Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (18,548)

Search Parameters:
Keywords = social economics

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
28 pages, 8921 KiB  
Article
LUNTIAN: An Agent-Based Model of an Industrial Tree Plantation for Promoting Sustainable Harvesting in the Philippines
by Zenith Arnejo, Benoit Gaudou, Mehdi Saqalli and Nathaniel Bantayan
Forests 2025, 16(8), 1293; https://doi.org/10.3390/f16081293 (registering DOI) - 8 Aug 2025
Abstract
Industrial tree plantations (ITPs) are increasingly recognized as a sustainable response to deforestation and the decline in native wood resources in the Philippines. This study presents LUNTIAN (Labor, UNiversity, Timber Investment, and Agent-based Nexus), an agent-based model that simulates an experimental ITP operation [...] Read more.
Industrial tree plantations (ITPs) are increasingly recognized as a sustainable response to deforestation and the decline in native wood resources in the Philippines. This study presents LUNTIAN (Labor, UNiversity, Timber Investment, and Agent-based Nexus), an agent-based model that simulates an experimental ITP operation within a mountain forest managed by University of the Philippines Los Baños. The model integrates biophysical processes—such as tree growth, hydrology, and stand dynamics—with socio-economic components such as investment decision making based on risk preferences, employment allocation influenced by local labor availability, and informal harvesting behavior driven by job scarcity. These are complemented by institutional enforcement mechanisms such as forest patrolling, reflecting the complex interplay between financial incentives and rule compliance. To assess the model’s validity, its outputs were compared to those of the 3PG forest growth model, with results demonstrating alignment in growth trends and spatial distributions, thereby supporting LUNTIAN’s potential to represent key ecological dynamics. Sensitivity analysis identified investor earnings share and community member count as significant factors influencing net earnings and management costs. Parameter calibration using the Non-dominated Sorting Genetic Algorithm yielded an optimal configuration that ensured profitability for resource managers, investors, and community-hired laborers while minimizing unauthorized independent harvesting. Notably, even with continuous harvesting during a 17-year rotation, the final tree population increased by 55%. These findings illustrate the potential of LUNTIAN to support the exploration of sustainable ITP management strategies in the Philippines by offering a robust framework for analyzing complex social–ecological interactions. Full article
(This article belongs to the Section Forest Operations and Engineering)
Show Figures

Figure 1

21 pages, 4066 KiB  
Review
Plasma Electrolytic Oxidation (PEO) Coatings for Biomedical Implants: A Review on Enhancing Antibacterial Efficacy Through Controlled Antibiotic Release
by Maryam Molaei, Masoud Atapour and Ehsan Mohammadi Zahrani
Coatings 2025, 15(8), 925; https://doi.org/10.3390/coatings15080925 (registering DOI) - 8 Aug 2025
Abstract
The use of biomedical implants has significantly enhanced patient survival rates and overall quality of life. However, bacterial infections caused by bacterial adhesion and the subsequent formation of biofilm on the surface of the implants are challenging clinical issues, leading to implant failure [...] Read more.
The use of biomedical implants has significantly enhanced patient survival rates and overall quality of life. However, bacterial infections caused by bacterial adhesion and the subsequent formation of biofilm on the surface of the implants are challenging clinical issues, leading to implant failure and high social and economic costs. Modification of the surface of the implants with antibacterial coatings is a promising technique to address implant-associated bacterial infection problems. One strategy to fabricate bactericidal antibacterial coatings is to load antibacterial agents, like antibiotics—the most important type of antibacterial drug for killing or inhibiting the growth of bacteria—at therapeutic doses into the coatings and subsequently release them, ideally in a controlled way. Plasma electrolytic oxidation (PEO) is a simple, affordable, and eco-friendly method to produce high-performance, multifunctional coatings with desired antibacterial properties. This review examines the antibacterial activity of antibiotic-loaded PEO coatings, offering valuable insights for the development of novel, high-performance antibacterial coatings that meet clinical requirements. Full article
Show Figures

Figure 1

31 pages, 1148 KiB  
Article
Exploring Imperatives in Generation Z’s Approach to the Future of the Environment
by Piotr Daniluk, Radoslaw Wisniewski, Aneta Nowakowska-Krystman, Tomasz Kownacki and Dawid Wiśniewski
Sustainability 2025, 17(15), 7169; https://doi.org/10.3390/su17157169 (registering DOI) - 7 Aug 2025
Abstract
Environmental protection is one of the key challenges facing mankind today. Finding out what young people, referred to as Generation Z, think about this issue is extremely important, as they will be the first to experience the negative effects of environmental degradation. Research [...] Read more.
Environmental protection is one of the key challenges facing mankind today. Finding out what young people, referred to as Generation Z, think about this issue is extremely important, as they will be the first to experience the negative effects of environmental degradation. Research has shown that Generation Z has the greatest hope for solutions from the technological sphere. Thus, the economic and political spheres should support the development of technology in this area. The social sphere is rated lowest, which may reflect young people’s personal withdrawal and the delegation of responsibility for the environment’s future to engineers, entrepreneurs, and politicians. It is equally important to learn what constitutes an environmental imperative for Generation Z. It is based on new energy sources, energy producers, and the state’s pursuit of a policy of international cooperation in this area, supported by national legislative activity toward entrepreneurs and citizens. Research has demonstrated the need to raise awareness among young people, with a focus on individuals treated as subjects in their interaction with modern technology. Full article
(This article belongs to the Section Social Ecology and Sustainability)
19 pages, 2573 KiB  
Review
A Review on Pipeline In-Line Inspection Technologies
by Qingmiao Ma, Weige Liang and Peiyi Zhou
Sensors 2025, 25(15), 4873; https://doi.org/10.3390/s25154873 (registering DOI) - 7 Aug 2025
Abstract
Pipelines, as critical infrastructure in energy transmission, municipal facilities, industrial production, and specialized equipment, are essential to national economic security and social stability. This paper systematically reviews the domestic and international research status of pipeline in-line inspection (ILI) technologies, with a focus on [...] Read more.
Pipelines, as critical infrastructure in energy transmission, municipal facilities, industrial production, and specialized equipment, are essential to national economic security and social stability. This paper systematically reviews the domestic and international research status of pipeline in-line inspection (ILI) technologies, with a focus on four major technological systems: electromagnetic, acoustic, optical, and robotic technologies. The operational principles, application scenarios, advantages, and limitations of each technology are analyzed in detail. Although existing technologies have achieved significant progress in defect detection accuracy and environmental adaptability, they still face challenges including insufficient adaptability to complex environments, the inherent trade-off between detection accuracy and efficiency, and high equipment costs. Future research directions are identified as follows: intelligent algorithm optimization for multi-physics collaborative detection, miniaturized and integrated design of inspection devices, and scenario-specific development for specialized environments. Through technological innovation and multidisciplinary integration, pipeline ILI technologies are expected to progressively realize efficient, precise, and low-cost lifecycle safety monitoring of pipelines. Full article
Show Figures

Figure 1

111 pages, 6426 KiB  
Article
Economocracy: Global Economic Governance
by Constantinos Challoumis
Economies 2025, 13(8), 230; https://doi.org/10.3390/economies13080230 (registering DOI) - 7 Aug 2025
Abstract
Economic systems face critical challenges, including widening income inequality, unemployment driven by automation, mounting public debt, and environmental degradation. This study introduces Economocracy as a transformative framework aimed at addressing these systemic issues by integrating democratic principles into economic decision-making to achieve social [...] Read more.
Economic systems face critical challenges, including widening income inequality, unemployment driven by automation, mounting public debt, and environmental degradation. This study introduces Economocracy as a transformative framework aimed at addressing these systemic issues by integrating democratic principles into economic decision-making to achieve social equity, economic efficiency, and environmental sustainability. The research focuses on two core mechanisms: Economic Productive Resets (EPRs) and Economic Periodic Injections (EPIs). EPRs facilitate proportional redistribution of resources to reduce income disparities, while EPIs target investments to stimulate job creation, mitigate automion-related job displacement, and support sustainable development. The study employs a theoretical and analytical methodology, developing mathematical models to quantify the impact of EPRs and EPIs on key economic indicators, including the Gini coefficient for inequality, unemployment rates, average wages, and job displacement due to automation. Hypothetical scenarios simulate baseline conditions, EPR implementation, and the combined application of EPRs and EPIs. The methodology is threefold: (1) a mathematical–theoretical validation of the Cycle of Money framework, establishing internal consistency; (2) an econometric analysis using global historical data (2000–2023) to evaluate the correlation between GNI per capita, Gini coefficient, and average wages; and (3) scenario simulations and Difference-in-Differences (DiD) estimates to test the systemic impact of implementing EPR/EPI policies on inequality and labor outcomes. The models are further strengthened through tools such as OLS regression, and Impulse results to assess causality and dynamic interactions. Empirical results confirm that EPR/EPI can substantially reduce income inequality and unemployment, while increasing wage levels, findings supported by both the theoretical architecture and data-driven outcomes. Results demonstrate that Economocracy can significantly lower income inequality, reduce unemployment, increase wages, and mitigate automation’s effects on the labor market. These findings highlight Economocracy’s potential as a viable alternative to traditional economic systems, offering a sustainable pathway that harmonizes growth, social justice, and environmental stewardship in the global economy. Economocracy demonstrates potential to reduce debt per capita by increasing the efficiency of public resource allocation and enhancing average income levels. As EPIs stimulate employment and productivity while EPRs moderate inequality, the resulting economic growth expands the tax base and alleviates fiscal pressures. These dynamics lead to lower per capita debt burdens over time. The analysis is situated within the broader discourse of institutional economics to demonstrate that Economocracy is not merely a policy correction but a new economic system akin to democracy in political life. Full article
Show Figures

Figure 1

17 pages, 2373 KiB  
Article
Simulation and Control of Water Pollution Load in the Xiaoxingkai Lake Basin Based on a System Dynamics Model
by Yaping Wu, Dan Chen, Fujia Li, Mingming Feng, Ping Wang, Lingang Hao and Chunnuan Deng
Sustainability 2025, 17(15), 7167; https://doi.org/10.3390/su17157167 (registering DOI) - 7 Aug 2025
Abstract
With the rapid development of the social economy, human activities have increasingly disrupted water environments, and the continuous input of pollutants poses significant challenges for water environment management. Taking the Xiaoxingkai Lake basin as the study area, this paper develops a social–economic–water environment [...] Read more.
With the rapid development of the social economy, human activities have increasingly disrupted water environments, and the continuous input of pollutants poses significant challenges for water environment management. Taking the Xiaoxingkai Lake basin as the study area, this paper develops a social–economic–water environment model based on the system dynamics methodology, incorporating subsystems for population, agriculture, and water pollution. The model focuses on four key indicators of pollution severity, namely, total nitrogen (TN), total phosphorus (TP), chemical oxygen demand (COD), and ammonia nitrogen (NH3-N), and simulates the changes in pollutant loads entering the river under five different scenarios from 2020 to 2030. The results show that agricultural non-point sources are the primary contributors to TN (79.5%) and TP (73.7%), while COD primarily originates from domestic sources (64.2%). NH3-N is mainly influenced by urban domestic activities (44.7%) and agricultural cultivation (41.2%). Under the status quo development scenario, pollutant loads continue to rise, with more pronounced increases under the economic development scenario, thus posing significant sustainability risks. The pollution control enhancement scenario is most effective in controlling pollutants, but it does not promote socio-economic development and has high implementation costs, failing to achieve coordinated socio-economic and environmental development in the region. The dual-reinforcement scenario and moderate-reinforcement scenario achieve a balance between pollution control and economic development, with the moderate-reinforcement scenario being more suitable for long-term regional development. The findings can provide a scientific basis for water resource management and planning in the Xiaoxingkai Lake basin. Full article
Show Figures

Figure 1

31 pages, 891 KiB  
Article
Corporate Digital Transformation and Capacity Utilization Rate: The Functionary Path via Technological Innovation
by Yang Liu, Hongyan Zhang, Xiang Gao and Yanxiang Xie
Int. J. Financial Stud. 2025, 13(3), 144; https://doi.org/10.3390/ijfs13030144 (registering DOI) - 7 Aug 2025
Abstract
The rapid development of digital technology is reshaping the global economic landscape. However, its impact on firms’ capacity utilization rate (CUR), particularly through technological innovation, remains unclear. This study investigates this issue by developing an endogenous growth model that connects digital technology to [...] Read more.
The rapid development of digital technology is reshaping the global economic landscape. However, its impact on firms’ capacity utilization rate (CUR), particularly through technological innovation, remains unclear. This study investigates this issue by developing an endogenous growth model that connects digital technology to CUR. The empirical analysis is based on data from Chinese A-share manufacturing firms. The methods employed include quantile regression, instrumental variable techniques, and various tests to explore underlying mechanisms. CUR is calculated using a special model that looks at random variations, and digital transformation is assessed using text analysis powered by machine learning. The findings indicate that digital transformation significantly enhances CUR, especially for firms with average capacity utilization levels, but has a limited effect on low- and high-end firms. Moreover, technological innovation mediates this relationship; however, factors like “double arbitrage” (involving policy and capital markets) and “herd effects” tend to prioritize quantity over quality, which constrains innovation potential. Improvements in CUR lead to enhanced firm performance and productivity, generating industry spillovers and demonstrating the broader economic externalities of digitalization. This study uniquely applies endogenous growth theory to examine the role of digital transformation in optimizing CUR. It introduces the “quantity-quality” technology innovation paradox as a crucial mechanism and highlights industry spillovers to address overcapacity while offering insights for fostering sustainable economic and social development in emerging markets. Full article
Show Figures

Figure 1

23 pages, 3193 KiB  
Perspective
The First Thirty Years of Green Stormwater Infrastructure in Portland, Oregon
by Michaela Koucka, Cara Poor, Jordyn Wolfand, Heejun Chang, Vivek Shandas, Adrienne Aiona, Henry Stevens, Tim Kurtz, Svetlana Hedin, Steve Fancher, Joshua Lighthipe and Adam Zucker
Sustainability 2025, 17(15), 7159; https://doi.org/10.3390/su17157159 - 7 Aug 2025
Abstract
Over the past 30 years, the City of Portland, Oregon, USA, has emerged as a national leader in green stormwater infrastructure (GSI). The initial impetus for implementing sustainable stormwater infrastructure in Portland stemmed from concerns about flooding and water quality in the city’s [...] Read more.
Over the past 30 years, the City of Portland, Oregon, USA, has emerged as a national leader in green stormwater infrastructure (GSI). The initial impetus for implementing sustainable stormwater infrastructure in Portland stemmed from concerns about flooding and water quality in the city’s two major rivers, the Columbia and the Willamette. Heavy rainfall often led to combined sewer overflows, significantly polluting these waterways. A partial solution was the construction of “The Big Pipe” project, a large-scale stormwater containment system designed to filter and regulate overflow. However, Portland has taken a more comprehensive and long-term approach by integrating sustainable stormwater management into urban planning. Over the past three decades, the city has successfully implemented GSI to mitigate these challenges. Low-impact development strategies, such as bioswales, green streets, and permeable surfaces, have been widely adopted in streetscapes, pathways, and parking areas, enhancing both environmental resilience and urban livability. This perspective highlights the history of the implementation of Portland’s GSI programs, current design and performance standards, and challenges and lessons learned throughout Portland’s recent history. Innovative approaches to managing runoff have not only improved stormwater control but also enhanced green spaces and contributed to the city’s overall climate resilience while addressing economic well-being and social equity. Portland’s success is a result of strong policy support, effective integration of green and gray infrastructure, and active community involvement. As climate change intensifies, cities need holistic, adaptive, and community-centered approaches to urban stormwater management. Portland’s experience offers valuable insights for cities seeking to expand their GSI amid growing concerns about climate resilience, equity, and aging infrastructure. Full article
Show Figures

Figure 1

45 pages, 2014 KiB  
Article
Innovative Business Models Towards Sustainable Energy Development: Assessing Benefits, Risks, and Optimal Approaches of Blockchain Exploitation in the Energy Transition
by Aikaterini Papapostolou, Ioanna Andreoulaki, Filippos Anagnostopoulos, Sokratis Divolis, Harris Niavis, Sokratis Vavilis and Vangelis Marinakis
Energies 2025, 18(15), 4191; https://doi.org/10.3390/en18154191 (registering DOI) - 7 Aug 2025
Abstract
The goals of the European Union towards the energy transition imply profound changes in the energy field, so as to promote sustainable energy development while fostering economic growth. To achieve these changes, the incorporation of sustainable technologies supporting decentralisation, energy efficiency, renewable energy [...] Read more.
The goals of the European Union towards the energy transition imply profound changes in the energy field, so as to promote sustainable energy development while fostering economic growth. To achieve these changes, the incorporation of sustainable technologies supporting decentralisation, energy efficiency, renewable energy production, and demand flexibility is of vital importance. Blockchain has the potential to change energy services towards this direction. To optimally exploit blockchain, innovative business models need to be designed, identifying the opportunities emerging from unmet needs, while also considering potential risks so as to take action to overcome them. In this context, the scope of this paper is to examine the opportunities and the risks that emerge from the adoption of blockchain in four innovative business models, while also identifying mitigation strategies to support and accelerate the energy transition, thus proposing optimal approaches of exploitation of blockchain in energy services. The business models concern Energy Performance Contracting with P4P guarantees, improved self-consumption in energy cooperatives, energy efficiency and flexibility services for natural gas boilers, and smart energy management for EV chargers and HVAC appliances. Firstly, the value proposition of the business models is analysed and results in a comprehensive SWOT analysis. Based on the findings of the analysis and consultations with relevant market actors, in combination with the examination of the relevant literature, risks are identified and evaluated through a qualitative assessment approach. Subsequently, specific mitigation strategies are proposed to address the detected risks. This research demonstrates that blockchain integration into these business models can significantly improve energy efficiency, reduce operational costs, enhance security, and support a more decentralised energy system, providing actionable insights for stakeholders to implement blockchain solutions effectively. Furthermore, according to the results, technological and legal risks are the most significant, followed by political, economic, and social risks, while environmental risks of blockchain integration are not as important. Strategies to address risks relevant to blockchain exploitation include ensuring policy alignment, emphasising economic feasibility, facilitating social inclusion, prioritising security and interoperability, consulting with legal experts, and using consensus algorithms with low energy consumption. The findings offer clear guidance for energy service providers, policymakers, and technology developers, assisting in the design, deployment, and risk mitigation of blockchain-enabled business models to accelerate sustainable energy development. Full article
Show Figures

Figure 1

29 pages, 1413 KiB  
Article
The Impact of VAT Credit Refunds on Enterprises’ Sustainable Development Capability: A Socio-Technical Systems Theory Perspective
by Jinghuai She, Meng Sun and Haoyu Yan
Systems 2025, 13(8), 669; https://doi.org/10.3390/systems13080669 - 7 Aug 2025
Abstract
We investigate whether China’s Value-Added Tax (VAT) Credit Refund policy influences firms’ sustainable development capability (SDC), which reflects innovation-driven growth and green development. Exploiting the 2018 implementation of the VAT Credit Refund policy as a quasi-natural experiment, we employ a difference-in-differences (DID) approach [...] Read more.
We investigate whether China’s Value-Added Tax (VAT) Credit Refund policy influences firms’ sustainable development capability (SDC), which reflects innovation-driven growth and green development. Exploiting the 2018 implementation of the VAT Credit Refund policy as a quasi-natural experiment, we employ a difference-in-differences (DID) approach and find causal evidence that the policy significantly enhances firms’ SDC. This suggests that fiscal instruments like VAT refunds are valued by firms as drivers of long-term sustainable and high-quality development. Our mediating analyses further reveal that the policy promotes firms’ SDC by strengthening artificial intelligence (AI) capabilities and facilitating intelligent transformation. This mechanism “AI Capability Building—Intelligent Transformation” aligns with the socio-technical systems theory (STST), highlighting the interactive evolution of technological and social subsystems in shaping firm capabilities. The heterogeneity analyses indicate that the positive effect of VAT Credit Refund policy on SDC is more pronounced among small-scale and non-high-tech firms, firms with lower perceived economic policy uncertainty, higher operational diversification, lower reputational capital, and those located in regions with a higher level of marketization. We also find that the policy has persistent long-term effects, with improved SDC associated with enhanced ESG performance and green innovation outcomes. Our findings have important implications for understanding the SDC through the lens of STST and offer policy insights for deepening VAT reform and promoting intelligent and green transformation in China’s enterprises. Full article
(This article belongs to the Section Systems Practice in Social Science)
Show Figures

Figure 1

19 pages, 12670 KiB  
Article
Risk Assessment of Flood Disasters with Multi-Source Data and Its Spatial Differentiation Characteristics
by Wenxia Jing, Yinghua Song, Wei Lv and Junyi Yang
Sustainability 2025, 17(15), 7149; https://doi.org/10.3390/su17157149 - 7 Aug 2025
Abstract
The changing global climate and rapid urbanization make extreme rainstorm events frequent, and the flood disaster caused by rainstorm has become a prominent problem of urban public safety in China, which severely restricts the healthy and sustainable development of social economy. The weight [...] Read more.
The changing global climate and rapid urbanization make extreme rainstorm events frequent, and the flood disaster caused by rainstorm has become a prominent problem of urban public safety in China, which severely restricts the healthy and sustainable development of social economy. The weight calculation method of traditional risk assessment model is single and ignores the difference of multi-dimensional information space involved in risk analysis. This study constructs a flood risk assessment model by incorporating natural, social, and economic factors into an indicator system structured around four dimensions: hazard, exposure, vulnerability, and disaster prevention and mitigation capacity. A combination of the Analytic Hierarchy Process (AHP) and the entropy weight method is employed to optimize both subjective and objective weights. Taking the central urban area of Wuhan with a high flood risk as an example, based on the risk assessment values, spatial autocorrelation analysis, cluster analysis, outlier analysis, and hotspot analysis are applied to explore the spatial clustering characteristics of risks. The results show that the overall assessment level of flood hazard in central urban area of Wuhan is medium, the overall assessment level of exposure and vulnerability is low, and the overall disaster prevention and mitigation capability is medium. The overall flood risk levels in Wuchang and Jianghan are the highest, while some areas in Qingshan and Hanyang have the lowest levels. The spatial characteristics of each dimension evaluation index show obvious autocorrelation and spatial differentiation. These findings aim to provide valuable suggestions and references for reducing urban disaster risks and achieving sustainable urban development. Full article
(This article belongs to the Special Issue Sustainable Transport and Land Use for a Sustainable Future)
Show Figures

Figure 1

13 pages, 778 KiB  
Article
Relationship Between Chronic Wasting Disease (CWD) Infection and Pregnancy Probability in Wild Female White-Tailed Deer (Odocoileus virginianus) in Northern Illinois, USA
by Jameson Mori, Nelda A. Rivera, William Brown, Daniel Skinner, Peter Schlichting, Jan Novakofski and Nohra Mateus-Pinilla
Pathogens 2025, 14(8), 786; https://doi.org/10.3390/pathogens14080786 - 7 Aug 2025
Abstract
White-tailed deer (Odocoileus virginianus) are a cervid species native to the Americas with ecological, social, and economic significance. Managers must consider several factors when working to maintain the health and sustainability of these wild herds, including reproduction, particularly pregnancy and recruitment [...] Read more.
White-tailed deer (Odocoileus virginianus) are a cervid species native to the Americas with ecological, social, and economic significance. Managers must consider several factors when working to maintain the health and sustainability of these wild herds, including reproduction, particularly pregnancy and recruitment rates. White-tailed deer have a variable reproductive capacity, with age, health, and habitat influencing this variability. However, it is unknown whether chronic wasting disease (CWD) impacts reproduction and, more specifically, if CWD infection alters a female deer’s probability of pregnancy. Our study addressed this question using data from 9783 female deer culled in northern Illinois between 2003 and 2023 as part of the Illinois Department of Natural Resources’ ongoing CWD management program. Multilevel Bayesian logistic regression was employed to quantify the relationship between pregnancy probability and covariates like maternal age, deer population density, and date of culling. Maternal infection with CWD was found to have no significant effect on pregnancy probability, raising concerns that the equal ability of infected and non-infected females to reproduce could make breeding, which inherently involves close physical contact, an important source of disease transmission between males and females and females and their fawns. The results also identified that female fawns (<1 year old) are sensitive to county-level deer land cover utility (LCU) and deer population density, and that there was no significant difference in how yearlings (1–2 years old) and adult (2+ years old) responded to these variables. Full article
Show Figures

Figure 1

18 pages, 1891 KiB  
Systematic Review
Circular Agriculture Models: A Systematic Review of Academic Contributions
by Wilma Guerrero-Villegas, Maribel Rosero-Rosero, Eleonora-Melissa Layana-Bajana and Héctor Villares-Villafuerte
Sustainability 2025, 17(15), 7146; https://doi.org/10.3390/su17157146 - 7 Aug 2025
Abstract
This study contributes to scientific theory by analyzing the models proposed within the framework of circular agriculture to determine how the three dimensions of sustainability—environmental, economic, and social—are integrated into their implementation. A systematic review was conducted on articles published between 2016 and [...] Read more.
This study contributes to scientific theory by analyzing the models proposed within the framework of circular agriculture to determine how the three dimensions of sustainability—environmental, economic, and social—are integrated into their implementation. A systematic review was conducted on articles published between 2016 and 2025, indexed in the Scopus and Web of Science databases, as well as the relevant grey literature. The methodology employed an extensive content analysis designed to minimize bias, applying filters related to specific knowledge areas to delimitate the search scope and enhance the precision of the research. The findings reveal that the research on circular agriculture models is predominantly grounded in the principles of the circular economy and its associated indicators. Moreover, these models tend to focus on environmental metrics, often neglecting a comprehensive exploration of the social and economic dimensions of sustainable development. It can be concluded that a significant gap persists in the literature regarding the circularity of agriculture and its socio-economic impacts and the role of regulatory frameworks, aspects that future research must address in order to achieve sustainability in circular agriculture. Full article
(This article belongs to the Special Issue Resource Management and Circular Economy Sustainability)
Show Figures

Figure 1

29 pages, 1751 KiB  
Article
The Structure of the Semantic Network Regarding “East Asian Cultural Capital” on Chinese Social Media Under the Framework of Cultural Development Policy
by Tianyi Tao and Han Woo Park
Information 2025, 16(8), 673; https://doi.org/10.3390/info16080673 - 7 Aug 2025
Abstract
This study focuses on cultural and urban development policies under China’s 14th Five-Year Plan, exploring the content and semantic structure of discussions on the “East Asian Cultural Capital” project on the Weibo platform. It analyzes how national cultural development policies are reflected in [...] Read more.
This study focuses on cultural and urban development policies under China’s 14th Five-Year Plan, exploring the content and semantic structure of discussions on the “East Asian Cultural Capital” project on the Weibo platform. It analyzes how national cultural development policies are reflected in the discourse system related to the “East Asian Cultural Capital” on social media and emphasizes the guiding role of policies in the dissemination of online culture. When China announced the 14th Five-Year Plan in 2021, the strategic direction and policy framework for cultural development over the five-year period from 2021 to 2025 were clearly outlined. This study employs text mining and semantic network analysis methods to analyze user-generated content on Weibo from 2023 to 2024, aiming to understand public perception and discourse trends. Word frequency and TF-IDF analyses identify key terms and issues, while centrality and CONCOR clustering analyses reveal the semantic structure and discourse communities. MR-QAP regression is employed to compare network changes across the two years. Findings highlight that urban cultural development, heritage preservation, and regional exchange are central themes, with digital media, cultural branding, trilateral cooperation, and cultural–economic integration emerging as key factors in regional collaboration. Full article
(This article belongs to the Special Issue Semantic Networks for Social Media and Policy Insights)
Show Figures

Figure 1

39 pages, 5974 KiB  
Article
Metamodeling Approach to Sociotechnical Systems’ External Context Digital Twins Building: A Higher Education Case Study
by Ana Perisic, Ines Perisic, Marko Lazic and Branko Perisic
Appl. Sci. 2025, 15(15), 8708; https://doi.org/10.3390/app15158708 - 6 Aug 2025
Abstract
Sociotechnical systems (STSs) are generally assumed to be systems that incorporate humans and technology, strongly depending on a sustainable equilibrium between the following nondeterministic social context ingredients: social structures, roles, and rights, as well as the designers’ Holy Grail, the deterministic nature of [...] Read more.
Sociotechnical systems (STSs) are generally assumed to be systems that incorporate humans and technology, strongly depending on a sustainable equilibrium between the following nondeterministic social context ingredients: social structures, roles, and rights, as well as the designers’ Holy Grail, the deterministic nature of the underlying technical system. The fact that the relevant social concepts are more mature than the supporting technologies qualifies the digital transformation of sociotechnical systems as a reengineering rather than an engineering endeavor. Preserving the social mission throughout the digital transformation process in varying social contexts is mandatory, making the digital twins (DT) methodology application a contemporary research hotspot. In this research, we combined continuous transformation STS theory principles, an observer-based system-of-sociotechnical-systems (SoSTS) architecture model, and digital twinning methods to address common STS context representation challenges. Additionally, based on model-driven systems engineering methodology and meta-object-facility principles, the research specifies the universal meta-concepts and meta-modeling templates, supporting the creation of arbitrary sociotechnical systems’ external context digital twins. Due to the inherent diversity, significantly influenced by geopolitical, economic, and cultural influencers, a higher education external context specialization illustrates the reusability potentials of the proposed universal meta-concepts. Substituting higher-education-related meta-concepts and meta-models with arbitrary domain-dependent specializations further fosters the proposed universal meta-concepts’ reusability. Full article
Show Figures

Figure 1

Back to TopTop