Relationship Between Chronic Wasting Disease (CWD) Infection and Pregnancy Probability in Wild Female White-Tailed Deer (Odocoileus virginianus) in Northern Illinois, USA
Abstract
1. Introduction
2. Materials and Methods
2.1. Software
2.2. Reproductive Dataset and Additional Covariates
2.3. Multilevel Bayesian Logistic Regression
3. Results
4. Discussion
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Winston, B.; Smith, P. Odocoileus virginianus. Mamm. Species 1991, 388, 1–13. [Google Scholar] [CrossRef]
- Urbanek, R.E.; Nielsen, C.K.; Glowacki, G.A.; Preuss, T.S. White-tailed deer (Odocoileus virginianus Zimm.) Herbivory in herbaceous plant communities in northeastern Illinois. Nat. Areas J. 2012, 32, 6–14. [Google Scholar] [CrossRef]
- Greenwald, K.R.; Petit, L.J.; Wiate, T.A. Indirect Effects of a Keystone Herbivore Elevate Local Animal Diversity. J. Wildl. Manag. 2008, 72, 1318–1321. [Google Scholar] [CrossRef]
- Hewitt, D.G. Hunters and the conservation and management of white-tailed deer (Odocoileus virginianus). Int. J. Environ. Stud. 2015, 72, 839–849. [Google Scholar] [CrossRef]
- Rochlin, I.; Kenney, J.; Little, E.; Molaei, G. Public health significance of the white-tailed deer (Odocoileus virginianus) and its role in the eco-epidemiology of tick- and mosquito-borne diseases in North America. Parasites Vectors 2025, 18, 43. [Google Scholar] [CrossRef]
- Boyer, C.N.; Chen, L.; Perez-Quesada, G.; Smith, S.A. Unwelcomed guests: Impact of deer harvest on corn and soybean wildlife damage. Crop Prot. 2024, 183, 106753. [Google Scholar] [CrossRef]
- Finder, R.A.; Roseberry, J.L.; Woolf, A. Site and landscape conditions at white-tailed deer/vehicle collision locations in Illinois. Landsc. Urban Plan. 1999, 44, 77–85. [Google Scholar] [CrossRef]
- Illinois Department of Natural Resources. Deer Ecology: Reproduction. Available online: https://deer.wildlifeillinois.org/deer-ecology/reproduction/ (accessed on 2 June 2025).
- Green, M.L.; Kelly, A.C.; Satterthwaite-Phillips, D.; Manjerovic, M.B.; Shelton, P.; Novakofski, J.; Mateus-Pinilla, N. Reproductive characteristics of female white-tailed deer (Odocoileus virginianus) in the Midwestern USA. Theriogenology 2017, 94, 71–78. [Google Scholar] [CrossRef] [PubMed]
- Illinois Department of Natural Resources. Deer Ecology: Mortality & Longevity. Available online: https://deer.wildlifeillinois.org/deer-ecology/mortality-and-longevity/ (accessed on 2 May 2025).
- Gastal, G.D.A.; Hamilton, A.; Alves, B.G.; De Tarso, S.G.S.; Feugang, J.M.; Banz, W.J.; Apgar, G.A.; Nielsen, C.K.; Gastal, E.L. Ovarian features in white-tailed deer (Odocoileus virginianus) fawns and does. PLoS ONE 2017, 12, e0177357. [Google Scholar] [CrossRef]
- Ozoga, J.J.; Verme, L.J. Relation of Maternal Age to Fawn-Rearing Success in White-Tailed Deer. J. Wildl. Manag. 1986, 50, 480–486. [Google Scholar] [CrossRef]
- Verme, L.J. Reproduction Studies on Penned White-Tailed Deer. J. Wildl. Manag. 1965, 29, 74–79. [Google Scholar] [CrossRef]
- Swihart, R.K.; Weeks, H.P.; Easter-Pilcher, A.L.; DeNicola, A.J. Nutritional condition and fertility of white-tailed deer (Odocoileus virginianus) from areas with contrasting histories of hunting. Can. J. Zool. 1998, 76, 1932–1941. [Google Scholar] [CrossRef]
- Mori, J.; Brown, W.; Skinner, D.; Schlichting, P.; Novakofski, J.; Mateus-Pinilla, N. An Updated Framework for Modeling White-Tailed Deer (Odocoileus virginianus) Habitat Quality in Illinois, USA. Ecol. Evol. 2024, 14, e70487. [Google Scholar] [CrossRef] [PubMed]
- Haugen, A.O. Reproductive performance of white-tailed deer in Iowa. J. Mammal. 1975, 56, 151–159. [Google Scholar] [CrossRef]
- Ayotte, P.; Simard, M.A.; Côté, S.D. Reproductive plasticity of female white-tailed deer at high density and under harsh climatic conditions. Oecologia 2019, 189, 661–673. [Google Scholar] [CrossRef]
- Adams, H.L.; Kissell, R.E.; Ratajczak, D.; Warr, E.L.; Applegate, R.D.; Barrett, L.; Lavacot, T.; Graves, D. Relationships among white-tailed deer density, harvest, and landscape metrics in TN, USA. Eur. J. Wildl. Res. 2020, 66, 19. [Google Scholar] [CrossRef]
- Rivera, N.A.; Brandt, A.L.; Novakofski, J.E.; Mateus-Pinilla, N.E. Chronic Wasting Disease In Cervids: Prevalence, Impact And Management Strategies. Vet. Med. Res. Rep. 2019, 10, 123–139. [Google Scholar] [CrossRef]
- Denkers, N.D.; McNulty, E.E.; Kraft, C.N.; Nalls, A.V.; Westrich, J.A.; Hoover, E.A.; Mathiason, C.K. Temporal Characterization of Prion Shedding in Secreta of White-Tailed Deer in Longitudinal Study of Chronic Wasting Disease, United States. Emerg. Infect. Dis. 2024, 30, 2118–2127. [Google Scholar] [CrossRef]
- Nalls, A.V.; McNulty, E.E.; Mayfield, A.; Crum, J.M.; Keel, M.K.; Hoover, E.A.; Ruder, M.G.; Mathiason, C.K. Detection of chronic wasting disease prions in fetal tissues of free-ranging white-tailed deer. Viruses 2021, 13, 2430. [Google Scholar] [CrossRef]
- Nalls, A.V.; McNulty, E.; Powers, J.; Seelig, D.M.; Hoover, C.; Haley, N.J.; Hayes-Klug, J.; Anderson, K.; Stewart, P.; Goldmann, W.; et al. Mother to Offspring Transmission of Chronic Wasting Disease in Reeves’ Muntjac Deer. PLoS ONE 2013, 8, e71844. [Google Scholar] [CrossRef]
- Bravo-Risi, F.; Soto, P.; Eckland, T.; Dittmar, R.; Ramírez, S.; Catumbela, C.S.G.; Soto, C.; Lockwood, M.; Nichols, T.; Morales, R. Detection of CWD prions in naturally infected white-tailed deer fetuses and gestational tissues by PMCA. Sci. Rep. 2021, 11, 18385. [Google Scholar] [CrossRef]
- Mathiason, C.K.; Powers, J.G.; Dahmes, S.J.; Osborn, D.A.; Miller, K.V.; Warren, R.J.; Mason, G.L.; Hays, S.A.; Hayes-Klug, J.; Seelig, D.M.; et al. Infectious Prions in the Salivaand Blood of Deer with ChronicWasting Disease. Science 2006, 314, 130–133. [Google Scholar] [CrossRef]
- Kraft, C.N.; Denkers, N.D.; Mathiason, C.K.; Hoover, E.A. Longitudinal detection of prion shedding in nasal secretions of CWD-infected white-tailed deer. J. Gen. Virol. 2023, 104, 001825. [Google Scholar] [CrossRef]
- Hirth, D.H. Mother-Young Behavior in White-Tailed Deer, Odocoileus virginianus. Southwest Nat. 1985, 30, 297–302. [Google Scholar]
- Monello, R.J.; Powers, J.G.; Hobbs, N.T.; Spraker, T.R.; Watry, M.K.; Wild, M. a Survival and population growth of a free-ranging elk population with a long history of Exposure to Chronic Wasting Disease. J. Wildl. Manag. 2014, 78, 214–223. [Google Scholar]
- Foley, A.M.; Hewitt, D.G.; DeYoung, C.A.; DeYoung, R.W.; Schnupp, M.J. Modeled impacts of chronic wasting disease on white-tailed deer in a semi-arid environment. PLoS ONE 2016, 11, e0163592. [Google Scholar] [CrossRef]
- DeVivo, M.T.; Edmunds, D.R.; Kauffman, M.J.; Schumaker, B.A.; Binfet, J.; Kreeger, T.J.; Richards, B.J.; Schätzl, H.M.; Cornish, T.E. Endemic chronic wasting disease causes mule deer population decline in Wyoming. PLoS ONE 2017, 12, e0186512. [Google Scholar] [CrossRef]
- Almberg, E.S.; Cross, P.C.; Johnson, C.J.; Heisey, D.M.; Richards, B.J. Modeling routes of chronic wasting disease transmission: Environmental prion persistence promotes deer population decline and extinction. PLoS ONE 2011, 6, e19896. [Google Scholar] [CrossRef]
- Edmunds, D.R.; Kauffman, M.J.; Schumaker, B.A.; Lindzey, F.G.; Cook, W.E.; Kreeger, T.J.; Grogan, R.G.; Cornish, T.E. Chronic wasting disease drives population decline of white-tailed deer. PLoS ONE 2016, 11, e0161127. [Google Scholar] [CrossRef]
- Mori, J.; Novakofski, J.; Schlichting, P.E.; Skinner, D.J.; Mateus-Pinilla, N. The impact of maternal infection with chronic wasting disease on fetal characteristics in wild white-tailed deer (Odocoileus virginianus) in Illinois, USA. Theriogenology Wild 2022, 1, 100010. [Google Scholar] [CrossRef]
- Blanchong, J.A.; Grear, D.A.; Weckworth, B.V.; Keane, D.P.; Scribner, K.T.; Samuel, M.D. Effects of chronic wasting disease on reproduction and fawn harvest vulnerability in Wisconsin white-tailed deer. J. Wildl. Dis. 2012, 48, 361–370. [Google Scholar] [CrossRef]
- Haley, N.J.; Henderson, D.M.; Donner, R.; Wyckoff, S.; Merrett, K.; Tennant, J.; Hoover, E.A.; Love, D.; Kline, E.; Lehmkuhl, A.D.; et al. Management of chronic wasting disease in ranched elk: Conclusions from a longitudinal three-year study. Prion 2020, 14, 76–87. [Google Scholar] [CrossRef]
- Sargeant, G.A.; Weber, D.C.; Roddy, D.E. Implications of chronic wasting disease, cougar predation, and reduced recruitment for elk management. J. Wildl. Manag. 2011, 75, 171–177. [Google Scholar] [CrossRef]
- Jobgen, W.S.; Ford, S.P.; Jobgen, S.C.; Feng, C.P.; Hess, B.W.; Nathanielsz, P.W.; Li, P.; Wu, G. Baggs ewes adapt to maternal undernutrition and maintain conceptus growth by maintaining fetal plasma concentrations of amino acids. J. Anim. Sci. 2008, 86, 820–826. [Google Scholar] [CrossRef]
- Vautier, A.N.; Cadaret, C.N. Long-Term Consequences of Adaptive Fetal Programming in Ruminant Livestock. Front. Anim. Sci. 2022, 3, 778440. [Google Scholar] [CrossRef]
- Hoinville, L.J.; Tongue, S.C.; Wilesmith, J.W. Evidence for maternal transmission of scrapie in naturally affected flocks. Prev. Vet. Med. 2010, 93, 121–128. [Google Scholar] [CrossRef] [PubMed]
- Thorson, J.F.; Prezotto, L.D. Protracted maternal malnutrition induces aberrant changes in maternal uterine artery hemodynamics and the metabolic profiles of the dam and neonate. Front Physiol. 2024, 15, 1501309. [Google Scholar] [PubMed]
- González, L.; Dagleish, M.P.; Martin, S.; Finlayson, J.; Sisó, S.; Eaton, S.L.; Goldmann, W.; Witz, J.; Hamilton, S.; Stewart, P.; et al. Factors influencing temporal variation of scrapie incidence within a closed Suffolk sheep flock. J. Gen. Virol. 2012, 93, 203–211. [Google Scholar] [CrossRef] [PubMed]
- Ferguson, N.H.; Dontnelly, C.A.; Woolhouse, M.E.J.; Anderson, R.M. A genetic interpretation of heightened risk of BSE in offspring of affected dams. Proc. R. Soc. B Biol. Sci. 1997, 264, 1445–1455. [Google Scholar] [CrossRef]
- Chase-Topping, M.E.; Kruuk, L.E.B.; Lajous, D.; Touzeau, S.; Matthews, L.; Simm, G.; Foster, J.D.; Rupp, R.; Eychenne, F.; Hunter, N.; et al. Genotype-level variation in lifetime breeding success, litter size and survival of sheep in scrapie-affected flocks. J. Gen. Virol. 2005, 86, 1229–1238. [Google Scholar] [CrossRef]
- Illinois Department of Natural Resources. Chronic Wasting Disease Management. Available online: https://dnr.illinois.gov/programs/cwd.html (accessed on 4 February 2025).
- R Core Team. R: A Language and Environment for Statistical Computing; R Core Team: Vienna, Austria, 2024; Available online: https://www.r-project.org/ (accessed on 4 February 2025).
- Manjerovic, M.B.; Green, M.L.; Mateus-Pinilla, N.; Novakofski, J. The importance of localized culling in stabilizing chronic wasting disease prevalence in white-tailed deer populations. Prev. Vet. Med. 2014, 113, 139–145. [Google Scholar] [CrossRef] [PubMed]
- Gee, K.L.; Holman, J.H.; Causey, M.K.; Rossi, A.N.; Armstrong, J.B. Aging white-tailed deer by tooth replacement and wear: A critical evaluation of a time-honored technique. Wildl. Soc. Bull. 2002, 30, 387–393. [Google Scholar]
- Illinois Department of Natural Resources. Harvest Data. 2023. Available online: https://huntillinois.org/harvest-data (accessed on 4 February 2025).
- Gelman, A. Scaling regression inputs by dividing by two standard deviations. Stat. Med. 2008, 27, 2865–2873. [Google Scholar] [CrossRef] [PubMed]
- Bürkner, P.C. brms: An R package for Bayesian multilevel models using Stan. J. Stat. Softw. 2017, 80, 1–28. [Google Scholar] [CrossRef]
- Lüdecke, D.; Ben-Shachar, M.; Patil, I.; Waggoner, P.; Makowski, D. performance: An R Package for Assessment, Comparison and Testing of Statistical Models. J. Open Source Softw. 2021, 6, 3139. [Google Scholar] [CrossRef]
- Vehtari, A.; Gelman, A.; Gabry, J. Practical Bayesian model evaluation using leave-one-out cross-validation and WAIC. Stat. Comput. 2017, 27, 1413–1432. [Google Scholar] [CrossRef]
- Gabry, J.; Simpson, D.; Vehtari, A.; Betancourt, M.; Gelman, A. Visualization in Bayesian workflow. J. R. Stat. Soc. 2019, 182, 389–402. [Google Scholar] [CrossRef]
- Tjur, T. Coefficients of determination in logistic regression models—A new proposal: The coefficient of discrimination. Am. Stat. 2009, 63, 366–372. [Google Scholar] [CrossRef]
- James, G.; Witten, D.; Hastie, T.; Tibshirani, R.; Taylor, J. Linear Regression. In An Introduction to Statistical Learning with Applications in Python; Springer: Cham, Switzerland, 2023; pp. 69–127. [Google Scholar]
- Dulberger, J.; Thompson Hobbs, N.; Swanson, H.M.; Bishop, C.J.; Miller, M.W. Estimating Chronic Wasting Disease Effects on Mule deer Recruitment and Population Growth. J. Wildl. Dis. 2010, 46, 1086–1095. [Google Scholar] [CrossRef] [PubMed]
Covariate | Definition | Units | Spatial Scale | Data Range | |
---|---|---|---|---|---|
Weight | No Weight | ||||
Maternal age | Age of female deer when culled, grouped into fawns (<1 year old), yearlings (1–2 years), and adults (2+ years). | - | - | fawn, yearling, or adult 2 | fawn, yearling, or adult |
Maternal weight | Mass of female deer when culled. | kg | - | 19.4 to 86.10 | - |
Maternal chronic wasting disease (CWD) status | CWD infection status of female deer. | - | - | 0 (−) or 1 (+) | 0 (−) or 1 (+) |
Day of fiscal year | Day of fiscal year (starts July 1st). | day | - | 201 to 272 | 196 to 275 |
Deer land cover utility index 1 | Score given to a spatial area for its quality and quantity of deer habitat. | - | TRS | 1141 to 10,806 | 231 to 10,973 |
Township | 305 to 10,072 | 305 to 10,072 | |||
County | 1014 to 8146 | 1014 to 8742 | |||
Deer population density | Deer removed by hunting in a county and fiscal year, divided by county area. | deer/km2 | County | 0.17 to 2.18 | 0.04 to 2.73 |
Covariate | Model | ||||
---|---|---|---|---|---|
1 (LOOIC = 2346.7) | 2 (LOOIC = 2498) | 3 (LOOIC = 2332.6) | 4 (LOOIC = 2368) | 5 (LOOIC = 2229.6) | |
Deer Population Density | TRS LCU | Township LCU | County LCU | Deer Population Density + TRS LCU | |
Age (fawn) | −1.41 (−2.3, −0.6) | −2.23 (−3.3, −1.1) | 1.93 (−2.9, −0.9) | −1.37 (−2.2, −0.5) | −2.37 (−3.4, −1.3) |
Age (yearling) | −0.25 (−0.6, 0.1) | −0.32 (−0.7, 0.1) | −0.26 (−0.7, 0.1) | −0.23 (−0.6, 0.1) | −0.33 (−0.7, 0.1) |
Maternal weight | −0.15 (−0.7, 0.4) | −0.06 (−0.7, 0.6) | 0.07 (0.6, 0.7) | −0.15 (−0.7, 0.4) | −0.04 (−0.7, 0.6) |
Interaction Term | 95% Credibility Interval | |||
---|---|---|---|---|
Covariate 1 | Covariate 2 | Lower Bound | Upper Bound | Significant |
Maternal age (fawn) | CWD | −0.51 | 2.19 | - |
Day of fiscal year | −0.34 | 0.29 | - | |
Deer population density | −2.47 | −1.18 | xxx | |
County LCU 1 | 0.83 | 2.00 | xxx | |
Maternal age (yearling) | CWD | −0.04 | 3.09 | - |
Day of fiscal year | −0.62 | 0.13 | - | |
Deer population density | −0.11 | 1.33 | - | |
County LCU 1 | −0.76 | 0.55 | - | |
Deer population density | County LCU 1 | −1.48 | 0.57 | - |
Covariate | Regression Coefficient | 95% Credibility Interval | Change in Pregnancy Probability (%) | |
---|---|---|---|---|
Lower Bound | Upper Bound | |||
Maternal age (fawn) | −4.00 | −4.20 | −3.81 | −98.17% |
Maternal age (yearling) | −0.50 | −0.69 | −0.30 | −39.35% |
CWD | −0.11 | −0.54 | 0.34 | - |
Day of fiscal year | 0.72 | 0.57 | 0.87 | 105.44% |
Deer population density | 1.67 | 0.41 | 2.89 | 431.22% |
County LCU 1 | −0.94 | −2.15 | 0.30 | - |
Maternal age (fawn): Deer population density | −1.82 | −2.46 | −1.18 | −83.80% |
Maternal age (yearling): Deer population density | 0.59 | −0.13 | 1.32 | - |
Maternal age (fawn): County LCU 1 | 1.40 | 0.82 | 1.99 | 305.52% |
Maternal age (yearling): County LCU 1 | −0.10 | −0.78 | 0.56 | - |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mori, J.; Rivera, N.A.; Brown, W.; Skinner, D.; Schlichting, P.; Novakofski, J.; Mateus-Pinilla, N. Relationship Between Chronic Wasting Disease (CWD) Infection and Pregnancy Probability in Wild Female White-Tailed Deer (Odocoileus virginianus) in Northern Illinois, USA. Pathogens 2025, 14, 786. https://doi.org/10.3390/pathogens14080786
Mori J, Rivera NA, Brown W, Skinner D, Schlichting P, Novakofski J, Mateus-Pinilla N. Relationship Between Chronic Wasting Disease (CWD) Infection and Pregnancy Probability in Wild Female White-Tailed Deer (Odocoileus virginianus) in Northern Illinois, USA. Pathogens. 2025; 14(8):786. https://doi.org/10.3390/pathogens14080786
Chicago/Turabian StyleMori, Jameson, Nelda A. Rivera, William Brown, Daniel Skinner, Peter Schlichting, Jan Novakofski, and Nohra Mateus-Pinilla. 2025. "Relationship Between Chronic Wasting Disease (CWD) Infection and Pregnancy Probability in Wild Female White-Tailed Deer (Odocoileus virginianus) in Northern Illinois, USA" Pathogens 14, no. 8: 786. https://doi.org/10.3390/pathogens14080786
APA StyleMori, J., Rivera, N. A., Brown, W., Skinner, D., Schlichting, P., Novakofski, J., & Mateus-Pinilla, N. (2025). Relationship Between Chronic Wasting Disease (CWD) Infection and Pregnancy Probability in Wild Female White-Tailed Deer (Odocoileus virginianus) in Northern Illinois, USA. Pathogens, 14(8), 786. https://doi.org/10.3390/pathogens14080786