Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (19)

Search Parameters:
Keywords = smart textile washability

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
39 pages, 7688 KiB  
Review
Advances and Applications of Graphene-Enhanced Textiles: A 10-Year Review of Functionalization Strategies and Smart Fabric Technologies
by Patricia Rocio Durañona Aznar and Heitor Luiz Ornaghi Junior
Textiles 2025, 5(3), 28; https://doi.org/10.3390/textiles5030028 - 22 Jul 2025
Viewed by 379
Abstract
Graphene has emerged as a promising material for transforming conventional textiles into smart, multi-functional platforms due to its exceptional electrical, thermal, and mechanical properties. This review aims to provide a comprehensive overview of the latest advances in graphene-enhanced fabrics over the past ten [...] Read more.
Graphene has emerged as a promising material for transforming conventional textiles into smart, multi-functional platforms due to its exceptional electrical, thermal, and mechanical properties. This review aims to provide a comprehensive overview of the latest advances in graphene-enhanced fabrics over the past ten years, focusing on their functional properties and real-world applications. This article examines the main strategies used to incorporate graphene and its derivatives—such as graphene oxide and reduced graphene oxide—into textile substrates through coating, printing, or composite formation. The structural, electrical, thermal, mechanical, and electrochemical properties of these fabrics are discussed based on characterization techniques including microscopy, Raman spectroscopy, and cyclic voltammetry. Functional evaluations in wearable strain sensors, biosignal acquisition, electrothermal systems, and energy storage devices are highlighted to demonstrate the versatility of these materials. Although challenges remain in scalability, durability, and washability, recent developments in fabrication and encapsulation methods show significant potential to overcome these limitations. This review concludes by outlining the major opportunities and future directions for graphene-based textiles in areas such as personalized health monitoring, active thermal wear, and integrated wearable electronics. Full article
Show Figures

Figure 1

22 pages, 5560 KiB  
Article
Ultralong Carbon Nanotube Yarns Integrated as Electronic Functional Elements in Smart Textiles
by Ayelet Karmon, Ori Topaz, Raman Tandon, Andy Weck, Ortal Tiurin, Sheizaf Rafaeli and Zeev Weissman
Textiles 2025, 5(2), 13; https://doi.org/10.3390/textiles5020013 - 4 Apr 2025
Viewed by 1280
Abstract
Smart textiles are an evolving field, but challenges in durability, washing, interfacing, and sustainability persist. Widespread adoption requires robust, lightweight, fully integrated fiber-based conductors. This paper proposes using ultralong carbon nanotube (UCNT) yarns with a width-to-length ratio of several orders of magnitude larger [...] Read more.
Smart textiles are an evolving field, but challenges in durability, washing, interfacing, and sustainability persist. Widespread adoption requires robust, lightweight, fully integrated fiber-based conductors. This paper proposes using ultralong carbon nanotube (UCNT) yarns with a width-to-length ratio of several orders of magnitude larger than typical carbon nanotube fibers. These yarns enable the manufacturing of stable, workable structures, composed of a network of twisted fibers (tows), which are suitable for fabric integration. Our research includes the creation of textile prototype demonstrators integrated with coated and non-coated UCNT yarns, tested under military-grade standards for both mechanical durability and electric functionality. The demonstrators were evaluated for their electrical and mechanical properties under washability, abrasion, and weathering. Notably, polymer-coated UCNT yarns demonstrated improved mechanical durability and electrical performance, showing promising results. However, washing tests revealed the presence of UCNT nanofibers in the residue, raising concerns due to their classification as hazards by the World Health Organization. This paper examines the sources of fiber release and discusses necessary improvements to coating formulations and testing protocols to mitigate fiber loss and enhance their practical viability. These findings underscore both the potential and limitations of UCNT yarns in military textile applications. Full article
Show Figures

Figure 1

19 pages, 10502 KiB  
Article
Flexible and Washable Poly(3,4-ethylenedioxythiophene): Polystyrene Sulfonate/Polyvinyl Alcohol Fabric Dry Electrode for Long-Term Electroencephalography Signals Measurement
by Fangmeng Zeng, Guanghua Wang, Chenyi Sun, Jiayi Gao, Shanqun Ji and Quanxi Zhang
Polymers 2025, 17(5), 683; https://doi.org/10.3390/polym17050683 - 4 Mar 2025
Viewed by 1011
Abstract
Recent advancements in smart textiles have facilitated their extensive application in wearable health monitoring, particularly in brain activity measurement. This study introduces a flexible and washable fabric dry electroencephalography (EEG) electrode designed for brain activity measurement. The fabric dry electrode is constructed from [...] Read more.
Recent advancements in smart textiles have facilitated their extensive application in wearable health monitoring, particularly in brain activity measurement. This study introduces a flexible and washable fabric dry electroencephalography (EEG) electrode designed for brain activity measurement. The fabric dry electrode is constructed from electrically conductive polyester fabric with a resistivity of 0.09 Ω·cm, achieved by applying a PEDOT: PSS/PVA conductive paste coating on the textile substrate. A comparative analysis of the tensile properties between the conductive and untreated polyester fabric was conducted. The SEM images demonstrated that the PEDOT: PSS/PVA conductive polymer composite resulted in a uniform coating on the fabric surface. When enveloped in elastic foam, the fabric dry electrode maintained a low and stable electrode–skin contact impedance during prolonged EEG monitoring. Additionally, the short circuit noise level of the fabric dry electrode exhibited superior performance compared to both Ag/AgCl wet and finger dry electrode. The EEG signals acquired from the fabric dry electrode were comparable to those recorded by the Ag/AgCl wet electrode. Moreover, the fabric electrode effectively captured clear and reliable EEG signals, even after undergoing 10 washing cycles. The fabric dry electrode indicates good sweat resistance and biocompatibility during prolonged monitoring. Full article
(This article belongs to the Section Smart and Functional Polymers)
Show Figures

Figure 1

13 pages, 4388 KiB  
Article
The Interconnecting Process and Sensing Performance of Stretchable Hybrid Electronic Yarn for Body Temperature Monitoring
by Fenye Meng, Shaoqing Dai, Yong Zhang and Jiyong Hu
Polymers 2024, 16(2), 243; https://doi.org/10.3390/polym16020243 - 15 Jan 2024
Viewed by 1518
Abstract
Flexible and stretchable electronic yarn containing electronic components (i.e., hybrid electronic yarn) are essential for manufacturing smart textile garments or fabrics. Due to their low stretchability and easy interconnection fracture, previously reported hybrid electronic sensing yarns have poor mechanical durability and washability. In [...] Read more.
Flexible and stretchable electronic yarn containing electronic components (i.e., hybrid electronic yarn) are essential for manufacturing smart textile garments or fabrics. Due to their low stretchability and easy interconnection fracture, previously reported hybrid electronic sensing yarns have poor mechanical durability and washability. In order to address this issue, a stretchable hybrid electronic yarn for body temperature monitoring was designed and prepared using a spandex filament as the core yarn and a thin enameled copper wire connected with a thermal resistor as the wrapping fiber. The temperature sensing performance of different hybrid electronic yarn samples was evaluated using the following three types of interconnection methods: conductive adhesive bonding, melt soldering, and hot pressure bonding. The optimal interconnection method with good sensing performance was determined. Furthermore, in order to improve the mechanical durability of the hybrid electronic yarn made using the optimal interconnection method, the interconnection area was encapsulated with polymers, and the effect of polymer materials and structures on the temperature-sensing properties was evaluated. The results show that traditional wrapping combined with hot pressing interconnection followed by tube encapsulating technology is beneficial for achieving high stretchability and good temperature-sensing performance of hybrid electronic yarn. Full article
(This article belongs to the Special Issue Smart Textiles: Synthesis, Characterization and Application)
Show Figures

Figure 1

38 pages, 7147 KiB  
Review
Smart Textiles: A Review and Bibliometric Mapping
by Irena Sajovic, Mateja Kert and Bojana Boh Podgornik
Appl. Sci. 2023, 13(18), 10489; https://doi.org/10.3390/app131810489 - 20 Sep 2023
Cited by 28 | Viewed by 13465
Abstract
According to ISO/TR 23383, smart textiles reversibly interact with their environment and respond or adapt to changes in the environment. The present review and bibliometric analysis was performed on 5810 documents (1989–2022) from the Scopus database, using VOSviewer and Bibliometrix/Biblioshiny for science mapping. [...] Read more.
According to ISO/TR 23383, smart textiles reversibly interact with their environment and respond or adapt to changes in the environment. The present review and bibliometric analysis was performed on 5810 documents (1989–2022) from the Scopus database, using VOSviewer and Bibliometrix/Biblioshiny for science mapping. The results show that the field of smart textiles is highly interdisciplinary and dynamic, with an average growth rate of 22% and exponential growth in the last 10 years. Beeby, S.P., and Torah, R.N. have published the highest number of papers, while Wang, Z.L. has the highest number of citations. The leading journals are Sensors, ACS Applied Materials and Interfaces, and Textile Research Journal, while Advanced Materials has the highest number of citations. China is the country with the most publications and the most extensive cooperative relationships with other countries. Research on smart textiles is largely concerned with new materials and technologies, particularly in relation to electronic textiles. Recent research focuses on energy generation (triboelectric nanogenerators, thermoelectrics, Joule heating), conductive materials (MXenes, liquid metal, silver nanoparticles), sensors (strain sensors, self-powered sensors, gait analysis), speciality products (artificial muscles, soft robotics, EMI shielding), and advanced properties of smart textiles (self-powered, self-cleaning, washable, sustainable smart textiles). Full article
(This article belongs to the Special Issue Functional Textiles: Recent Progress and Future Directions)
Show Figures

Figure 1

16 pages, 4078 KiB  
Article
Usability of Inexpensive Optical Pulse Sensors for Textile Integration and Heartbeat Detection Code Development
by Niclas Richter, Khorolsuren Tuvshinbayar, Guido Ehrmann and Andrea Ehrmann
Electronics 2023, 12(7), 1521; https://doi.org/10.3390/electronics12071521 - 23 Mar 2023
Cited by 2 | Viewed by 2027
Abstract
Low-cost sensors and single circuit boards such as Arduino and Raspberry Pi have increased the possibility of measuring biosignals by smart textiles with embedded electronics. One of the main problems with such e-textiles is their washability. While batteries are usually removed before washing, [...] Read more.
Low-cost sensors and single circuit boards such as Arduino and Raspberry Pi have increased the possibility of measuring biosignals by smart textiles with embedded electronics. One of the main problems with such e-textiles is their washability. While batteries are usually removed before washing, single-board computers and microcontrollers, as well as electronic sensors, would ideally be kept inside a user-friendly smart garment. Here, we show results of washing tests with optical pulse sensors, which can be used in smart gloves not only for hospitalized patients, and ATtiny85 as an example of a single-board microcontroller, sewn onto different cotton fabrics. We report that even without any encapsulation, all tested sensors and microcontrollers endured 10 washing cycles at 30–60 °C without defects. For easier garment integration, we suggest using an ESP8266 with integrated Wi-Fi functionality and offer a new program code to measure beats per minute (BMP) with optimized accuracy. Full article
(This article belongs to the Special Issue Wearable Sensing Devices and Technology)
Show Figures

Figure 1

4 pages, 1552 KiB  
Proceeding Paper
Development of a Knitted Strain Sensor for Health Monitoring Applications
by Beyza Bozali, Sepideh Ghodrat and Kaspar M. B. Jansen
Eng. Proc. 2023, 30(1), 10; https://doi.org/10.3390/engproc2023030010 - 29 Jan 2023
Cited by 3 | Viewed by 2019
Abstract
As an emerging technology, smart textiles have attracted attention for rehabilitation purposes to monitor heart rate, blood pressure, breathing rate, body posture and limb movements. Compared with traditional sensors, knitted sensors constructed from conductive yarns are breathable, stretchable and washable, and therefore, provide [...] Read more.
As an emerging technology, smart textiles have attracted attention for rehabilitation purposes to monitor heart rate, blood pressure, breathing rate, body posture and limb movements. Compared with traditional sensors, knitted sensors constructed from conductive yarns are breathable, stretchable and washable, and therefore, provide more comfort to the body and can be used in everyday life. In this study, knitted strain sensors were produced that are linear with up to 40% strain, sensitivity of 1.19 and hysteresis of 1.2% in absolute values, and hysteresis of 0.03 when scaled to the working range of 40%. The developed sensor was integrated into a wearable wrist-glove system for finger and wrist monitoring. The results show that the wearable was able to detect different finger angles and positions of the wrist. Full article
Show Figures

Figure 1

17 pages, 6673 KiB  
Article
A Mass-Producible Washable Smart Garment with Embedded Textile EMG Electrodes for Control of Myoelectric Prostheses: A Pilot Study
by Milad Alizadeh-Meghrazi, Gurjant Sidhu, Saransh Jain, Michael Stone, Ladan Eskandarian, Amirali Toossi and Milos R. Popovic
Sensors 2022, 22(2), 666; https://doi.org/10.3390/s22020666 - 15 Jan 2022
Cited by 27 | Viewed by 5550
Abstract
Electromyography (EMG) is the resulting electrical signal from muscle activity, commonly used as a proxy for users’ intent in voluntary control of prosthetic devices. EMG signals are recorded with gold standard Ag/AgCl gel electrodes, though there are limitations in continuous use applications, with [...] Read more.
Electromyography (EMG) is the resulting electrical signal from muscle activity, commonly used as a proxy for users’ intent in voluntary control of prosthetic devices. EMG signals are recorded with gold standard Ag/AgCl gel electrodes, though there are limitations in continuous use applications, with potential skin irritations and discomfort. Alternative dry solid metallic electrodes also face long-term usability and comfort challenges due to their inflexible and non-breathable structures. This is critical when the anatomy of the targeted body region is variable (e.g., residual limbs of individuals with amputation), and conformal contact is essential. In this study, textile electrodes were developed, and their performance in recording EMG signals was compared to gel electrodes. Additionally, to assess the reusability and robustness of the textile electrodes, the effect of 30 consumer washes was investigated. Comparisons were made between the signal-to-noise ratio (SNR), with no statistically significant difference, and with the power spectral density (PSD), showing a high correlation. Subsequently, a fully textile sleeve was fabricated covering the forearm, with 14 textile electrodes. For three individuals, an artificial neural network model was trained, capturing the EMG of 7 distinct finger movements. The personalized models were then used to successfully control a myoelectric prosthetic hand. Full article
(This article belongs to the Special Issue Smart Textiles Technologies and Wearable Sensors)
Show Figures

Figure 1

27 pages, 3501 KiB  
Review
Review on the Integration of Microelectronics for E-Textile
by Abdella Ahmmed Simegnaw, Benny Malengier, Gideon Rotich, Melkie Getnet Tadesse and Lieva Van Langenhove
Materials 2021, 14(17), 5113; https://doi.org/10.3390/ma14175113 - 6 Sep 2021
Cited by 81 | Viewed by 8554
Abstract
Modern electronic textiles are moving towards flexible wearable textiles, so-called e-textiles that have micro-electronic elements embedded onto the textile fabric that can be used for varied classes of functionalities. There are different methods of integrating rigid microelectronic components into/onto textiles for the development [...] Read more.
Modern electronic textiles are moving towards flexible wearable textiles, so-called e-textiles that have micro-electronic elements embedded onto the textile fabric that can be used for varied classes of functionalities. There are different methods of integrating rigid microelectronic components into/onto textiles for the development of smart textiles, which include, but are not limited to, physical, mechanical, and chemical approaches. The integration systems must satisfy being flexible, lightweight, stretchable, and washable to offer a superior usability, comfortability, and non-intrusiveness. Furthermore, the resulting wearable garment needs to be breathable. In this review work, three levels of integration of the microelectronics into/onto the textile structures are discussed, the textile-adapted, the textile-integrated, and the textile-based integration. The textile-integrated and the textile-adapted e-textiles have failed to efficiently meet being flexible and washable. To overcome the above problems, researchers studied the integration of microelectronics into/onto textile at fiber or yarn level applying various mechanisms. Hence, a new method of integration, textile-based, has risen to the challenge due to the flexibility and washability advantages of the ultimate product. In general, the aim of this review is to provide a complete overview of the different interconnection methods of electronic components into/onto textile substrate. Full article
(This article belongs to the Special Issue Smart Textile Materials and Fabric-Based Wearable Devices)
Show Figures

Figure 1

18 pages, 14934 KiB  
Article
Wash Analyses of Flexible and Wearable Printed Circuits for E-Textiles and Their Prediction of Damages
by Shahood uz Zaman, Xuyuan Tao, Cédric Cochrane and Vladan Koncar
Electronics 2021, 10(11), 1362; https://doi.org/10.3390/electronics10111362 - 7 Jun 2021
Cited by 7 | Viewed by 3875
Abstract
The development of specific user-based wearable smart textiles is gaining interest. The reliability and washability of e-textiles, especially electronic-based components of e-textiles, are under particular investigation nowadays. This is because e-textiles cannot be washed like normal textile products and washing electronic products is [...] Read more.
The development of specific user-based wearable smart textiles is gaining interest. The reliability and washability of e-textiles, especially electronic-based components of e-textiles, are under particular investigation nowadays. This is because e-textiles cannot be washed like normal textile products and washing electronic products is not common practice in our daily life. To adopt the e-textile products in our daily life, new standards, based on product usage, should be developed especially for flexibility and washability. The wearable motherboards are the main component for e-textile systems. They should be washing reliable and flexible for better adoption in the system. In this manuscript, flexible wearable PCBs were prepared with different conductive track widths and protected with silicone coatings. The samples were washed for 50 washing cycles in the household washing machine, and provoked damages were investigated. The PCBs were also investigated for bending tests (simulating mechanical stresses in the washing machine), and resultant damages were discussed and co-related with washing damages. The bending test was performed by bending the FPCBs at 90° over the circular rod and under the known hanging load. Full article
(This article belongs to the Special Issue Printed and Flexible Electronics)
Show Figures

Figure 1

18 pages, 28343 KiB  
Review
Washability of E-Textiles: Failure Modes and Influences on Washing Reliability
by Sigrid Rotzler and Martin Schneider-Ramelow
Textiles 2021, 1(1), 37-54; https://doi.org/10.3390/textiles1010004 - 21 May 2021
Cited by 40 | Viewed by 7283
Abstract
E-textiles, hybrid products that incorporate electronic functionality into textiles, often need to withstand washing procedures to ensure textile typical usability. Yet, the washability—which is essential for many e-textile applications like medical or sports due to hygiene requirements—is often still insufficient. The influence factors [...] Read more.
E-textiles, hybrid products that incorporate electronic functionality into textiles, often need to withstand washing procedures to ensure textile typical usability. Yet, the washability—which is essential for many e-textile applications like medical or sports due to hygiene requirements—is often still insufficient. The influence factors for washing damage in textile integrated electronics as well as common weak points are not extensively researched, which makes a targeted approach to improve washability in e-textiles difficult. As a step towards reliably washable e-textiles, this review bundles existing information and findings on the topic: a summary of common failure modes in e-textiles brought about by washing as well as influencing parameters that affect the washability of e-textiles. The findings of this paper can be utilized in the development of e-textile systems with an improved washability. Full article
(This article belongs to the Special Issue Fibrous Materials (Textiles) for Functional Applications)
Show Figures

Figure 1

13 pages, 9367 KiB  
Article
Development and Washing Reliability Testing of a Stretchable Circuit on Knit Fabric
by Paula Veske, Pieter Bauwens, Frederick Bossuyt, Tom Sterken and Jan Vanfleteren
Appl. Sci. 2020, 10(24), 9057; https://doi.org/10.3390/app10249057 - 18 Dec 2020
Cited by 7 | Viewed by 3438
Abstract
The smart textiles and wearable technology markets are expanding tirelessly, looking for efficient solutions to create long-lasting products. The research towards novel integration methods and increasing reliability of wearables and electronic textiles (e-textiles) is expanding. One obstacle to be tackled is the washability [...] Read more.
The smart textiles and wearable technology markets are expanding tirelessly, looking for efficient solutions to create long-lasting products. The research towards novel integration methods and increasing reliability of wearables and electronic textiles (e-textiles) is expanding. One obstacle to be tackled is the washability and the endurance to mechanical stresses in the washing machine. In this article, different layering of thermoplastic polyurethane (TPU) films and knit fabrics are used to integrate three different designs of stretchable copper-based meander tracks with printed circuit boards. The various combinations are washed according to the ISO 6330-2012 standard to analyze their endurance. Results suggest that one meander design withstands more washing cycles and indicate that the well-selected layer compositions increase the reliability. Higher stretchability together with greater durability is accomplished by adding an extra meander-shaped TPU film layer. Full article
(This article belongs to the Special Issue E-Textiles)
Show Figures

Figure 1

28 pages, 16341 KiB  
Review
Integration of Conductive Materials with Textile Structures, an Overview
by Granch Berhe Tseghai, Benny Malengier, Kinde Anlay Fante, Abreha Bayrau Nigusse and Lieva Van Langenhove
Sensors 2020, 20(23), 6910; https://doi.org/10.3390/s20236910 - 3 Dec 2020
Cited by 90 | Viewed by 15245
Abstract
In the last three decades, the development of new kinds of textiles, so-called smart and interactive textiles, has continued unabated. Smart textile materials and their applications are set to drastically boom as the demand for these textiles has been increasing by the emergence [...] Read more.
In the last three decades, the development of new kinds of textiles, so-called smart and interactive textiles, has continued unabated. Smart textile materials and their applications are set to drastically boom as the demand for these textiles has been increasing by the emergence of new fibers, new fabrics, and innovative processing technologies. Moreover, people are eagerly demanding washable, flexible, lightweight, and robust e-textiles. These features depend on the properties of the starting material, the post-treatment, and the integration techniques. In this work, a comprehensive review has been conducted on the integration techniques of conductive materials in and onto a textile structure. The review showed that an e-textile can be developed by applying a conductive component on the surface of a textile substrate via plating, printing, coating, and other surface techniques, or by producing a textile substrate from metals and inherently conductive polymers via the creation of fibers and construction of yarns and fabrics with these. In addition, conductive filament fibers or yarns can be also integrated into conventional textile substrates during the fabrication like braiding, weaving, and knitting or as a post-fabrication of the textile fabric via embroidering. Additionally, layer-by-layer 3D printing of the entire smart textile components is possible, and the concept of 4D could play a significant role in advancing the status of smart textiles to a new level. Full article
(This article belongs to the Special Issue Flexible Sensors for Structural Health Monitoring)
Show Figures

Graphical abstract

16 pages, 5466 KiB  
Article
Investigating the Impact of Washing Cycles on Silver-Plated Textile Electrodes: A Complete Study
by Valentin Gaubert, Hayriye Gidik, Nicolas Bodart and Vladan Koncar
Sensors 2020, 20(6), 1739; https://doi.org/10.3390/s20061739 - 20 Mar 2020
Cited by 39 | Viewed by 5173
Abstract
Although market prediction for smart textiles in the coming years is high, their washability will be among the main criteria for their mass adoption. Hence, the need to understand precisely how the washing process can damage them. Therefore, the best care instructions can [...] Read more.
Although market prediction for smart textiles in the coming years is high, their washability will be among the main criteria for their mass adoption. Hence, the need to understand precisely how the washing process can damage them. Therefore, the best care instructions can be determined and serve as guidelines for smart textile manufacturers to control the quality of their smart garments as well as their customers to wash them cautiously. In this study, only the sensing part, silver-plated-nylon electrode sensors, is taken into account. To determine the chemical and the mechanical impacts of the machine-washing process separately and simultaneously, textile electrodes were put in different washing conditions: with and without bleaching agents, with and without mechanical constraints, etc. Then spectrophotometry, Scanning Electron Microscopy (SEM) and Thermogravimetric Analysis (TGA) were used to characterize these electrodes. Results show that liquid detergents should be preferred to powder ones. Indeed, the latter contain bleaching agents that tend to oxidize the silver layer, making it more vulnerable to the mechanical rubbings that tear off the silver layer progressively washes after washes. As a consequence, the silver-plated-nylon loses rapidly its conductivity so that the electrode is no longer able to sense biopotentials. Full article
(This article belongs to the Section Intelligent Sensors)
Show Figures

Figure 1

13 pages, 7231 KiB  
Article
Ambulatory Evaluation of ECG Signals Obtained Using Washable Textile-Based Electrodes Made with Chemically Modified PEDOT:PSS
by Amale Ankhili, Xuyuan Tao, Cédric Cochrane, Vladan Koncar, David Coulon and Jean-Michel Tarlet
Sensors 2019, 19(2), 416; https://doi.org/10.3390/s19020416 - 21 Jan 2019
Cited by 52 | Viewed by 7095
Abstract
A development of washable PEDOT:PSS (poly(3,4-ethylenedioxythiophene) polystyrene sulfonate) polyamide textile-based electrodes is an interesting alternative to the traditional Ag/AgCl disposable electrodes, usually used in clinical practice, helping to improve medical assessment and treatment before apparition or progress of patients’ cardiovascular symptoms. This study [...] Read more.
A development of washable PEDOT:PSS (poly(3,4-ethylenedioxythiophene) polystyrene sulfonate) polyamide textile-based electrodes is an interesting alternative to the traditional Ag/AgCl disposable electrodes, usually used in clinical practice, helping to improve medical assessment and treatment before apparition or progress of patients’ cardiovascular symptoms. This study was conducted in order to determine whether physical properties of PEDOT:PSS had a significant impact on the coated electrode’s electrocardiogram (ECG) signal quality, particularly after 50 washing cycles in a domestic laundry machine. Tests performed, included the comparison of two PEDOT:PSS solutions, in term of viscosity with emphasis on wetting tests, including surface tension and contact angle measurements. In addition, polyamide textile fabrics were used as substrate to make thirty electrodes and to characterize the amount of PEDOT:PSS absorbed as a function of time. The results showed that surface tension of PEDOT:PSS had a significant impact on the wetting of polyamide textile fabric and consequently on the absorbed amount. In fact, lower values of surface tension of the solution lead to low values contact angles between PEDOT:PSS and textile fabric (good wettability). Before washing, no significant difference has been observed among signal-to-noise ratios measured (SNR) for coated electrodes by the two PEDOT:PSS solutions. However, after 50 washing cycles, SNR decreased strongly for electrodes coated by the solution that had low viscosity, since it contained less solid contents. That was confirmed by scanning electron microscopy images (SEM) and also by analyzing the color change of electrodes based on the calculation of CIELAB color space coordinates. Moreover, spectral power density of recorded ECG signals has been computed and presented. All cardiac waves were still visible in the ECG signals after 50 washing cycles. Furthermore, an experienced cardiologist considered that all the ECG signals acquired were acceptable. Accordingly, our newly developed polyamide textile-based electrodes seem to be suitable for long-term monitoring. The study also provided new insights into the better choice of PEDOT:PSS formulation as a function of a specific process in order to manufacture cheaper electrodes faster. Full article
(This article belongs to the Special Issue Smart Textiles and Wearable Sensors)
Show Figures

Figure 1

Back to TopTop