | ns | ||||||||||||||||||
| 2023/2024 | ||||||||||||||||||||||||
| Kasetsart 50 | 14.0 | C | 24.0 | A | 37.7 | D | 33.6 | B | 51.8 | A | 7.3 | D | 27.0 | C | 36.8 | A | 31.6 | C | 29.0 | C | 44.5 | A | 25.7 | C |
| Rayong 9 | 18.1 | B | 15.4 | C | 49.5 | C | 30.8 | C | 14.3 | D | 14.9 | BC | 24.2 | D | 29.1 | B | 49.8 | B | 25.5 | D | 15.5 | D | 24.6 | C |
| Rayong 72 | 4.7 | E | 14.8 | C | 70.5 | A | 10.8 | DE | 17.5 | C | 8.5 | CD | 5.4 | F | 3.4 | E | 32.7 | C | 46.4 | A | 11.1 | E | 30.0 | BC |
| CMR38–125–77 | 3.9 | E | 16.7 | BC | 54.4 | B | 12.1 | D | 18.9 | C | 19.8 | B | 38.7 | B | 13.3 | D | 21.5 | D | 35.5 | B | 24.1 | C | 28.6 | C |
| CMR35–91–63 | 10.4 | D | 11.7 | D | 55.0 | B | 9.4 | E | 29.4 | B | 33.5 | A | 15.4 | E | 18.8 | C | 55.8 | A | 43.2 | A | 37.0 | B | 36.0 | AB |
| CM523–7 | 32.8 | A | 18.4 | B | 23.3 | E | 40.0 | A | 12.7 | D | 29.6 | A | 49.9 | A | 12.1 | D | 49.9 | B | 30.4 | C | 26.7 | C | 40.4 | A |
| F-test (G) | ** | ** | ** | ** | ** | ** | ** | ** | ** | ** | ** | ** | ||||||||||||
| Water regime (W) | 14.0 | b | 16.8 | a | 48.4 | a | 22.8 | b | 24.1 | a | 18.9 | b | 26.8 | a | 18.9 | b | 40.2 | a | 35.0 | b | 26.5 | b | 30.9 | a |
| F-test (W) | ** | ** | ** | ** | ** | ** | ||||||||||||||||||
| Genotypes (G) | RGR for 180–240 DAP | RGR for 240–360 DAP | ||||||
|---|---|---|---|---|---|---|---|---|
| Irrigation | Drought | Irrigation | Drought | |||||
| 2022/2023 | ||||||||
| Kasetsart 50 | 0.0062 | A | 0.0083 | AB | 0.0026 | B | 0.0104 | A |
| Rayong 9 | 0.0046 | B | 0.0068 | C | 0.0017 | B | 0.0036 | C |
| Rayong 72 | 0.0064 | A | 0.0075 | BC | 0.0070 | A | 0.0047 | B |
| CMR38–125–77 | 0.0046 | B | 0.0091 | A | 0.0062 | A | 0.0016 | E |
| CMR35–91–63 | 0.0062 | A | 0.0073 | C | 0.0071 | A | 0.0001 | F |
| CM523–7 | 0.0041 | B | 0.0043 | D | 0.0069 | A | 0.0027 | D |
| F-test (G) | ** | ** | ** | ** | ||||
| Water regime (W) | 0.0053 | b | 0.0072 | a | 0.0053 | a | 0.0039 | b |
| F-test (W) | ** | ** | ||||||
| 2023/2024 | ||||||||
| Kasetsart 50 | 0.0050 | C | 0.0042 | C | 0.0034 | C | 0.0017 | C |
| Rayong 9 | 0.0080 | B | 0.0071 | AB | 0.0022 | DE | 0.0030 | BC |
| Rayong 72 | 0.0019 | D | 0.0042 | C | 0.0015 | E | 0.0018 | C |
| CMR38–125–77 | 0.0054 | C | 0.0057 | BC | 0.0028 | CD | 0.0047 | AB |
| CMR35–91–63 | 0.0055 | C | 0.0055 | C | 0.0044 | B | 0.0030 | BC |
| CM523–7 | 0.0125 | A | 0.0082 | A | 0.0068 | A | 0.0061 | A |
| F-test (G) | ** | ** | ** | ** | ||||
| Water regime (W) | 0.0064 | 0.0058 | 0.0035 | 0.0034 | ||||
| F-test (W) | ns | ns | ||||||
References
- Shan, Z.S.; Wei, M.; Huang, T.; Khan, A.; Zhu, Y. Physiological and proteomic analysis on long-term drought resistance of cassava (Manihot esculenta Crantz). Sci. Rep. 2018, 8, 17982. [Google Scholar] [CrossRef]
- Alves, A.A.C. Cassava botany and physiology. In Cassava: Biology, Production and Utilization; Hillocks, R.J., Thresh, J.M., Eds.; CABI Publishing: London, UK, 2002; pp. 67–89. ISBN 978-085-199-883-1. [Google Scholar]
- More, S.J.; Bardhan, K.; Ravi, V.; Pasala, R.; Chaturvedi, A.K.; Lal, M.K.; Siddique, K.H.M. Morphophysiological responses and tolerance mechanisms in cassava (Manihot esculenta Crantz) under drought stress. J. Soil Sci. Plant Nutr. 2023, 23, 71–91. [Google Scholar] [CrossRef]
- Koundinya, A.V.V.; Anjana, M.; Hegde, V.; Ramesh, V.; Byju, G. Cassava and Abiotic Stress. Available online: https://www.researchgate.net/publication/381196858_Cassava_and_abiotic_stresses (accessed on 30 June 2025).
- Santisopasri, V.; Kurotjanawong, K.; Chotineeranat, S.; Piyachomkwan, K.; Sriroth, K.; Oates, C.G. Impact of water stress on yield and quality of cassava starch. Ind. Crops Prod. 2001, 13, 115–129. [Google Scholar] [CrossRef]
- Okogbenin, E.; Setter, T.L.; Ferguson, M.; Mutegi, R.; Ceballos, H.; Olasanmi, B.; Fregene, M. Phenotypic approaches to drought in cassava: Review. Front. Physiol. 2013, 4, 93. [Google Scholar] [CrossRef] [PubMed]
- Office of Agricultural Economics. Agricultural Statistics of Thailand 2022; Office of Agricultural Economics: Bangkok, Thailand, 2023; pp. 35–38. ISSN 0857-6610. [Google Scholar]
- Adjebeng-Danquah, J.; Gracen, V.E.; Offei, S.K.; Asante, I.K.; Manu-Aduening, J. Genetic variability in storage root bulking of cassava genotypes under irrigation and no irrigation. Agric. Food Secur. 2016, 5, 9. [Google Scholar] [CrossRef]
- Pardales Jr, J.R.; Esquibel, C.B. Effect of drought during the establishment period on the root system development of cassava. Jpn. J. Crop Sci. 1996, 65, 93–97. [Google Scholar] [CrossRef]
- Boonseng, O. Thai Cassava: Biology, Production and Utilization; Department of Agriculture: Bangkok, Thailand, 2020; pp. 172–175. [Google Scholar]
- Phoncharoen, P.; Banterng, P.; Vorasoot, N.; Jogloy, S.; Theerakulpisut, P.; Hoogenboom, G. Growth rates and yields of cassava at different planting dates in a tropical savanna climate. Sci. Agric. 2019, 76, 376–388. [Google Scholar] [CrossRef]
- Sawatraksa, N.; Banterng, P.; Jogloy, S.; Vorasoot, N.; Hoogenboom, G. Cassava growth analysis of production during the off-season of paddy rice. Crop Sci. 2019, 59, 760–771. [Google Scholar] [CrossRef]
- Ruangyos, C.; Banterng, P.; Vorasoot, N.; Jogloy, S.; Theerakulpisut, P.; Vongcharoen, K.; Hoogenboom, G. Growth analysis of cassava genotypes planted under irrigation management practices during the early growth phase. J. Agric. Sci. 2024, 162, 596–606. [Google Scholar] [CrossRef]
- Santanoo, S.; Ittipong, P.; Banterng, P.; Vorasoot, N.; Jogloy, S.; Vongcharoen, K.; Theerakulpisut, P. Photosynthetic performance, carbohydrate partitioning, growth, and yield among cassava genotypes under full irrigation and early drought treatment in a tropical savanna climate. Plants 2024, 13, 2049. [Google Scholar] [CrossRef]
- Kongsil, P.; Ceballos, H.; Siriwan, W.; Vuttipongchaikij, S.; Kittipadakul, P.; Phumichai, C.; Wannarat, W.; Kositratana, W.; Vichukit, V.; Sarobol, E.; et al. Cassava breeding and cultivation challenges in Thailand: Past, present, and future perspectives. Plants 2024, 13, 1899. [Google Scholar] [CrossRef]
- Zhang, X. Germplasm and Tools for Developing Cassava Varieties Resistant to Cassava Mosaic Disease. Available online: https://cassavadiseasesolutionsasia.net/wp-content/uploads/2021/12/xiaofei_zhang_nov29_v3.pdf (accessed on 7 October 2025).
- Howeler, R.H. Cassava mineral nutrition and fertilization. In Cassava: Biology, Production and Utilization; Hillocks, R.J., Thresh, J.M., Eds.; CABI Publishing: Oxen, UK, 2002; pp. 115–147. ISBN 978-085-199-524-3. [Google Scholar]
- Department of Agriculture. Good Agricultural Practices for Cassava; National Bureau of Agricultural Commodity and Food Standards Ministry of Agriculture and Cooperatives: Bangkok, Thailand, 2008; pp. 1–8. ISBN 978-974-403-715-2. [Google Scholar]
- Doorenbos, J.; Pruitt, W.O. Crop Water Requirements; Food and Agriculture Organization of the United Nations: Rome, Italy, 1992; p. 2. ISBN 925-100-279-7. [Google Scholar]
- Ruangyos, C.; Banterng, P.; Vorasoot, N.; Jogloy, S.; Theerakulpisut, P.; Vongcharoen, K.; Hoogenboom, G. Variation in biomass of cassava genotypes grown under different irrigation levels during the early growth phase. Crop Sci. 2023, 64, 482–495. [Google Scholar] [CrossRef]
- Shukla, A.; Panchal, H.; Mishra, M.; Patel, P.R.; Srivastava, H.S.; Patel, P.; Shukla, A.K. Soil Moisture Estimation Using Gravimetric Technique and FDR Probe Technique: A Comparative Analysis. Available online: https://www.researchgate.net/publication/279848435 (accessed on 10 May 2025).
- Kramar, P.J. Drought, stress and the origin of adaptation. In Adaptation of Plant to Water and High Temperature Stress; Turner, N.C., Kramar, P.J., Eds.; John Wiley and Sons: New York, NY, USA, 1980; pp. 207–230. ISBN 978-047-105-372-9. [Google Scholar]
- Gomez, K.A.; Gomez, A.A. Statistical Procedures for Agricultural Research, 2nd ed.; John Wiley and Sons: New York, NY, USA, 1984; pp. 97–107. ISBN 978-047-187-092-0. [Google Scholar]
- Federer, W.T.; King, F. Variations on Split Plot and Split Block Experiment Designs; John Wiley and Sons: New York, NY, USA, 2007; pp. 9–10. ISBN 978-047-008-149-5. [Google Scholar]
- Statistix10. Statistix10: Analytical Software User’s Manual. Available online: https://www.statistix.com/ (accessed on 16 October 2019).
- Thai Meteorological Department. Monthly Mean Rainfall in Thailand (mm) 30 Years. Available online: https://www.tmd.go.th/en/ClimateChart/monthly-mean-rainfall-in-thailand-mm-30-years (accessed on 28 October 2025).
- El-Sharkawy, M.A. Physiological characteristics of cassava tolerance to prolonged drought in the tropics: Implications for breeding cultivars adapted to seasonally dry and semiarid environments. Braz. J. Plant Physiol. 2007, 19, 257–286. [Google Scholar] [CrossRef]
- Koundinya, A.V.V.; Ajeesh, B.R.; Hegde, V.; Sheela, M.N.; Mohan, C.; Asha, K.I. Genetic parameters, stability and selection of cassava genotypes between rainy and water stress conditions using AMMI, WAAS, BLUP, and MTSI. Sci. Hortic. 2021, 281, 109949. [Google Scholar] [CrossRef]
- Filho, J.S.S.; Oliveira, I.C.M.; Pastina, M.M.; Campos, M.D.S.; Oliveira, E.J. Genotype x environment interaction in cassava multi-environment trials via analytic factor. PLoS ONE 2024, 19, e0315370. [Google Scholar] [CrossRef] [PubMed]
- El-Sharkawy, M.A. International research on cassava photosynthesis, productivity, eco-physiology, and responses to environmental stresses in the tropics. Photosynthetica 2006, 44, 481–512. [Google Scholar] [CrossRef]
- Lenis, J.I.; Calle, F.; Jaramillo, G.; Perez, J.C.; Ceballos, H.; Cock, J.H. Leaf retention and cassava productivity. Field Crops Res. 2006, 95, 126–134. [Google Scholar] [CrossRef]
- de Oliveira, E.J.; Morgante, C.V.; de Tarso Aidar, S.; de Melo Chaves, A.R.; Cruz, J.L.; Coelho Filho, M.A. Evaluation of cassava germplasm for drought tolerance under field conditions. Euphytica 2017, 213, 188. [Google Scholar] [CrossRef]
- Hunt, R. Basic Growth Analysis—Plant Growth Analysis for Beginners, 1st ed.; Springer: Dordrecht, The Netherlands, 1990; 112p, ISBN 978-004-445-373-4. [Google Scholar]
- Poorter, H.; Niklas, K.J.; Reich, P.B.; Oleksyn, J.; Poot, P.; Mommer, L. Biomass allocation to leaves, stems and roots: Meta-analyses of interspecific variation and environmental control. New Phytol. 2012, 193, 30–50. [Google Scholar] [CrossRef]
- Kawano, K. Harvest index and evoluation of major food crop cultivars in the tropics. Euphytica 1990, 46, 195–202. [Google Scholar] [CrossRef]
- El-Sharkawy, M.A.; Cadavid, L.F. Genetic variation within cassava germplasm in response to potassium. Exp. Agric. 2000, 36, 323–334. [Google Scholar] [CrossRef]
- Vandegeer, R.; Rebecca, E.; Bain, M.; Roslyn, M.; Timothy, R. Drought adversely affects tuber development and nutritional quality of the staple crop cassava (Manihot esculenta Crantz). Funct. Plant Biol. 2013, 40, 195–200. [Google Scholar] [CrossRef] [PubMed]
- Wongnoi, S.; Banterng, P.; Vorasoot, N.; Jogloy, S.; Theerakulpisut, P. Physiology, growth and yield of different cassava genotypes planted in upland with dry environment during high storage root accumulation stage. Agronomy 2020, 10, 576. [Google Scholar] [CrossRef]
- Blum, A. Drought resistance, water-use efficiency, and yield potential—Are they compatible, dissonant, or mutually exclusive? Aust. J. Agric. Res. 2005, 56, 1159–1168. [Google Scholar] [CrossRef]
- Sanket, J.M.; Ravi, V.; Saravanan, R.; Suresh, K.J. The Quest for High Yielding Drought-Tolerant Cassava Variety. Available online: https://www.phytojournal.com/archives/2020/vol9issue6S/PartJ/S-9-6-60-756.pdf (accessed on 30 May 2025).







| No. | Genotype | Parent | Characteristic | Source |
|---|---|---|---|---|
| 1 | Kasetsart 50 | Rayong 1 × Rayong 90 | Highly adapted to the environment, high yield, and high starch content | [14,15] |
| 2 | Rayong 9 | CMR31–19–23 × OMR29–20–118 | High yield and high starch content | [10,15] |
| 3 | Rayong 72 | Rayong 1 × Rayong 5 | High-yielding and drought-tolerant | [10,15] |
| 4 | CMR38–125–77 | RY5 × KU50 | High yield and high starch content | [15] |
| 5 | CMR35–91–63 | OMR29–20–118 × CMR25–105–112 | High yield | [15] |
| 6 | CM523–7 | COL655A × COL1515 | Low-yielding and drought-tolerant | [15,16] |
| Soil Property | 2022/2023 | 2023/2024 | ||
|---|---|---|---|---|
| 0−30 cm | 30−60 cm | 0−30 cm | 30−60 cm | |
| Physical property | ||||
| Texture class | Sandy loam | Sandy loam | Sandy loam | Sandy loam |
| Sand (%) | 67.5 | 60.3 | 73.7 | 73.4 |
| Silt (%) | 24.7 | 25.4 | 21.1 | 19.3 |
| Clay (%) | 7.9 | 14.3 | 5.2 | 7.3 |
| Chemical property | ||||
| pH (1:1 H2O) | 6.2 | 6.6 | 5.4 | 5.5 |
| CEC (cmol kg−1) | 5.6 | 5.8 | 2.5 | 3.2 |
| EC (dS m−1) | 0.6 | 1.3 | 0.4 | 0.3 |
| OM (mg kg−1) | 2900 | 2700 | 600 | 600 |
| Total N (mg kg−1) | 300 | 200 | 300 | 300 |
| Available P (mg kg−1) | 31.8 | 7.5 | 28.1 | 18.8 |
| Exchangeable K (mg kg−1) | 28.9 | 12.8 | 27.0 | 23.9 |
| Genotype (G) | RWC at 180 DAP | RWC at 210 DAP | RWC at 240 DAP | RWC at 270 DAP | RWC at 360 DAP | ||||||||||||||
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Irrigation | Drought | Irrigation | Drought | Irrigation | Drought | Irrigation | Drought | Irrigation | Drought | ||||||||||
| 2022/2023 | |||||||||||||||||||
| Kasetsart 50 | 97.4 | A | 90.8 | B | 93.1 | BC | 92.1 | A | 93.4 | C | 89.6 | A | 96.5 | A | 97.1 | 96.3 | B | 95.6 | B |
| Rayong 9 | 96.5 | A | 91.5 | AB | 91.1 | C | 85.1 | C | 83.4 | D | 80.7 | C | 96.3 | A | 94.5 | 93.9 | B | 98.4 | A |
| Rayong 72 | 91.9 | B | 92.7 | AB | 97.5 | A | 92.6 | A | 94.7 | BC | 85.5 | B | 92.4 | B | 97.4 | 95.8 | B | 98.7 | A |
| CMR38–125–77 | 92.3 | B | 95.2 | A | 95.0 | AB | 93.5 | A | 96.7 | AB | 86.4 | B | 95.8 | A | 94.1 | 95.0 | B | 99.1 | A |
| CMR35–91–63 | 92.3 | B | 94.8 | A | 92.4 | BC | 88.9 | B | 96.4 | AB | 86.8 | B | 93.3 | B | 97.1 | 99.0 | A | 97.6 | A |
| CM523–7 | 93.8 | B | 89.3 | B | 92.1 | BC | 87.1 | BC | 97.1 | A | 79.8 | C | 92.7 | B | 96.2 | 94.7 | B | 92.6 | C |
| F-test (G) | ** | * | ** | ** | ** | ** | ** | ns | ** | ** | |||||||||
| Water regime (W) | 94.0 | 92.4 | 93.5 | a | 89.9 | b | 93.6 | a | 84.8 | b | 96.1 | 94.5 | 95.7 | 97.0 | |||||
| F-test (W) | ns | * | ** | ns | ns | ||||||||||||||
| 2023/2024 | |||||||||||||||||||
| Kasetsart 50 | 92.0 | B | 92.1 | B | 92.3 | B | 86.5 | BC | 90.7 | C | 89.2 | 93.7 | B | 93.4 | 92.8 | B | 93.8 | ||
| Rayong 9 | 89.6 | C | 85.1 | D | 88.7 | C | 85.0 | C | 89.6 | C | 88.4 | 91.7 | C | 91.8 | 87.4 | D | 92.8 | ||
| Rayong 72 | 97.5 | A | 92.6 | AB | 95.3 | A | 88.9 | AB | 94.1 | AB | 88.8 | 95.8 | A | 91.4 | 90.3 | C | 93.7 | ||
| CMR38–125–77 | 85.5 | D | 95.1 | A | 83.6 | D | 87.2 | A–C | 94.7 | A | 89.4 | 92.7 | BC | 93.9 | 93.2 | B | 92.9 | ||
| CMR35–91–63 | 90.8 | BC | 88.8 | C | 88.7 | C | 86.6 | BC | 92.2 | A–C | 87.1 | 93.7 | B | 91.6 | 88.2 | D | 93.8 | ||
| CM523–7 | 92.1 | B | 90.2 | BC | 92.4 | B | 89.3 | A | 91.2 | BC | 87.2 | 92.0 | C | 92.9 | 94.7 | A | 90.5 | ||
| F-test (G) | ** | ** | ** | * | * | ns | ** | ns | ** | ns | |||||||||
| Water regime (W) | 91.3 | 90.7 | 90.2 | a | 87.2 | b | 92.1 | a | 88.4 | b | 93.3 | 92.5 | 91.1 | 92.9 | |||||
| F-test (W) | ns | * | ** | ns | ns | ||||||||||||||
| Growth Rate | Duration | Water Regime (W) | Genotype (G) | Water Regime × Genotype (W × G) |
|---|---|---|---|---|
| 2022/2023 | ||||
| LGR (g m−2 day−1) | 180–240 DAP | ns | ** | ** |
| 240–270 DAP | ** | ** | ** | |
| 270–360 DAP | ** | ** | ** | |
| SGR (g m−2 day−1) | 180–240 DAP | ** | ** | ** |
| 240–270 DAP | ns | ** | ** | |
| 270–360 DAP | ** | ** | ** | |
| SRGR (g m−2 day−1) | 180–240 DAP | ** | ** | ** |
| 240–270 DAP | ** | ** | ** | |
| 270–360 DAP | ** | ** | ** | |
| CGR (g m−2 day−1) | 180–240 DAP | ** | ** | ** |
| 240–270 DAP | ** | ** | ** | |
| 270–360 DAP | ns | ** | * | |
| RGR (g g−1 day−1) | 180–240 DAP | ** | ** | ** |
| 240–360 DAP | ** | ** | ** | |
| 2023/2024 | ||||
| LGR (g m−2 day−1) | 180–240 DAP | ** | ** | ** |
| 240–270 DAP | * | ** | ** | |
| 270–360 DAP | ns | ** | ** | |
| SGR (g m−2 day−1) | 180–240 DAP | ** | ** | ** |
| 240–270 DAP | ** | ** | ** | |
| 270–360 DAP | ns | ns | ** | |
| SRGR (g m−2 day−1) | 180–240 DAP | ** | ** | ** |
| 240–270 DAP | ** | ** | ** | |
| 270–360 DAP | ** | ** | ** | |
| CGR (g m−2 day−1) | 180–240 DAP | ** | ** | ** |
| 240–270 DAP | ** | ** | ** | |
| 270–360 DAP | ** | ** | ** | |
| RGR (g g−1 day−1) | 180–240 DAP | ns | ** | ** |
| 240–360 DAP | ns | ** | * | |
| Genotype (G) | Total Dry Weight (t ha−1) | Storage Root Dry Weight (t ha−1) | Starch Yield (t ha−1) | Harvest Index | ||||||||||||||||||
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Irrigation | Drought | Reduction (%) | Irrigation | Drought | Reduction (%) | Irrigation | Drought | Reduction (%) | Irrigation | Drought | ||||||||||||
| 2022/2023 | ||||||||||||||||||||||
| Kasetsart 50 | 29.0 | B | 35.1 | A | −25.3 | D | 16.1 | BC | 26.7 | A | −55.3 | F | 5.45 | AB | 6.00 | A | −67.5 | E | 0.56 | B | 0.76 | A |
| Rayong 9 | 31.6 | A | 37.4 | A | −15.4 | C | 17.5 | B | 22.8 | B | −35.0 | D | 6.00 | A | 5.66 | B | −26.1 | C | 0.55 | B | 0.62 | B |
| Rayong 72 | 23.3 | C | 30.0 | B | −36.4 | E | 15.2 | BC | 22.1 | B | −47.2 | E | 4.92 | B | 4.39 | C | −25.9 | C | 0.65 | A | 0.74 | A |
| CMR38–125–77 | 30.9 | AB | 24.5 | C | 23.7 | A | 21.5 | A | 16.4 | C | 15.5 | B | 5.28 | AB | 3.44 | D | 38.2 | B | 0.69 | A | 0.67 | AB |
| CMR35–91–63 | 30.9 | AB | 25.6 | BC | 14.9 | B | 14.9 | C | 4.2 | D | 66.3 | A | 5.39 | AB | 1.23 | F | 66.1 | A | 0.48 | C | 0.16 | C |
| CM523–7 | 19.1 | D | 26.2 | BC | −43.3 | F | 11.7 | D | 15.1 | C | −25.8 | C | 2.94 | C | 2.49 | E | −42.1 | D | 0.58 | B | 0.58 | B |
| F-test (G) | ** | ** | ** | ** | ** | ** | ** | ** | ** | ** | ** | |||||||||||
| Water regime (W) | 27.5 | b | 29.8 | a | −13.6 | 16.2 | b | 17.9 | a | −13.6 | 3.74 | b | 3.87 | a | −9.5 | 0.59 | 0.59 | |||||
| F-test (W) | ** | ** | * | ns | ||||||||||||||||||
| 2023/2024 | ||||||||||||||||||||||
| Kasetsart 50 | 34.9 | B | 25.1 | E | 27.9 | B | 19.2 | C | 11.7 | C | 50.2 | A | 4.08 | C | 2.09 | C | 57.7 | A | 0.55 | BC | 0.36 | E |
| Rayong 9 | 47.1 | A | 40.8 | A | 15.8 | C | 30.1 | A | 24.9 | A | 26.4 | C | 6.85 | A | 5.95 | A | 9.5 | C | 0.64 | A | 0.58 | B |
| Rayong 72 | 34.8 | B | 29.8 | CD | 9.2 | D | 6.5 | E | 19.2 | B | −73.6 | F | 1.36 | E | 4.00 | B | −73.6 | F | 0.60 | AB | 0.53 | C |
| CMR38–125–77 | 32.4 | B | 35.6 | B | −12.9 | E | 21.2 | C | 25.6 | A | −44.0 | E | 5.38 | B | 6.66 | A | −50.7 | E | 0.66 | A | 0.66 | A |
| CMR35–91–63 | 24.3 | C | 27.4 | DE | −28.4 | F | 11.2 | D | 16.7 | B | −39.6 | D | 2.16 | DE | 3.31 | B | −41.5 | D | 0.50 | C | 0.48 | D |
| CM523–7 | 49.7 | A | 30.8 | C | 36.3 | A | 25.8 | B | 16.7 | B | 35.3 | B | 2.58 | D | 1.67 | C | 36.8 | B | 0.52 | BC | 0.54 | BC |
| F-test (G) | ** | ** | ** | ** | ** | ** | ** | ** | ** | ** | ** | |||||||||||
| Water regime (W) | 37.2 | a | 31.6 | b | 8.0 | 19.1 | 19.0 | −7.6 | 3.95 | 3.73 | −10.3 | 0.58 | a | 0.53 | b | |||||||
| F-test (W) | ** | ns | ns | * | ||||||||||||||||||
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ittipong, P.; Santanoo, S.; Vorasoot, N.; Jogloy, S.; Vongcharoen, K.; Theerakulpisut, P.; Lawson, T.; Banterng, P. Soil Moisture and Growth Rates During Peak Yield Accumulation of Cassava Genotypes for Drought and Full Irrigation Conditions. Environments 2025, 12, 420. https://doi.org/10.3390/environments12110420
Ittipong P, Santanoo S, Vorasoot N, Jogloy S, Vongcharoen K, Theerakulpisut P, Lawson T, Banterng P. Soil Moisture and Growth Rates During Peak Yield Accumulation of Cassava Genotypes for Drought and Full Irrigation Conditions. Environments. 2025; 12(11):420. https://doi.org/10.3390/environments12110420
Chicago/Turabian StyleIttipong, Passamon, Supranee Santanoo, Nimitr Vorasoot, Sanun Jogloy, Kochaphan Vongcharoen, Piyada Theerakulpisut, Tracy Lawson, and Poramate Banterng. 2025. "Soil Moisture and Growth Rates During Peak Yield Accumulation of Cassava Genotypes for Drought and Full Irrigation Conditions" Environments 12, no. 11: 420. https://doi.org/10.3390/environments12110420
APA StyleIttipong, P., Santanoo, S., Vorasoot, N., Jogloy, S., Vongcharoen, K., Theerakulpisut, P., Lawson, T., & Banterng, P. (2025). Soil Moisture and Growth Rates During Peak Yield Accumulation of Cassava Genotypes for Drought and Full Irrigation Conditions. Environments, 12(11), 420. https://doi.org/10.3390/environments12110420

