Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (726)

Search Parameters:
Keywords = smart nation

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
20 pages, 730 KB  
Article
Improving the Energy Performance of Residential Buildings Through Solar Renewable Energy Systems and Smart Building Technologies: The Cyprus Example
by Oğulcan Vuruşan and Hassina Nafa
Sustainability 2026, 18(3), 1195; https://doi.org/10.3390/su18031195 - 24 Jan 2026
Viewed by 92
Abstract
Residential buildings in Mediterranean regions remain major contributors to energy consumption and greenhouse gas emissions. Existing studies often assess renewable energy technologies or innovative building solutions in isolation, with limited attention to their combined performance across different residential typologies. This study evaluates the [...] Read more.
Residential buildings in Mediterranean regions remain major contributors to energy consumption and greenhouse gas emissions. Existing studies often assess renewable energy technologies or innovative building solutions in isolation, with limited attention to their combined performance across different residential typologies. This study evaluates the integrated impact of solar renewable energy systems and smart building technologies on the energy performance of residential buildings in Cyprus. A typology-based methodology is applied to three representative residential building types—detached, semi-detached, and apartment buildings—using dynamic energy simulation and scenario analysis. Results show that solar photovoltaic systems achieve higher standalone reductions than solar thermal systems, while smart building technologies significantly enhance operational efficiency and photovoltaic self-consumption. Integrated solar–smart scenarios achieve up to 58% reductions in primary energy demand and 55% reductions in CO2 emissions, and 25–30 percentage-point increases in PV self-consumption, enabling detached and semi-detached houses to approach national nearly zero-energy building (nZEB) performance thresholds. The study provides climate-specific, quantitative evidence supporting integrated solar–smart strategies for Mediterranean residential buildings and offers actionable insights for policy-making, design, and sustainable residential development. Full article
Show Figures

Figure 1

21 pages, 1584 KB  
Article
Is China’s National Smart Education Platform Bridging the Urban–Rural Education Gap?
by Kexuan Lyu, Kanokkan Kanjanarat, Jian He and Zhongyan Xu
Sustainability 2026, 18(3), 1181; https://doi.org/10.3390/su18031181 - 23 Jan 2026
Viewed by 111
Abstract
This study evaluates China’s National Smart Education Platform (NSEP) as a national digital reform aligned with SDG 4 (quality education) and SDG 10 (reduced inequalities), yet evidence remains limited on whether such platforms reduce urban–rural gaps in real-world use and outcomes. A quantitative, [...] Read more.
This study evaluates China’s National Smart Education Platform (NSEP) as a national digital reform aligned with SDG 4 (quality education) and SDG 10 (reduced inequalities), yet evidence remains limited on whether such platforms reduce urban–rural gaps in real-world use and outcomes. A quantitative, stratified, random survey of students, teachers, and administrators used validated scales to measure perceived ease of use (PEOU), perceived usefulness (PU), user satisfaction (US), behavioral intention (BI), engagement level (EL), learning outcomes (LO), and system quality (SQ). The measures demonstrated strong reliability. Hierarchical regression analyses supported an extended technology acceptance model (TAM): SQ, PEOU, and PU significantly predicted US and BI, with PU showing the strongest effect. Interaction effects indicated context-sensitive adoption and the results suggested a persistent rural disadvantage in adoption even after accounting for key predictors. Mediation analyses further showed that US and BI transmitted technology beliefs to LO. Nevertheless, urban–rural gaps remained evident, particularly in PEOU and SQ, and teachers consistently reported a lower PEOU than students and administrators. These findings suggest that NSEP has the potential to support SDG-oriented digital equity, but closing urban–rural gaps requires teacher-centered design, improved usability and system reliability, and targeted infrastructure and capacity-building support in rural contexts. Full article
Show Figures

Figure 1

26 pages, 725 KB  
Article
Unlocking GAI in Universities: Leadership-Driven Corporate Social Responsibility for Digital Sustainability
by Mostafa Aboulnour Salem and Zeyad Aly Khalil
Adm. Sci. 2026, 16(2), 58; https://doi.org/10.3390/admsci16020058 - 23 Jan 2026
Viewed by 188
Abstract
Corporate Social Responsibility (CSR) has evolved into a strategic governance framework through which organisations address environmental sustainability, stakeholder expectations, and long-term institutional viability. In knowledge-intensive organisations such as universities, Green Artificial Intelligence (GAI) is increasingly recognised as an internal CSR agenda. GAI can [...] Read more.
Corporate Social Responsibility (CSR) has evolved into a strategic governance framework through which organisations address environmental sustainability, stakeholder expectations, and long-term institutional viability. In knowledge-intensive organisations such as universities, Green Artificial Intelligence (GAI) is increasingly recognised as an internal CSR agenda. GAI can reduce digital and energy-related environmental impacts while enhancing educational and operational performance. This study examines how higher education leaders, as organisational decision-makers, form intentions to adopt GAI within institutional CSR and digital sustainability strategies. It focuses specifically on leadership intentions to implement key GAI practices, including Smart Energy Management Systems, Energy-Efficient Machine Learning models, Virtual and Remote Laboratories, and AI-powered sustainability dashboards. Grounded in the Unified Theory of Acceptance and Use of Technology (UTAUT), the study investigates how performance expectancy, effort expectancy, social influence, and facilitating conditions shape behavioural intentions to adopt GAI. Survey data were collected from higher education leaders across Saudi universities, representing diverse national and cultural backgrounds within a shared institutional context. The findings indicate that facilitating conditions, performance expectancy, and social influence significantly influence adoption intentions, whereas effort expectancy does not. Gender and cultural context also moderate several adoption pathways. Generally, the results demonstrate that adopting GAI in universities constitutes a governance-level CSR decision rather than a purely technical choice. This study advances CSR and digital sustainability research by positioning GAI as a strategic tool for responsible digital transformation and by offering actionable insights for higher education leaders and policymakers. Full article
Show Figures

Figure 1

25 pages, 295 KB  
Article
TSRS-Aligned Sustainability Reporting in Turkey’s Agri-Food Sector: A Qualitative Content Analysis Based on GRI 13 and the SDGs
by Efsun Dindar
Sustainability 2026, 18(2), 1085; https://doi.org/10.3390/su18021085 - 21 Jan 2026
Viewed by 84
Abstract
Sustainability in the agri-food sector has become a cornerstone of global efforts to combat climate change, ensure food security through climate-smart agriculture, and strengthen economic resilience. Sustainability reporting within agri-food systems has gained increasing regulatory significance with the introduction of mandatory frameworks such [...] Read more.
Sustainability in the agri-food sector has become a cornerstone of global efforts to combat climate change, ensure food security through climate-smart agriculture, and strengthen economic resilience. Sustainability reporting within agri-food systems has gained increasing regulatory significance with the introduction of mandatory frameworks such as the Turkish Sustainability Reporting Standards (TSRSs). This article searches for the sustainability reports of agri-business firms listed in BIST in Turkey. Although TSRS reporting is not yet mandatory for the agribusiness sector, this study examines the first TSRS-aligned sustainability reports published by eight agri-food companies, excluding the retail sector. The analysis assesses how effectively these reports address sector-specific environmental and social challenges defined in the GRI 13 Agriculture, Aquaculture and Fishing Sector Standard and their alignment with the United Nations Sustainable Development Goals (SDGs). Using a structured content analysis approach, disclosure patterns were examined at both thematic and company levels. The findings indicate that TSRS-aligned reports place strong emphasis on environmental and climate-related disclosures, particularly emissions, climate adaptation and resilience, water management, and waste. In contrast, agro-ecological and land-based impacts—such as soil health, pesticide use, and ecosystem conversion—are weakly addressed. Economic disclosures are predominantly framed around climate-related financial risks and supply chain traceability, while social reporting focuses mainly on occupational health and safety, employment practices, and food safety, with limited attention to labor and equity issues across the broader value chain. Company-level results reveal marked heterogeneity, with internationally active firms demonstrating deeper alignment with GRI 13 requirements. From an SDG alignment perspective, high levels of coverage are observed across all companies for SDG 13 (Climate Action), SDG 12 (Responsible Consumption and Production), and SDG 6 (Clean Water and Sanitation). By contrast, SDGs critical to agro-ecological integrity and social equity—namely SDG 1 (No Poverty), SDG 2 (Zero Hunger), SDG 10 (Reduced Inequalities), and SDG 15 (Life on Land)—are weakly represented or entirely absent. Overall, the results suggest that while TSRS-aligned reporting enhances transparency in climate-related domains, it achieves only selective alignment with the SDG agenda. This underscores the need for a stronger integration of sector-specific sustainability priorities into mandatory sustainability reporting frameworks. Full article
(This article belongs to the Section Environmental Sustainability and Applications)
50 pages, 5994 KB  
Perspective
Smart Grids and Renewable Energy Communities in Pakistan and the Middle East: Present Situation, Perspectives, Future Developments, and Comparison with EU
by Ateeq Ur Rehman, Dario Atzori, Sandra Corasaniti and Paolo Coppa
Energies 2026, 19(2), 535; https://doi.org/10.3390/en19020535 - 21 Jan 2026
Viewed by 110
Abstract
The shift towards the integration of and transition to renewable energy has led to an increase in renewable energy communities (RECs) and smart grids (SGs). The significance of these RECs is mainly energy self-sufficiency, energy independence, and energy autonomy. Despite this, in low- [...] Read more.
The shift towards the integration of and transition to renewable energy has led to an increase in renewable energy communities (RECs) and smart grids (SGs). The significance of these RECs is mainly energy self-sufficiency, energy independence, and energy autonomy. Despite this, in low- and middle-income countries and regions like Pakistan and the Middle East, SGs and RECs are still in their initial stage. However, they have potential for green energy solutions rooted in their unique geographic and climatic conditions. SGs offer energy monitoring, communication infrastructure, and automation features to help these communities build flexible and efficient energy systems. This work provides an overview of Pakistani and Middle Eastern energy policies, goals, and initiatives while aligning with European comparisons. This work also highlights technical, regulatory, and economic challenges in those regions. The main objectives of the research are to ensure that residential service sizes are optimized to maximize the economic and environmental benefits of green energy. Furthermore, in line with SDG 7, affordable and clean energy, the focus in this study is on the development and transformation of energy systems for sustainability and creating synergies with other SDGs. The paper presents insights on the European Directive, including the amended Renewable Energy Directive (RED II and III), to recommend policy enhancements and regulatory changes that could strengthen the growth of RECs in Asian countries, Pakistan, and the Middle East, paving the way for a more inclusive and sustainable energy future. Additionally, it addresses the main causes that hinder the expansion of RECs and SGs, and offers strategic recommendations to support their development in order to reduce dependency on national electric grids. To perform this, a perspective study of Pakistan’s indicative generation capacity by 2031, along with comparisons of energy capacity in the EU, the Middle East, and Asia, is presented. Pakistan’s solar, wind, and hydro potential is also explored in detail. This study is a baseline and informative resource for policy makers, researchers, industry stakeholders, and energy communities’ promoters, who are committed to the task of promoting sustainable renewable energy solutions. Full article
(This article belongs to the Section B: Energy and Environment)
Show Figures

Figure 1

18 pages, 307 KB  
Article
Prioritizing Core Data Sets for Smart City Governance: Evidence from Thirty-Six Cities in Thailand
by Paporn Ruangwicha and Kulthida Tuamsuk
Smart Cities 2026, 9(1), 15; https://doi.org/10.3390/smartcities9010015 - 20 Jan 2026
Viewed by 113
Abstract
Smart city initiatives increasingly rely on interoperable and high-quality urban data, yet many cities lack systematic methods for prioritizing which datasets should be developed first. This study proposes an evidence-based framework for smart city data prioritization that integrates data need, data availability, and [...] Read more.
Smart city initiatives increasingly rely on interoperable and high-quality urban data, yet many cities lack systematic methods for prioritizing which datasets should be developed first. This study proposes an evidence-based framework for smart city data prioritization that integrates data need, data availability, and policy urgency into a unified decision-support model. Using standardized data elements across seven nationally defined smart city domains, the framework was applied to thirty-six certified smart cities in Thailand. Data were collected from municipal authorities and national platforms and structured using ISO-based data element and metadata principles. For each data element, a Need Priority Index, Coverage score, and Policy Readiness indicator were computed to assess governance-relevant data readiness. The results reveal a persistent imbalance between high data demand and low data availability across all domains, with Smart Mobility, Smart Living, Smart Energy, and Smart Economy showing the highest urgency. A Core Common Data Set representing 6.7% of assessed properties was identified, centered on population data, geospatial infrastructure, and plans and performance indicators. The framework provides a scalable approach for guiding investments in interoperable smart city data systems. Full article
(This article belongs to the Section Urban Digital Twins and Urban Informatics)
17 pages, 2331 KB  
Review
Pathways for SDG 6 in Japan: Challenges and Policy Directions for a Nature-Positive Water Future
by Qinxue Wang, Tomohiro Okadera, Satoshi Kameyama and Xinyi Huang
Sustainability 2026, 18(2), 994; https://doi.org/10.3390/su18020994 - 19 Jan 2026
Viewed by 422
Abstract
Japan has largely achieved the “first half” of SDG 6—universal access to safe drinking water and sanitation—through decades of intensive investment in water supply and sewerage systems, implementation of the Total Pollutant Load Control System, and stringent regulation of industrial effluents. National indicators [...] Read more.
Japan has largely achieved the “first half” of SDG 6—universal access to safe drinking water and sanitation—through decades of intensive investment in water supply and sewerage systems, implementation of the Total Pollutant Load Control System, and stringent regulation of industrial effluents. National indicators show that coverage of safely managed drinking water and sanitation services is nearly 99%, and domestic statistics report high compliance rates for BOD/COD-based environmental standards in rivers, lakes, and coastal waters. Conversely, the “second half” of SDG 6 reveals persistent gaps: ambient water quality (6.3.2) remains at 57% (2023 data), while water stress (6.4.2) is at approximately 21.6%. Furthermore, SDG 6.6.1 shows that 3% of water basins are experiencing rapid changes in surface water area (2020 data), with ecosystems increasingly threatened by hypoxia in enclosed bays and climate-induced vulnerabilities. Drawing on global comparisons, this review synthesizes Japan’s progress toward SDG 6, elucidates the structural drivers for remaining gaps, and proposes policy pathways for a nature-positive water future. Using national statistics (1970–2023) and the DPSIR framework, our analysis confirms that improvements in BOD/COD compliance plateaued around 2002, reinforcing concerns that point-source measures alone are insufficient to address diffuse pollution, groundwater nitrate contamination, and emerging contaminants like PFAS. We propose six strategic directions: (1) climate-resilient water systems leveraging groundwater; (2) smart infrastructure renewal; (3) advanced treatment for emerging contaminants; (4) basin-scale IWRM enhancing transboundary cooperation; (5) data transparency and citizen engagement; and (6) scaled nature-based solutions (NbS) integrated with green–gray infrastructure. The paper concludes by outlining priorities to close the gaps in SDG 6.3 and 6.6, advancing Japan toward a sustainable, nature-positive water cycle. Full article
Show Figures

Figure 1

6 pages, 1093 KB  
Proceeding Paper
Bridging Tradition and Technology: Smart Agriculture Applications in Greek Pear Cultivation
by Ioannis Chatzieffraimidis, Ali Abkar, Theodoros Kosmanis, Marina-Rafailia Kyrou, Dimos Stouris and Evangelos Karagiannis
Proceedings 2026, 134(1), 51; https://doi.org/10.3390/proceedings2026134051 - 15 Jan 2026
Viewed by 122
Abstract
Pear cultivation in Greece, with an annual production of approximately 81,000 tonnes, constitutes a significant segment of the national fruit industry, particularly in Northern regions such as Macedonia and Thessaly. Despite ranking 8th in the EU in terms of pear production, Greece’s cultivated [...] Read more.
Pear cultivation in Greece, with an annual production of approximately 81,000 tonnes, constitutes a significant segment of the national fruit industry, particularly in Northern regions such as Macedonia and Thessaly. Despite ranking 8th in the EU in terms of pear production, Greece’s cultivated area is slightly declining, and adoption of smart agriculture technologies (SAT) remains limited. In this context, the present study investigates the preferences, patterns, and barriers of SAT adoption within the Greek pear sector, aiming to lay the groundwork for more effective digital transformation in the agri-food domain. Using a structured interview-based survey, data were collected from 30 pear growers, revealing critical insights into the technological landscape of the sector. A central challenge that emerged was the insufficient internet connectivity in rural farming areas, highlighting the urgent need for improved digital infrastructure to support SAT deployment. Furthermore, the study emphasizes the importance of targeted education and awareness programs to bridge the digital knowledge gap among pear farmers. An especially notable finding concerns the role of the chosen tree training system in influencing SAT uptake: more than 50% of adopters utilize the palmette training system, suggesting a strong correlation between orchard design and technological readiness. Among the SAT categories, Data Analytics and Farm Management Software were the most widely adopted, a trend partly driven by attractive governmental subsidies of €30 per hectare. Importantly, all respondents who had implemented SAT (100%) reported a measurable increase in farm income, reinforcing the technologies’ impact on productivity and profitability. Foremost among the challenges encountered is the deficit in technical knowledge and training. In conclusion, this study offers a comprehensive overview of Greek pear producers’ perceptions, challenges, and emerging opportunities related to smart agriculture. Full article
Show Figures

Figure 1

17 pages, 1069 KB  
Article
Distributed Model Predictive Control-Based Power Management Scheme for Grid-Integrated Microgrids
by Sergio Escareno, Sijo Augustine, Liang Sun, Sathishkumar J. Ranade, Olga Lavrova, Enrico Pontelli and John Hedengren
Energies 2026, 19(2), 406; https://doi.org/10.3390/en19020406 - 14 Jan 2026
Viewed by 323
Abstract
Transitioning from traditional electrical grids to smart grids is currently an ongoing process that many nations are striving for due to their access to renewable resources. Energy management is one of the key parameters that decides the performance of such complex systems. Distributed [...] Read more.
Transitioning from traditional electrical grids to smart grids is currently an ongoing process that many nations are striving for due to their access to renewable resources. Energy management is one of the key parameters that decides the performance of such complex systems. Distributed Model Predictive Control (DMPC) is a promising technique that can be used to improve the energy management of grid-connected systems. This paper analyzes a grid-connected inverter system with DMPC that exchanges key operating parameters with the grid to optimize coordinated power sharing between its respective loads. The state-space model for the inverter is derived and verified to ensure controllability and observability. A state observer for an inverter system is then developed to estimate the nominal states in the derived state-space model. The system performance is evaluated with MATLAB simulation by implementing load disturbances, which validate the effectiveness of the proposed power management control algorithm. Full article
(This article belongs to the Special Issue Advanced Control Strategies for Power Converters and Microgrids)
Show Figures

Figure 1

17 pages, 710 KB  
Article
KD-SecBERT: A Knowledge-Distilled Bidirectional Encoder Optimized for Open-Source Software Supply Chain Security in Smart Grid Applications
by Qinman Li, Xixiang Zhang, Weiming Liao, Tao Dai, Hongliang Zheng, Beiya Yang and Pengfei Wang
Electronics 2026, 15(2), 345; https://doi.org/10.3390/electronics15020345 - 13 Jan 2026
Viewed by 186
Abstract
With the acceleration of digital transformation, open-source software has become a fundamental component of modern smart grids and other critical infrastructures. However, the complex dependency structures of open-source ecosystems and the continuous emergence of vulnerabilities pose substantial challenges to software supply chain security. [...] Read more.
With the acceleration of digital transformation, open-source software has become a fundamental component of modern smart grids and other critical infrastructures. However, the complex dependency structures of open-source ecosystems and the continuous emergence of vulnerabilities pose substantial challenges to software supply chain security. In power information networks and cyber–physical control systems, vulnerabilities in open-source components integrated into Supervisory Control and Data Acquisition (SCADA), Energy Management System (EMS), and Distribution Management System (DMS) platforms and distributed energy controllers may propagate along the supply chain, threatening system security and operational stability. In such application scenarios, large language models (LLMs) often suffer from limited semantic accuracy when handling domain-specific security terminology, as well as deployment inefficiencies that hinder their practical adoption in critical infrastructure environments. To address these issues, this paper proposes KD-SecBERT, a domain-specific semantic bidirectional encoder optimized through multi-level knowledge distillation for open-source software supply chain security in smart grid applications. The proposed framework constructs a hierarchical multi-teacher ensemble that integrates general language understanding, cybersecurity-domain knowledge, and code semantic analysis, together with a lightweight student architecture based on depthwise separable convolutions and multi-head self-attention. In addition, a dynamic, multi-dimensional distillation strategy is introduced to jointly perform layer-wise representation alignment, ensemble knowledge fusion, and task-oriented optimization under a progressive curriculum learning scheme. Extensive experiments conducted on a multi-source dataset comprising National Vulnerability Database (NVD) and Common Vulnerabilities and Exposures (CVE) entries, security-related GitHub code, and Open Web Application Security Project (OWASP) test cases show that KD-SecBERT achieves an accuracy of 91.3%, a recall of 90.6%, and an F1-score of 89.2% on vulnerability classification tasks, indicating strong robustness in recognizing both common and low-frequency security semantics. These results demonstrate that KD-SecBERT provides an effective and practical solution for semantic analysis and software supply chain risk assessment in smart grids and other critical-infrastructure environments. Full article
Show Figures

Figure 1

19 pages, 1207 KB  
Article
An Auditable and Trusted Lottery System in the Cloud
by Gwan-Hwan Hwang, Tao-Ku Chang and Yi-Syuan Lu
Appl. Sci. 2026, 16(2), 741; https://doi.org/10.3390/app16020741 - 11 Jan 2026
Viewed by 257
Abstract
Public blockchains offer transparency and tamper resistance, but implementing national-scale lotteries directly on-chain is impractical because each bet would require a separate transaction, incurring substantial gas costs and facing throughput limitations. This paper presents an auditable lottery architecture designed to address these scalability [...] Read more.
Public blockchains offer transparency and tamper resistance, but implementing national-scale lotteries directly on-chain is impractical because each bet would require a separate transaction, incurring substantial gas costs and facing throughput limitations. This paper presents an auditable lottery architecture designed to address these scalability challenges and eliminate the reliance on trusted third parties. The proposed approach decouples high-volume bet recording from on-chain enforcement. Bets are recorded off-chain in a transaction-positioned Merkle tree (TP-Merkle tree), while the service provider commits only the per-round root hash and summary metadata to an Ethereum smart contract. Each player receives a signed receipt and a compact Merkle proof (Slice), enabling independent inclusion checks and third-party audits. A programmable appeal mechanism allows any participant to submit receipts and cryptographic evidence to the contract; if misbehavior is proven, compensation is executed automatically from a pre-deposited margin. A proof-of-concept implementation demonstrates the system’s feasibility, and extensive experiments evaluate collision behavior, storage overhead, proof size, and gas consumption, demonstrating that the proposed design can support national-scale betting volumes (tens of millions of bets per round) while occupying only a small fraction of on-chain resources. Full article
(This article belongs to the Special Issue Advanced Blockchain Technology and Its Applications)
Show Figures

Figure 1

20 pages, 1236 KB  
Article
Developing a Sustainable Urban Mobility Maturity Model
by Mustafa Eruyar and Halit Özen
Sustainability 2026, 18(2), 689; https://doi.org/10.3390/su18020689 - 9 Jan 2026
Viewed by 177
Abstract
This study introduces the Sustainable Urban Mobility Maturity Model (SUM-MM) to assess and enhance the maturity of sustainable urban mobility in cities. The SUM-MM comprises 3 main dimensions (enablers, sustainability, and transport modes) and 11 sub-dimensions (strategic and spatial planning, organization and human [...] Read more.
This study introduces the Sustainable Urban Mobility Maturity Model (SUM-MM) to assess and enhance the maturity of sustainable urban mobility in cities. The SUM-MM comprises 3 main dimensions (enablers, sustainability, and transport modes) and 11 sub-dimensions (strategic and spatial planning, organization and human resources, information and communication technologies, environment, economy, social, walking, micromobility, public transport, paratransit systems, and multimodal integration), evaluated at 5 levels (beginner, initial, integrated, managed, and mature). Developed through a literature review and validated using a questionnaire-based expert opinion method, the model was tested in Konya, Türkiye. The results show that Konya’s overall maturity falls between integrated and managed, with significant variability across sub-dimensions. The enablers dimension demonstrated the highest maturity, driven by strong organizational and technological capabilities, whereas the transport modes dimension had the lowest—particularly in paratransit systems. The SUM-MM serves as both a benchmarking tool and a policy guidance framework, facilitating targeted strategies for sustainable urban mobility improvements. Unlike existing smart city or transport maturity models, the SUM-MM specifically focuses on sustainable urban mobility, offering a structured, operational, and decision-oriented framework for policy-makers and city administrations. The results can be used by local and national authorities to support comparative benchmarking, strategic planning, and the prioritization of sustainable urban mobility investments. Full article
Show Figures

Figure 1

13 pages, 892 KB  
Article
Streetscapes and Street Livability: Advancing Sustainable and Human-Centered Urban Environments
by Walaa Mohamed Metwally
Sustainability 2026, 18(2), 667; https://doi.org/10.3390/su18020667 - 8 Jan 2026
Viewed by 187
Abstract
Street livability is widely recognized as a fundamental indicator of urban livability. Despite growing global agendas advocating human-centered, sustainable, and smart cities, the microscale implementation of streetscape interventions remains limited and non-integrated. This gap is particularly evident in developing cities’ contexts where policy-level [...] Read more.
Street livability is widely recognized as a fundamental indicator of urban livability. Despite growing global agendas advocating human-centered, sustainable, and smart cities, the microscale implementation of streetscape interventions remains limited and non-integrated. This gap is particularly evident in developing cities’ contexts where policy-level frameworks fail to translate into tangible street-level transformations. Responding to this challenge, this paper investigates how streetscape components can enhance everyday street livability. The study aims to explore opportunities for improving street livability through the utilization of three core streetscape components: vegetation, street furniture, and lighting. The discourse on street livability identifies vegetation, street furniture, and lighting as the primary drivers of high-quality urban spaces. Scholarly research suggests that these micro-interventions are most effective when viewed through the combined lenses of human-centered design, environmental sustainability, and smart city technology. While the literature indicates that integrating climate-responsive greenery and renewable energy systems can enhance social interaction and safety, it also highlights significant implementation hurdles. Specifically, researchers point to policy limitations, technical feasibility in developing nations, and the socio-economic threat of green gentrification. Despite these complexities, microscale streetscape improvements remain a vital strategy for fostering inclusive and resilient cities. Full article
(This article belongs to the Section Environmental Sustainability and Applications)
Show Figures

Figure 1

39 pages, 3890 KB  
Review
Deep Reinforcement Learning for Sustainable Urban Mobility: A Bibliometric and Empirical Review
by Sharique Jamal, Farheen Siddiqui, M. Afshar Alam, Mohammad Ayman-Mursaleen, Sherin Zafar and Sameena Naaz
Sensors 2026, 26(2), 376; https://doi.org/10.3390/s26020376 - 6 Jan 2026
Viewed by 336
Abstract
This paper provides an empirical basis for a Computational Integration Framework (CIF), a systematic and scientifically supported implementation of artificial intelligence (AI) in smart city applications. This study is a methodological framework-with-validation study, where large-scale bibliometric analysis is used as a justification for [...] Read more.
This paper provides an empirical basis for a Computational Integration Framework (CIF), a systematic and scientifically supported implementation of artificial intelligence (AI) in smart city applications. This study is a methodological framework-with-validation study, where large-scale bibliometric analysis is used as a justification for design in the identification of strategically relevant urban areas rather than a single research study. This evidence determines urban mobility as the most mature and computationally optimal domain for empirical verification. The exploitation of CIF is realized using a DRL-driven traffic signal control system to show that bibliometrically informed domain selection can be put into application by way of an algorithm. The empirical results show that the most traditional control strategies accomplish significant performance gains, such as about 48% reduction in average wait time, over 30% increase in traffic efficiency, and considerable reductions in fuel consumption and CO2 emissions. A federated DRL solution maintains around 96% of central performance while still maintaining data privacy, which suggests that deployment in real-world situations is feasible. The contribution of this study is threefold: evidence-based domain selection through bibliometric analyses; introduction of CIF as an AI decision support bridge between AI techniques and urban application domains; and computational verification of the feasibility of DRL for sustainable urban mobility. These findings reveal policy information relevant to goals governing global sustainability, including the European Green Deal (EGD) and the United Nations Sustainable Development Goals (SDGs), and thus, the paper is a methodological framework paper based on literature and validated through computational experimentation. Full article
(This article belongs to the Special Issue Edge Artificial Intelligence and Data Science for IoT-Enabled Systems)
Show Figures

Figure 1

30 pages, 3179 KB  
Article
Strategic Management of Urban Services Using Artificial Intelligence in the Development of Sustainable Smart Cities—Managerial and Legal Challenges
by Tomáš Peráček and Michal Kaššaj
Sustainability 2026, 18(2), 582; https://doi.org/10.3390/su18020582 - 6 Jan 2026
Viewed by 324
Abstract
The development of sustainable smart cities is closely linked to the implementation of artificial intelligence in urban services, which opens up new possibilities for efficient resource management, improving the quality of life and strengthening the participation of citizens. At the same time, the [...] Read more.
The development of sustainable smart cities is closely linked to the implementation of artificial intelligence in urban services, which opens up new possibilities for efficient resource management, improving the quality of life and strengthening the participation of citizens. At the same time, the question arises as to how legal and strategic frameworks can support the use of artificial intelligence in a way that contributes to environmental, social and economic sustainability in line with the objectives of the European Union. The aim of this scientific study is to examine the interdisciplinary use of artificial intelligence, data management and sustainability at the European Union level, including support instruments such as regulatory initiatives and funding programs, and to assess their implementation in relation to smart cities. Methodologically, the research is based on a legal analysis of key European and national documents, supplemented by descriptive statistics and visualizations of indicators of digitalization and urban sustainability. In the scientific study, we use the methods of synthesis, comparison and abstraction. The results suggest that the legislative and support framework of the European Union can be a significant impetus for the transformation of individual smart cities, but requires effective coordination and strategic management at the level of local governments. The research highlights the need for an integrated legal-managerial approach that will enable the full use of the potential of artificial intelligence in supporting sustainable urban development of cities. Full article
Show Figures

Figure 1

Back to TopTop