Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (135)

Search Parameters:
Keywords = soil thermodynamics

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
24 pages, 2315 KB  
Review
Pore Ice Content and Unfrozen Water Content Coexistence in Partially Frozen Soils: A State-of-the-Art Review of Mechanisms, Measurement Technology and Modeling Methods
by Mohammad Ossama Waseem, Dave Sego, Lijun Deng and Nicholas Beier
Geotechnics 2025, 5(4), 80; https://doi.org/10.3390/geotechnics5040080 - 30 Nov 2025
Viewed by 580
Abstract
Partially frozen soil (PFS) is comprises of coexisting unfrozen water and ice within its pores at subzero temperatures. The review paper examines how unfrozen water content (UWC) and pore ice content interact during phase changes under near-freezing conditions, governed by microscopic thermodynamic equilibrium. [...] Read more.
Partially frozen soil (PFS) is comprises of coexisting unfrozen water and ice within its pores at subzero temperatures. The review paper examines how unfrozen water content (UWC) and pore ice content interact during phase changes under near-freezing conditions, governed by microscopic thermodynamic equilibrium. Key theories describing why UWC persists (premelting, disjoining pressure) and the soil freezing characteristic curve (SFCC), along with measurement techniques, including the gravimetric approach to advanced nuclear magnetic resonance for characterization of water content. The influence of the water–ice phase composition on mechanical behavior is discussed, signifying pore pressure and effective stress. Various modelling approaches categorized into empirical SFCC, physio-empirical estimations, and emerging machine learning and molecular simulations are evaluated for capturing predictions in PFS behavior. The relevance of PFS to infrastructure foundation, tailings dams, permafrost slope stability, and climate change impacts on cold regions’ environmental geotechnics is also highlighted as a challenges in practical application. Hence, understanding pore pressure dynamics and effective stress in PFS is critical when assessing frost heave, thaw weakening, and the overall performance of geotechnical structures in cold regions. By combining micro-scale phase interaction mechanisms and macro-scale engineering observations, this review paper provides a theoretical understanding of the underlying concepts vital for future research and practical engineering in cold regions. Full article
Show Figures

Figure 1

17 pages, 6314 KB  
Article
Decoding the Sustainability Code: Enzyme Thermodynamic and Kinetic Parameters Reveal the Efficacy of Straw, Biochar, and Nanocarbon in Black Soil
by Jia Xu, Xiangyu Wu, Pengwei Wang, Jingyi Zhao, Zhonghui Yue, Xin Bai, Jiawang Li, Yuan Yin and Jianhao Huang
Sustainability 2025, 17(23), 10436; https://doi.org/10.3390/su172310436 - 21 Nov 2025
Viewed by 368
Abstract
For sustainable soil management, the link between carbon amendment structure and soil health is paramount, yet how the particle size of carbon governs hydrolase activity through kinetic and thermodynamic mechanisms remains poorly understood. A three-year field experiment with four treatments, including Control, Straw, [...] Read more.
For sustainable soil management, the link between carbon amendment structure and soil health is paramount, yet how the particle size of carbon governs hydrolase activity through kinetic and thermodynamic mechanisms remains poorly understood. A three-year field experiment with four treatments, including Control, Straw, Biochar, and Nanocarbon, was conducted in black soil. After harvest, the activities of invertase (INV), urease (URE), and acid phosphatase (ACP) were assayed from 15 to 55 °C. Kinetic parameters—including half-saturation constant (Km), maximal reaction rate (Vmax) and catalytic efficiency (Ka)—and thermodynamic parameters—including Gibbs free energy (ΔG), enthalpy (ΔH) and entropy (ΔS)—were determined. INV and ACP activities increased with temperature, peaking at 55 °C, whereas URE peaked at 45 °C. The Vmax, Ka, and ΔG of the enzymes also increased with temperature. With straw, INV activity remained stable, whereas INV-Ka, INV-ΔH, and INV-ΔS increased with decreased INV-Km. URE activity declined with thermodynamic elevation. For ACP, ACP-Km and ACP-Vmax increased, whereas ACP-Ka and ACP-ΔG decreased. With biochar or nanocarbon, the enzyme activities, Vmax, and Ka decreased, whereas ∆G increased, with stronger inhibition by nanocarbon. Correlation analysis revealed ∆G as the dominant factor for activity after carbon addition, while redundancy analysis identified organic carbon (OC) and total phosphorus (TP) as the key regulators. Overall, straw, biochar, and nanocarbon had different sustainable values on hydrolase systems, with thermodynamic parameters, especially ∆G, better reflecting system shifts than kinetic traits. Full article
Show Figures

Figure 1

18 pages, 5438 KB  
Article
Do Soil pH Levels Drive the Responses of Catalase Activity and Bacterial Communities to Microplastics? A Case Study in Mollisols
by Yuan Yin, Xiangyu Wu, Qina Ren, Yuxin Guo, Zhonghui Yue, Xin Bai, Jia Xu and Pengwei Wang
Toxics 2025, 13(12), 1005; https://doi.org/10.3390/toxics13121005 - 21 Nov 2025
Viewed by 578
Abstract
Prolonged application and low recycling rates of agricultural plastic films have resulted in significant accumulation of microplastics (MPs) in soils, posing a threat to soil health. However, the impacts of MPs on microbial communities and enzyme activities in Mollisols remain poorly understood. To [...] Read more.
Prolonged application and low recycling rates of agricultural plastic films have resulted in significant accumulation of microplastics (MPs) in soils, posing a threat to soil health. However, the impacts of MPs on microbial communities and enzyme activities in Mollisols remain poorly understood. To address the key question of whether soil pH drives the responses of catalase (CAT) activity and bacterial communities to MPs—a core focus of this Mollisol-based case study—we investigated the effects of different MP concentrations (1%, 5%, and 10%) on bacterial community structure and CAT activity across three Mollisol farmlands with distinct pH levels. CAT activity was stimulated at low MP concentrations but inhibited at high levels, whereas dynamic and thermodynamic parameters displayed irregular responses. Temperature sensitivity (Q10) of CAT remained stable, whereas Q10 of kinetic parameters varied among soils. Correlation analysis indicated that Ea and Q10 in acidic soil and Vmax/Km in neutral soil and alkaline soil governed CAT activity. MPs altered α-diversity in acidic and neutral soils, changed β-diversity only in acidic soil, and promoted deterministic assembly processes. PICRUSt functional prediction suggested that functional gene shifts were most evident in acidic and neutral soils, with soil organic matter and Vmax/Km as key drivers in acidic soils and CAT in neutral soils. In contrast, responses in alkaline soil were negligible. These findings highlight soil type-specific microbial responses to MPs and their ecological risks in agricultural soils. Full article
(This article belongs to the Section Emerging Contaminants)
Show Figures

Figure 1

22 pages, 10322 KB  
Article
Biochars Derived from Diverse Local Tunisian Feedstocks for Environmental Remediation: Physicochemical Properties and Adsorption Behaviour
by Asma Hmaied, Aïda Ben Hassen Trabelsi, Fethi Lachaal, Sandrine Negro and Claude Hammecker
Land 2025, 14(11), 2224; https://doi.org/10.3390/land14112224 - 10 Nov 2025
Viewed by 815
Abstract
Water resource management and agricultural practices in the Mediterranean region, characterised by the excessive use of pesticides, pose significant environmental and human health challenges. As they can be easily and inexpensively produced from various biomass sources, biochars are frequently recommended as a low-cost [...] Read more.
Water resource management and agricultural practices in the Mediterranean region, characterised by the excessive use of pesticides, pose significant environmental and human health challenges. As they can be easily and inexpensively produced from various biomass sources, biochars are frequently recommended as a low-cost secondary decontamination strategy to address soil contamination problems. This study investigates the properties and sorption behaviours of biochars produced in a low-cost metallic kiln using local rosemary, giant reed, St. John’s wort, olive, cypress, and palm tree biomass residues to evaluate their potential for environmental remediation, with a special focus on the mobility and retention of contaminants. Analytical and experimental techniques were employed to characterise the biochars’ physicochemical attributes and sorptive capacities. The core analyses included measurement of basic physicochemical properties, including pH, electrical conductivity, functional group identification via Fourier transform infrared (FTIR) spectroscopy, and the molarity of ethanol droplet (MED) test to assess the surface hydrophobicity. Batch sorption experiments were conducted using methylene blue (MB) and two fluorescent tracers—uranine (UR) and sulforhodamine-B (SRB)—as proxies for organic contaminants to assess the adsorption efficiency and molecule–biochar interactions. Furthermore, the adsorption isotherms at 20 °C were fitted to different models to assess the biochars’ specific surface areas. Thermodynamic parameters were also evaluated to understand the nature and strength of the adsorption processes. The results highlight the influence of feedstock type on the resulting biochar’s properties, thus significantly affecting the mechanism of adsorption. Rosemary biochar was found to have the highest specific surface area (SSA) and cation exchange capacity (CEC), allowing it to adsorb a wide range of organic molecules. Giant reed and palm tree biochars showed similar properties. In contrast, wood-derived biochars generally showed very low SSA, moderate CEC, and low hydrophobicity. The contrasting properties of the three dyes—MB (cationic), UR (anionic), and SRB (zwitterionic)—enabled us to highlight the distinct interaction mechanisms between each dye and the surface functional groups of the different biochars. The reactivity and sorption efficiency of a biochar depend strongly on both the nature of the target molecule and the intrinsic properties of the biochar, particularly its pH. The findings of this study demonstrate the importance of matching biochar characteristics to specific contaminant types for optimised environmental applications, providing implications for the use of tailored biochars in pollutant mitigation strategies. Full article
(This article belongs to the Section Land, Soil and Water)
Show Figures

Figure 1

20 pages, 4092 KB  
Article
Regulatory Effects of Different Compost Amendments on Soil Urease Kinetics, Thermodynamics, and Nutrient Stoichiometry in a Temperate Agroecosystem
by Qian Liu, Xu Zhang, Xingchi Guo, Ying Qu, Junyan Zheng, Yuhe Xing, Zhiyu Dong, Wei Yu, Guoyu Zhang and Pengbing Wu
Agronomy 2025, 15(11), 2544; https://doi.org/10.3390/agronomy15112544 - 31 Oct 2025
Viewed by 603
Abstract
Compost amendments are widely recognized as an effective strategy for improving soil quality, modulating enzyme activities, and enhancing nitrogen cycling. Urease, a key enzyme in nitrogen transformation, is characterized by kinetic parameters such as the maximum reaction rate (Vmax) and Michaelis [...] Read more.
Compost amendments are widely recognized as an effective strategy for improving soil quality, modulating enzyme activities, and enhancing nitrogen cycling. Urease, a key enzyme in nitrogen transformation, is characterized by kinetic parameters such as the maximum reaction rate (Vmax) and Michaelis constant (Km), as well as thermodynamic attributes including temperature sensitivity (Q10), activation energy (Ea), enthalpy change (ΔH), Gibbs free energy change (ΔG), and entropy change (ΔS). However, how different compost sources regulate urease kinetics, thermodynamics, and nitrogen availability remains poorly understood. In this study, we evaluated the effects of three compost amendments—mushroom residue (MR), mushroom residue–straw mixture (MSM), and leaf litter (LL)—on urease kinetics and thermodynamics in a temperate agroecosystem. The MSM treatment significantly enhanced urea hydrolysis capacity and catalytic efficiency. In contrast, LL treatment resulted in the highest Km value, indicating a substantially lower enzyme-substrate affinity. Furthermore, MSM reduced the Ea and increased the thermal stability of urease, thereby supporting enzymatic performance under fluctuating temperatures. Collectively, our findings highlight that compost composition is a critical determinant of urease function and nitrogen turnover. By elucidating the coupled kinetic and thermodynamic responses of urease to compost inputs, this study provides mechanistic insights to guide optimized soil management and sustainable nitrogen utilization in temperate agricultural systems. Full article
(This article belongs to the Section Agricultural Biosystem and Biological Engineering)
Show Figures

Figure 1

23 pages, 1447 KB  
Article
Comprehensive Analysis of Unsymmetrical Dimethylhydrazine: Adsorption Behavior, Environmental Fate, and Toxicity Across Contrasting Soil Matrices
by Juan Du, Xianghong Ren, Yizhi Zeng, Lei Zhang, Jinfeng Shi and Shuai Yang
Toxics 2025, 13(10), 859; https://doi.org/10.3390/toxics13100859 - 11 Oct 2025
Cited by 2 | Viewed by 612
Abstract
Unsymmetrical dimethylhydrazine (1,1-Dimethylhydrazine, UDMH) is widely used as a high-performance liquid rocket propellant for the space industry globally. The release and leakage of UDMH into the environment, especially the soil environment, pose serious threats to ecosystems and human beings. In order to reveal [...] Read more.
Unsymmetrical dimethylhydrazine (1,1-Dimethylhydrazine, UDMH) is widely used as a high-performance liquid rocket propellant for the space industry globally. The release and leakage of UDMH into the environment, especially the soil environment, pose serious threats to ecosystems and human beings. In order to reveal the hazards of UDMH to soil and facilitate subsequent remediation, the adsorption behavior of UDMH in typical soil (yellow-brown soil, red soil, and black soil) matrices was explored, the environmental fate and toxicity of UDMH were presented by simulation calculation, and the phytotoxicity was evaluated by germination assay in the present study. The results showed that the adsorption performance of red soil, yellow-brown soil, and black soil for UDMH increased sequentially by integrating the findings from kinetic and thermodynamic studies. A highly significant correlation between the physicochemical and adsorption parameters for various soil matrices indicated a considerable impact of soil physicochemical properties on the adsorption behavior of UDMH in soils. The environmental fate simulation calculation indicated that UDMH and its transformation products were prone to being dissolved in soil water and migrating; however, once these compounds were present in the surface layer of dry soil, severe ecological and environmental pollution would occur. Based on a thorough evaluation of the toxicity parameters, formaldehyde dimethylhydrazone has been identified as demonstrating the most pronounced environmental toxicity profile, thus warranting prioritized attention. The results of a germination assay demonstrated that more than 100 mg·kg−1 of UDMH in the soil would lead to strong phytotoxicity to plants, and more than 200 mg·kg−1 of UDMH would significantly affect the early germination of seeds. Hence, this research provided helpful insights and theoretical support for the environmental fate and remediation of UDMH. Full article
(This article belongs to the Section Toxicity Reduction and Environmental Remediation)
Show Figures

Graphical abstract

14 pages, 2238 KB  
Article
Functional Biopolymer-Stabilized Silver Nanoparticles on Glassy Carbon: A Voltammetric Sensor for Trace Thallium(I) Detection
by Bożena Karbowska, Maja Giera, Anna Modrzejewska-Sikorska and Emilia Konował
Int. J. Mol. Sci. 2025, 26(19), 9658; https://doi.org/10.3390/ijms26199658 - 3 Oct 2025
Cited by 1 | Viewed by 491
Abstract
Thallium is a soft metal with a grey or silvery hue. It commonly occurs in two oxidation states in chemical compounds: Tl+ and Tl3+. Thermodynamically, Tl+ is significantly more stable and typically represents the dominant form of thallium in [...] Read more.
Thallium is a soft metal with a grey or silvery hue. It commonly occurs in two oxidation states in chemical compounds: Tl+ and Tl3+. Thermodynamically, Tl+ is significantly more stable and typically represents the dominant form of thallium in environmental systems. However, in this chemical form, thallium remains highly toxic. This study focuses on the modification of a glassy carbon electrode (GCE) with silver nanostructures stabilised by potato starch derivatives. The modified electrode (GCE/AgNPs-E1451) was used for the determination of trace amounts of thallium ions using anodic stripping voltammetry. Emphasis was placed on assessing the effect of surface modification on key electrochemical performance parameters of the electrode. Measurements were carried out in a base electrolyte (EDTA) and in a real soil sample collected from Bali. The stripping peak current of thallium exhibited linearity over the concentration range from 19 to 410 ppb (9.31 × 10−8 to 2.009 × 10−6 mol/dm3). The calculated limit of detection (LOD) was 18.8 ppb (9.21 × 10−8 mol/dm3), while the limit of quantification (LOQ), corresponded to 56.4 ppb (2.76 × 10−7 mol/dm3). The GCE/AgNPs-E1451 electrode demonstrates several significant advantages, including a wide detection range, reduced analysis time due to the elimination of time-consuming pre-concentration steps, and non-toxic operation compared to mercury-based electrodes. Full article
(This article belongs to the Special Issue New Advances in Metal Nanoparticles)
Show Figures

Figure 1

19 pages, 1850 KB  
Article
Investigating the Frost Cracking Mechanisms of Water-Saturated Fissured Rock Slopes Based on a Meshless Model
by Chunhui Guo, Feixiang Zeng, Han Shao, Wenbing Zhang, Bufan Zhang, Wei Li and Shuyang Yu
Water 2025, 17(19), 2858; https://doi.org/10.3390/w17192858 - 30 Sep 2025
Viewed by 515
Abstract
In global cold regions and seasonal frozen soil areas, frost heave failure of rock slopes severely endangers infrastructure safety, particularly along China’s Sichuan–Tibet and Qinghai–Tibet Railways. To address this, a meshless numerical model based on the smoothed particle hydrodynamics (SPH) method was developed [...] Read more.
In global cold regions and seasonal frozen soil areas, frost heave failure of rock slopes severely endangers infrastructure safety, particularly along China’s Sichuan–Tibet and Qinghai–Tibet Railways. To address this, a meshless numerical model based on the smoothed particle hydrodynamics (SPH) method was developed to simulate progressive frost heave and fracture of water-saturated fissured rock masses—its novelty lies in avoiding grid distortion and artificial crack path assumptions of FEM as well as complex parameter calibration of DEM by integrating the maximum tensile stress criterion (with a binary fracture marker for particle failure), thermodynamic phase change theory (classifying fissure water into water, ice-water mixed, and ice particles), and the equivalent thermal expansion coefficient method to quantify frost heave force. Systematic simulations of fissure parameters (inclination angle, length, number, and row number) revealed that these factors significantly shape failure modes: longer fissures and more rows shift failure from strip-like to tree-like/network-like, more fissures accelerate crack coalescence, and larger inclination angles converge stress to fissure tips. This study clarifies key mechanisms and provides a theoretical/numerical reference for cold region rock slope stability control. Full article
Show Figures

Figure 1

20 pages, 13278 KB  
Article
The Thermodynamic and Dynamic Cause Analysis of Three Extensive Compound Heatwaves from 2011 to 2024 in Mainland Spain
by Zeqi Li, Nan Jiang, Yan Xu, Luísa Bastos, Jiangteng Wang and Tianhe Xu
Remote Sens. 2025, 17(17), 2976; https://doi.org/10.3390/rs17172976 - 27 Aug 2025
Viewed by 913
Abstract
In recent years, frequent heatwaves (HWs) in Spain have increased mortality rates and impacted ecosystems. While most studies only investigate the causes of HWs in a single year, we analyzed the thermodynamic and dynamic causes of three extensive compound HWs (defined as concurrent [...] Read more.
In recent years, frequent heatwaves (HWs) in Spain have increased mortality rates and impacted ecosystems. While most studies only investigate the causes of HWs in a single year, we analyzed the thermodynamic and dynamic causes of three extensive compound HWs (defined as concurrent daytime and nighttime high temperatures) over mainland Spain during the 2011–2024 summers using station and reanalysis data. In addition, we explained the differences in the duration of the three HWs in terms of thermodynamic processes and the evolution of large-scale circulation systems. For thermodynamic analysis, we applied the first law of thermodynamics to examine local temperature variations and the surface energy balance to assess solar radiation and soil moisture impacts on HWs. It was found that high temperatures occurred more frequently over mainland Spain during 2015–2024 compared with 2011–2014. The thermodynamic analysis indicates negative contributions from horizontal advection, positive contributions from adiabatic heating, and a dominant positive contribution from diabatic heating in the formation of the three HWs. Although we observed anomalously increased solar radiation during the three HWs, soil moisture deficit was the primary factor in HW formation. The dynamic analysis shows that a similar large-scale circulation configuration prevailed over mainland Spain during the three HWs. The region was simultaneously controlled by an anomalously intense Azores High and the ridge line of a warm high-pressure ridge, accompanied by a weak divergent flow. This work offers valuable insights for the study of HWs in Spain and helps to understand the universal mechanism behind the HWs. Full article
(This article belongs to the Section Ecological Remote Sensing)
Show Figures

Figure 1

24 pages, 4011 KB  
Review
A Review of Pore Water Pressure Measurement Techniques in Early-Age Cement-Based Materials
by Qian Tian, Yang Wang, Hua Li, Yujiang Wang and Chen Jiang
Materials 2025, 18(16), 3875; https://doi.org/10.3390/ma18163875 - 19 Aug 2025
Viewed by 854
Abstract
The evolution of early-age structure in fresh cement-based materials fundamentally involves a transition from a suspended dispersion system to a porous medium, accompanied by changes in the energy state of the internal water. Monitoring pore water pressure (PWP) evolution reflects these changes in [...] Read more.
The evolution of early-age structure in fresh cement-based materials fundamentally involves a transition from a suspended dispersion system to a porous medium, accompanied by changes in the energy state of the internal water. Monitoring pore water pressure (PWP) evolution reflects these changes in water energy state and provides insight into the underlying mechanisms governing the development of early-age performance in cement-based materials. Building on concepts from soil physics, this paper examines the thermodynamic mechanisms driving PWP evolution during the early stages of cement-based materials’ formation. It further synthesizes advances in PWP testing methodologies and instrumentation for cement-based materials, alongside their applications in both fundamental research and engineering practice. Full article
Show Figures

Figure 1

18 pages, 2761 KB  
Article
Dual-Functioned Magnesium-Enriched Biochar Hydrogels for Phosphate Recovery and Slow-Release Nutrient Delivery
by Nur Maisarah Mohamad Sarbani, Hiroyuki Harada, Mitsuru Aoyagi and Endar Hidayat
Water 2025, 17(15), 2235; https://doi.org/10.3390/w17152235 - 27 Jul 2025
Viewed by 1133
Abstract
Excessive phosphate from agriculture and industry has led to widespread eutrophication, posing a serious environmental threat. To address this issue, metal-modified biochars have emerged as promising adsorbents due to their high affinity for phosphate ions. This study investigates the application of two magnesium-modified [...] Read more.
Excessive phosphate from agriculture and industry has led to widespread eutrophication, posing a serious environmental threat. To address this issue, metal-modified biochars have emerged as promising adsorbents due to their high affinity for phosphate ions. This study investigates the application of two magnesium-modified biochar hydrogels denoted as magnesium–bamboo biochar hydrogel (Mg-BBH) and magnesium–pulp biochar hydrogel (Mg-PBH) for phosphate recovery from aqueous solutions, with an additional aim as slow-release fertilizers. The adsorbents were synthesized by impregnating Mg-modified biochars into sodium-alginate-based hydrogel. The influence of initial phosphate concentration, contact time, and temperature were investigated to determine optimal adsorption conditions. Both adsorbents exhibited excellent adsorption performance, with maximum capacities of 309.96 mg PO4/g (Mg-BBH) and 234.69 mg PO4/g (Mg-PBH). Moreover, the adsorption performance of the adsorbents was greatly influenced by the magnesium content. The adsorption process followed the Temkin isotherm and pseudo-second-order kinetics, suggesting that the adsorption energy decreases proportionally with surface coverage and the phosphate uptake was governed by chemisorption. Thermodynamic study confirmed the process was spontaneous and endothermic at 40 °C. A slow-release study further demonstrated a great release of phosphate in soil over time. These findings highlight the dual functionality of Mg-BBH and Mg-PBH as effective materials for both phosphate recovery and controlled nutrient delivery, contributing to sustainable phosphate management. Full article
(This article belongs to the Section Soil and Water)
Show Figures

Figure 1

16 pages, 1877 KB  
Review
Capillary Rise and Salt Weathering in Spain: Impacts on the Degradation of Calcareous Materials in Historic Monuments
by Elías Afif-Khouri, Alfonso Lozano-Martínez, José Ignacio López de Rego, Belén López-Gallego and Rubén Forjan-Castro
Buildings 2025, 15(13), 2285; https://doi.org/10.3390/buildings15132285 - 29 Jun 2025
Cited by 3 | Viewed by 2148
Abstract
The crystallization of soluble salts is one of the most significant agents of deterioration affecting porous building materials in historical architecture. This process not only compromises the physical integrity of the materials but also results in considerable aesthetic, structural, and economic consequences. Soluble [...] Read more.
The crystallization of soluble salts is one of the most significant agents of deterioration affecting porous building materials in historical architecture. This process not only compromises the physical integrity of the materials but also results in considerable aesthetic, structural, and economic consequences. Soluble salts involved in these processes may originate from geogenic sources—including soil leachate, marine aerosols, and the natural weathering of parent rocks—or from anthropogenic factors such as air pollution, wastewater infiltration, and the use of incompatible restoration materials. This study examines the role of capillary rise as a primary mechanism responsible for the vertical migration of saline solutions from the soil profile into historic masonry structures, especially those constructed with calcareous stones. It describes how water retained or sustained within the soil matrix ascends via capillarity, carrying dissolved salts that eventually crystallize within the pore network of the stone. This phenomenon leads to a variety of damage types, ranging from superficial staining and efflorescence to more severe forms such as subflorescence, microfracturing, and progressive mass loss. By adopting a multidisciplinary approach that integrates concepts and methods from soil physics, hydrology, petrophysics, and conservation science, this paper examines the mechanisms that govern saline water movement, salt precipitation patterns, and their cumulative effects on stone durability. It highlights the influence of key variables such as soil texture and structure, matric potential, hydraulic conductivity, climatic conditions, and stone porosity on the severity and progression of deterioration. This paper also addresses regional considerations by focusing on the context of Spain, which holds one of the highest concentrations of World Heritage Sites globally and where many monuments are constructed from vulnerable calcareous materials such as fossiliferous calcarenites and marly limestones. Special attention is given to the types of salts most commonly encountered in Spanish soils—particularly chlorides and sulfates—and their thermodynamic behavior under fluctuating environmental conditions. Ultimately, this study underscores the pressing need for integrated, preventive conservation strategies. These include the implementation of drainage systems, capillary barriers, and the use of compatible materials in restoration, as well as the application of non-destructive diagnostic techniques such as electrical resistivity tomography and hyperspectral imaging. Understanding the interplay between soil moisture dynamics, salt crystallization, and material degradation is essential for safeguarding the cultural and structural value of historic buildings in the face of ongoing environmental challenges and climate variability. Full article
(This article belongs to the Special Issue Selected Papers from the REHABEND 2024 Congress)
Show Figures

Figure 1

19 pages, 4705 KB  
Article
An Improved Thermodynamic Energy Equation for Stress–Dilatancy Behavior in Granular Soils
by Ching S. Chang and Jason Chao
Geotechnics 2025, 5(3), 43; https://doi.org/10.3390/geotechnics5030043 - 24 Jun 2025
Cited by 1 | Viewed by 1471
Abstract
This study proposes an advanced thermodynamic energy equation to accurately simulate the stress–dilatancy relationship in granular soils for both uncrushed and crushed sands. Traditional energy formulations primarily consider dissipation energy and often neglect the role of free energy. Recent developments have introduced free [...] Read more.
This study proposes an advanced thermodynamic energy equation to accurately simulate the stress–dilatancy relationship in granular soils for both uncrushed and crushed sands. Traditional energy formulations primarily consider dissipation energy and often neglect the role of free energy. Recent developments have introduced free energy components to account for plastic energy contributions from dilation and particle crushing. However, significant discrepancies between theoretical predictions and experimental observations remain, largely due to the omission of complex mechanisms such as contact network rearrangement, force-chain buckling, grain rolling, rotation without slip, and particle crushing. To address these gaps, the proposed model incorporates dual exponential decay functions into the free energy framework. Rather than explicitly modeling each mechanism, this formulation aims to phenomenologically capture the interplay between fundamentally opposing thermodynamic forces arising from complex mechanisms during granular microstructure evolution. The model’s applicability is validated using the experimental results from both uncrushed silica sand and crushed calcareous sand. Through extensive comparison with over 100 drained triaxial tests on various sands, the proposed model shows substantial improvement in reproducing stress–dilatancy behavior. The average discrepancy between predicted and measured ηD relationships is reduced to below 15%, compared to over 60% using conventional models. This enhanced energy equation provides a robust and practical tool for predicting granular soil behavior, supporting a wide range of geotechnical engineering applications. Full article
Show Figures

Figure 1

29 pages, 753 KB  
Article
Sustainable Thermal Energy Storage Systems: A Mathematical Model of the “Waru-Waru” Agricultural Technique Used in Cold Environments
by Jorge Luis Mírez Tarrillo
Energies 2025, 18(12), 3116; https://doi.org/10.3390/en18123116 - 13 Jun 2025
Viewed by 4483
Abstract
The provision of food in pre-Inca/Inca cultures (1000 BC–≈1532 AD) in environments near Lake Titikaka (approximately 4000 m above sea level) was possible through an agricultural technique called “Waru-Waru”, which consists of filling the space (volume) between rows of land containing plants that [...] Read more.
The provision of food in pre-Inca/Inca cultures (1000 BC–≈1532 AD) in environments near Lake Titikaka (approximately 4000 m above sea level) was possible through an agricultural technique called “Waru-Waru”, which consists of filling the space (volume) between rows of land containing plants that are cultivated (a series of earth platforms surrounded by water canals) with water, using water as thermal energy storage to store energy during the day and to regulate the temperature of the soil and crop atmosphere at night. The problem is that these cultures left no evidence in written documents that have been preserved to this day indicating the mathematical models, the physics involved, and the experimental part they performed for the research, development, and innovation of the “Waru-Waru” technique. From a review of the existing literature, there is (1) bibliography that is devoted to descriptive research (about the geometry, dimensions, and shapes of the crop fields (and more based on archaeological remains that have survived to the present day) and (2) studies presenting complex mathematical models with many physical parameters measured only with recently developed instrumentation. The research objectives of this paper are as follows: (1) develop a mathematical model that uses finite differences in fluid mechanics, thermodynamics, and heat transfer to explain the experimental and theory principles of this pre-Inca/Inca technique; (2) the proposed mathematical model must be in accordance with the mathematical calculation tools available in pre-Inca/Inca cultures (yupana and quipu), which are mainly based on arithmetic operations such as addition, subtraction, and multiplication; (3) develop a mathematical model in a sequence of steps aimed at determining the best geometric form for thermal energy storage and plant cultivation and that has a simple design (easy to transmit between farmers); (4) consider the assumptions necessary for the development of the mathematical model from the point of view of research on the geometry of earth platforms and water channels and their implantation in each cultivation area; (5) transmit knowledge of the construction and maintenance of “Waru-Waru” agricultural technology to farmers who have cultivated these fields since pre-Hispanic times. The main conclusion is that, in the mathematical model developed, algebraic mathematical expressions based on addition and multiplication are obtained to predict and explain the evolution of soil and water temperatures in a specific crop field using crop field characterization parameters for which their values are experimentally determined in the crop area where a “Waru-Waru” is to be built. Therefore, the storage of thermal energy in water allows crops to survive nights with low temperatures, and indirectly, it allows the interpretation that the Inca culture possessed knowledge of mathematics (addition, subtraction, multiplication, finite differences, approximation methods, and the like), physics (fluids, thermodynamics, and heat transfer), and experimentation, with priority given to agricultural techniques (and in general, as observed in all archaeological evidence) that are in-depth, exact, practical, lasting, and easy to transmit. Understanding this sustainable energy storage technique can be useful in the current circumstances of global warming and climate change within the same growing areas and/or in similar climatic and environmental scenarios. This technique can help in reducing the use of fossil or traditional fuels and infrastructure (greenhouses) that generate heat, expanding the agricultural frontier. Full article
(This article belongs to the Special Issue Sustainable Energy, Environment and Low-Carbon Development)
Show Figures

Figure 1

25 pages, 3484 KB  
Article
Trimetallic Fe-Zn-Mn (Oxy)Hydroxide-Enhanced Coffee Biochar for Simultaneous Phosphate and Ammonium Recovery and Recycling
by Diana Guaya, Jhuliana Campoverde, Camilo Piedra and Alexis Debut
Nanomaterials 2025, 15(11), 849; https://doi.org/10.3390/nano15110849 - 2 Jun 2025
Cited by 1 | Viewed by 1684
Abstract
Excess phosphorus (P) and nitrogen (N) in wastewater contribute to eutrophication, driving the need for low–cost and sustainable recovery technologies. This study presents a novel adsorbent synthesized from spent coffee grounds biochar (CB) chemically modified with Mn2+/Zn2+/Fe3+ (oxy)hydroxide [...] Read more.
Excess phosphorus (P) and nitrogen (N) in wastewater contribute to eutrophication, driving the need for low–cost and sustainable recovery technologies. This study presents a novel adsorbent synthesized from spent coffee grounds biochar (CB) chemically modified with Mn2+/Zn2+/Fe3+ (oxy)hydroxide nanoparticles (CB–M) for simultaneous removal of phosphate and ammonium. Batch adsorption experiments using both synthetic solution and municipal wastewater were conducted to evaluate the material’s adsorption performance and practical applicability. Kinetic, isotherm, thermodynamic, and sequential extraction analyses revealed that CB–M achieved maximum phosphate adsorption capacities ranging from 42.6 to 72.0 mg PO43−·g−1 across temperatures of 20–33 °C, reducing effluent phosphate concentrations to below 0.01 mg·L−1. Ammonium removal was moderate, with capacities ranging between 2.8 and 2.95 mg NH4+·g−1. Thermodynamic analysis indicated that phosphate adsorption was spontaneous and endothermic, dominated by inner–sphere complexation, while ammonium uptake occurred primarily through weaker, reversible ion exchange mechanisms. Sequential extraction showed over 70% of adsorbed phosphate was associated with Fe-Mn-Zn phases, indicating the potential for use as a slow–release fertilizer. The CB–M retained structural integrity and exhibited partial desorption, supporting its reusability for nutrient recovery. Compared to other biochars, CB–M demonstrated superior phosphate selectivity at a neutral–pH, avoided the use of hazardous metals, and transformed coffee waste into a multifunctional material for wastewater treatment and soil amendment. These findings underscore the potential of CB–M as a circular economy solution for nutrient recovery without introducing secondary contamination. Full article
Show Figures

Graphical abstract

Back to TopTop