Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (101)

Search Parameters:
Keywords = small nanorods

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
17 pages, 2112 KiB  
Article
Direct Detection of Orthoflavivirus via Gold Nanorod Plasmon Resonance
by Erica Milena de Castro Ribeiro, Bruna de Paula Dias, Cyntia Silva Ferreira, Samara Mayra Soares Alves dos Santos, Rajiv Gandhi Gopalsamy, Estefânia Mara do Nascimento Martins, Cintia Lopes de Brito Magalhães, Flavio Guimarães da Fonseca, Luiz Felipe Leomil Coelho, Cristiano Fantini, Luiz Orlando Ladeira, Lysandro Pinto Borges and Breno de Mello Silva
Sensors 2025, 25(15), 4775; https://doi.org/10.3390/s25154775 - 3 Aug 2025
Viewed by 59
Abstract
Dengue, Zika, yellow fever, chikungunya, and Mayaro arboviruses represent an increasing threat to public health because of the serious infections they cause annually in many countries. Serological diagnosis of these viruses is challenging, making the development of new diagnostic strategies imperative. In this [...] Read more.
Dengue, Zika, yellow fever, chikungunya, and Mayaro arboviruses represent an increasing threat to public health because of the serious infections they cause annually in many countries. Serological diagnosis of these viruses is challenging, making the development of new diagnostic strategies imperative. In this study, we investigated the effectiveness of gold nanorods (GNRs) functionalized with specific anti-dengue and anti-orthoflavivirus antibodies in detecting viral particles. GNRs were created with a length-to-width ratio of up to 5.5, a size of 71.4 ± 6.5 nm, and a light absorption peak at 927 nm, and they were treated with 4 mM polyethyleneimine. These GNRs were attached to a small amount of monoclonal antibodies that target flaviviruses, and the viral particles were detected by measuring the localized surface plasmon resonance using an UV-Vis/NIR spectrometer. The tests found Orthoflavivirus dengue and Orthoflavivirus zikaense in diluted human serum and ground-up mosquitoes, with the lowest detectable amount being 100 PFU/mL. The GNRs described in this study can be used to enhance flavivirus diagnostic tests or to develop new, faster, and more accurate diagnostic techniques. Additionally, the functionalized GNRs presented here are promising for supporting virological surveillance studies in mosquitoes. Our findings highlight a fast and highly sensitive method for detecting Orthoflavivirus in both human and mosquito samples, with a detection limit as low as 100 PFU/mL. Full article
(This article belongs to the Section Biosensors)
Show Figures

Graphical abstract

13 pages, 4266 KiB  
Article
Exciting High-Order Plasmon Mode Using Metal-Insulator-Metal Bowtie Nanoantenna
by Xiaoxin Zhang, Rulin Guan, Qingxiu Ding, Chen Wang, Yaqiong Li, Dengchao Huang, Qigong Chen and Zheng Yang
Nanomaterials 2025, 15(12), 882; https://doi.org/10.3390/nano15120882 - 7 Jun 2025
Viewed by 475
Abstract
Noble metal nanostructures have garnered significant attention for their exceptional optical properties, particularly Localized Surface Plasmon Resonance (LSPR), which enables pronounced near-field electromagnetic enhancements. Among these, bowtie nanoantennas (BNAs) are distinguished by their intense plasmonic coupling within nanogap regions, making them highly effective [...] Read more.
Noble metal nanostructures have garnered significant attention for their exceptional optical properties, particularly Localized Surface Plasmon Resonance (LSPR), which enables pronounced near-field electromagnetic enhancements. Among these, bowtie nanoantennas (BNAs) are distinguished by their intense plasmonic coupling within nanogap regions, making them highly effective for applications such as surface-enhanced Raman scattering (SERS). However, the practical utility of conventional BNAs is often hindered by small hotspot areas and significant scattering losses at their peak near-field enhancement wavelengths. To overcome these limitations, we have designed a novel notch metal-insulator-metal bowtie nanoantenna (NMIM-BNA) structure. This innovative design integrates dielectric materials with Ag-BNA nanostructures and strategically positions arrays of silver (Ag) nanorods within the central nanogap. By coupling the larger NMIM-BNA framework with these smaller Ag nanorod arrays, higher-order plasmon modes (often referred to as dark modes) are effectively excited. Consequently, the NMIM-BNA exhibits substantial electric field enhancement, particularly at the Fano dip wavelength, arising from the efficient coupling of these higher-order plasmon modes with dipole plasmon modes. Compared to conventional Ag-BNA nanoantennas, our NMIM-BNA provides a significantly larger hotspot region and an enhanced near-field amplification factor, underscoring its strong potential for advanced SERS applications. Full article
Show Figures

Figure 1

15 pages, 4685 KiB  
Article
CPDDA: A Python Package for Discrete Dipole Approximation Accelerated by CuPy
by Dibo Xu, Paerhatijiang Tuersun, Shuyuan Li, Meng Wang and Lan Jiang
Nanomaterials 2025, 15(7), 500; https://doi.org/10.3390/nano15070500 - 26 Mar 2025
Viewed by 531
Abstract
Discrete Dipole Approximation (DDA) is a rapidly developing numerical method in recent years. DDA has found wide application in many research fields including plasmonics and atmospheric optics. Currently, few DDA packages based on Python have been reported. In this work, a Python package [...] Read more.
Discrete Dipole Approximation (DDA) is a rapidly developing numerical method in recent years. DDA has found wide application in many research fields including plasmonics and atmospheric optics. Currently, few DDA packages based on Python have been reported. In this work, a Python package called CPDDA is developed. It can be used to simulate the light-scattering and -absorption properties of arbitrarily shaped particles. CPDDA uses object-oriented programming, offers high flexibility and extensibility, and provides a comprehensive database of refractive indices. The package uses the biconjugate gradient method and fast Fourier transform for program acceleration and memory optimization, and it uses parallel computation with graphics processing units to enhance program performance. The accuracy and performance of CPDDA were demonstrated by comparison with Mie theory, the MATLAB package MPDDA, and the Python package pyGDM2. Finally, CPDDA was used to simulate the variations in light-absorption and -scattering properties of ZnO@Au core-shell nanorods based on the particle size. CPDDA is useful for calculating light-scattering and -absorption properties of small particles and selecting materials with excellent optical properties. Full article
(This article belongs to the Section Theory and Simulation of Nanostructures)
Show Figures

Figure 1

11 pages, 6318 KiB  
Article
Polydimethylsiloxane-Zinc Oxide Nanorod-Based Triboelectric Nanogenerator for Compression Applications
by Shiyu Zhao, Guanghui Han, Huaxia Deng, Mengchao Ma and Xiang Zhong
Materials 2025, 18(7), 1392; https://doi.org/10.3390/ma18071392 - 21 Mar 2025
Cited by 2 | Viewed by 658
Abstract
In this study, to enhance the output performance of a contact-separation mode triboelectric nanogenerator (TENG), a zinc oxide nanorod (ZnO NR) film with piezoelectric properties was integrated into a Polydimethylsiloxane (PDMS) film as the dielectric layer. The working mechanism of the PDMS-ZnO NR-based [...] Read more.
In this study, to enhance the output performance of a contact-separation mode triboelectric nanogenerator (TENG), a zinc oxide nanorod (ZnO NR) film with piezoelectric properties was integrated into a Polydimethylsiloxane (PDMS) film as the dielectric layer. The working mechanism of the PDMS-ZnO NR-based TENG was theoretically analyzed in two stages: charge transfer during contact electrification on the material surface and charge movement in the electrostatic induction process. The output characteristics of the PDMS-ZnO NR-based TENG were investigated and compared with those of a PDMS-based TENG. The experimental results demonstrate that the PDMS-ZnO NR-based TENG reached an open-circuit voltage of 39.34 V, representing an increase of 64.5% compared to the PDMS-based TENG. The maximum output power of a 4 cm × 4 cm PDMS-ZnO NR-based TENG reached 82.2 μW. Using a specially designed energy-harvesting circuit, the generated electrical energy was stored in a capacitor, which was charged to 1.47 V within 1 min and reached 3 V in just 2.78 min. This voltage was sufficient to power over 20 LEDs and small sensors. Additionally, the TENG was integrated into the sole of footwear, where the electrical signals generated by compression could be utilized for step counting and gait analysis. Full article
Show Figures

Graphical abstract

13 pages, 4920 KiB  
Article
The Preparation of High-Performance MoO3 Nanorods for 2.1 V Aqueous Asymmetric Supercapacitor
by Ziyu Lian, Xiling Mao, Yi Song, Kaihua Yao, Ruifeng Zhang, Xinyu Yan and Mengwei Li
Nanomaterials 2024, 14(24), 2029; https://doi.org/10.3390/nano14242029 - 17 Dec 2024
Cited by 1 | Viewed by 1236
Abstract
In order to broaden the working voltage (1.23 V) of aqueous supercapacitors, a high-performance asymmetric supercapacitor with a working voltage window reaching up to 2.1 V is assembled using a nanorod-shaped molybdenum trioxide (MoO3) negative electrode and an activated carbon (AC) [...] Read more.
In order to broaden the working voltage (1.23 V) of aqueous supercapacitors, a high-performance asymmetric supercapacitor with a working voltage window reaching up to 2.1 V is assembled using a nanorod-shaped molybdenum trioxide (MoO3) negative electrode and an activated carbon (AC) positive electrode, as well as a sodium sulfate–ethylene glycol ((Na2SO4-EG) electrolyte. MoO3 electrode materials are fabricated by adjusting the hydrothermal temperature, hydrothermal time and solution’s pH value. The specific capacity of the optimal MoO3 electrode material can reach as high as 244.35 F g−1 at a current density of 0.5 A g−1. For the assembled MoO3//AC asymmetric supercapacitor with a voltage window of 2.1 V, its specific capacity, the energy density, and the power density are 13.52 F g−1, 8.28 Wh kg−1, and 382.15 W kg−1 at 0.5 A g−1, respectively. Moreover, after 5000 charge–discharge cycles, the capacity retention rate of the device still reaches 109.2%. This is mainly attributed to the small particle size of MoO3 nanorods, which can expose more electrochemically active sites, thus greatly facilitating the transport of electrolyte ions, immersion at the electrolyte/electrolyte interface and the occurrence of electrochemical reactions. Full article
(This article belongs to the Section Nanoelectronics, Nanosensors and Devices)
Show Figures

Figure 1

19 pages, 9499 KiB  
Article
Correlative Multi-Scale Characterization of Nanoparticles Using Transmission Electron Microscopy
by Stefan Neumann and David Rafaja
Powders 2024, 3(4), 531-549; https://doi.org/10.3390/powders3040028 - 31 Oct 2024
Cited by 2 | Viewed by 1936
Abstract
Chemical and physical properties of nanoparticles (NPs) are strongly influenced not only by the crystal structure of the respective material, including crystal structure defects but also by the NP size and shape. Contemporary transmission electron microscopy (TEM) can describe all these NP characteristics, [...] Read more.
Chemical and physical properties of nanoparticles (NPs) are strongly influenced not only by the crystal structure of the respective material, including crystal structure defects but also by the NP size and shape. Contemporary transmission electron microscopy (TEM) can describe all these NP characteristics, however typically with a different statistical relevance. While the size and shape of NPs are frequently determined on a large ensemble of NPs and thus with good statistics, the characteristics on the atomic scale are usually quantified for a small number of individual NPs and thus with low statistical relevance. In this contribution, we present a TEM-based characterization technique, which can determine relevant characteristics of NPs in a scale-bridging way—from the crystal structure and crystal structure defects up to the NP size and morphology—with sufficient statistical relevance. This technique is based on a correlative multi-scale TEM approach that combines information on atomic scale obtained from the high-resolution imaging with the results of the low-resolution imaging assisted by a semi-automatic segmentation routine. The capability of the technique is illustrated in several examples, including Au NPs with different shapes, Au nanorods with different facet configurations, and multi-core iron oxide nanoparticles with a hierarchical structure. Full article
Show Figures

Figure 1

12 pages, 9190 KiB  
Article
Biomass-Derived-Carbon-Supported Spinel Cobalt Molybdate as High-Efficiency Electrocatalyst for Oxygen Evolution Reaction
by Baoli Wang, Xiujiu Yang, Yan Chen, Jiahan Wang, Mingguo Lan, Kai Tang and Feng Yang
Molecules 2024, 29(20), 4953; https://doi.org/10.3390/molecules29204953 - 19 Oct 2024
Cited by 1 | Viewed by 1334
Abstract
Ananas comosus leaves were converted to a porous graphitized carbon (GPLC) material via a high-temperature pyrolysis method by employing iron salt as a catalyst. A cobalt molybdate (CoMoO4)-and-GPLC composite (CoMoO4/GPLC) was then prepared by engineering CoMoO4 nanorods in [...] Read more.
Ananas comosus leaves were converted to a porous graphitized carbon (GPLC) material via a high-temperature pyrolysis method by employing iron salt as a catalyst. A cobalt molybdate (CoMoO4)-and-GPLC composite (CoMoO4/GPLC) was then prepared by engineering CoMoO4 nanorods in situ, grown on GPLC. N2 adsorption–desorption isothermal curves and a pore size distribution curve verify that the proposed composite possesses a porous structure and a large specific surface area, which are favorable for charge and reactant transport and the rapid escape of O2 bubbles. Consequently, the as-synthesized CoMoO4/GPLC shows low overpotentials of 289 mV and 399 mV to afford the current densities of 10 mA cm−2 and 100 mA cm−2 towards the oxygen evolution reaction (OER), which is superior to many CoMoO4-based catalysts in previous studies. In addition, the decrease in current density is particularly small, with a reduction rate of 3.2% after a continuous OER procedure for 30 h, indicating its good stability. The excellent performance of the CoMoO4/GPLC composite proves that the GPLC carrier can obviously impel the catalytic activity of CoMoO4 by improving electrical conductivity, enhancing mass transport and exposing more active sites of the composite. This work provides an effective strategy for the efficient conversion of waste ananas comosus leaves to a biomass-derived-carbon-supported Co-Mo-based OER electrocatalyst with good performance, which may represent a potential approach to the development of new catalysts for OER, as well as the treatment of waste biomass. Full article
Show Figures

Figure 1

14 pages, 4493 KiB  
Article
Ternary ZnS/ZnO/Graphitic Carbon Nitride Heterojunction for Photocatalytic Hydrogen Production
by Asset Bolatov, Alida Manjovelo, Bilel Chouchene, Lavinia Balan, Thomas Gries, Ghouti Medjahdi, Bolat Uralbekov and Raphaël Schneider
Materials 2024, 17(19), 4877; https://doi.org/10.3390/ma17194877 - 4 Oct 2024
Cited by 5 | Viewed by 1421
Abstract
Ternary ZnS/ZnO/graphitic carbon nitride (gCN) photocatalysts were prepared by coupling gCN sheets with ZnO nanorods under solvothermal conditions followed by sulfurization using Na2S. SEM and TEM analyses show that small-sized ZnS particles (ca. 7.2 nm) deposit homogeneously on the surface of [...] Read more.
Ternary ZnS/ZnO/graphitic carbon nitride (gCN) photocatalysts were prepared by coupling gCN sheets with ZnO nanorods under solvothermal conditions followed by sulfurization using Na2S. SEM and TEM analyses show that small-sized ZnS particles (ca. 7.2 nm) deposit homogeneously on the surface of ZnO/gCN nanohybrids. Photoluminescence and electrochemical impedance spectroscopy show that ZnS allows for an enhanced charge separation efficiency as well as prolonged lifetime of photogenerated charge carriers, leading to improved hydrogen photoproduction under UV light irradiation compared to ZnO/gCN. Moreover, the deposition of ZnS nanoparticles improves the photostability of the ZnS/ZnO/gCN catalyst for hydrogen production. A double Z-scheme mechanism is proposed for hydrogen photoproduction using the ZnS/ZnO/gCN heterojunction. Full article
(This article belongs to the Section Energy Materials)
Show Figures

Figure 1

12 pages, 6562 KiB  
Article
Synthesis of Fe2O3 Nanorod and NiFe2O4 Nanoparticle Composites on Expired Cotton Fiber Cloth for Enhanced Hydrogen Evolution Reaction
by Sun Hua, Sayyar Ali Shah, Noor Ullah, Nabi Ullah and Aihua Yuan
Molecules 2024, 29(13), 3082; https://doi.org/10.3390/molecules29133082 - 28 Jun 2024
Cited by 5 | Viewed by 1531
Abstract
The design of cheap, noble-metal-free, and efficient electrocatalysts for an enhanced hydrogen evolution reaction (HER) to produce hydrogen gas as an energy source from water splitting is an ideal approach. Herein, we report the synthesis of Fe2O3 nanorods–NiFe2O [...] Read more.
The design of cheap, noble-metal-free, and efficient electrocatalysts for an enhanced hydrogen evolution reaction (HER) to produce hydrogen gas as an energy source from water splitting is an ideal approach. Herein, we report the synthesis of Fe2O3 nanorods–NiFe2O4 nanoparticles on cotton fiber cloth (Fe2O3-NiFe2O4/CF) at a low temperature as an efficient electrocatalyst for HERs. Among the as-prepared samples, the optimal Fe2O3-NiFe2O4/CF-3 electrocatalyst exhibits good HER performance with an overpotential of 127 mV at a current density of 10 mA cm−2, small Tafel slope of 44.9 mV dec−1, and good stability in 1 M KOH alkaline solution. The synergistic effect between Fe2O3 nanorods and NiFe2O4 nanoparticles of the heterojunction composite at the heterointerface is mainly responsible for improved HER performance. The CF is an effective substrate for the growth of the Fe2O3-NiFe2O4 nanocomposite and provides conductive channels for the active materials’ HER process. Full article
Show Figures

Figure 1

17 pages, 6409 KiB  
Article
Size Dependence of Gold Nanorods for Efficient and Rapid Photothermal Therapy
by Wei Zhou, Yanhua Yao, Hailing Qin, Xiaobo Xing, Zongbao Li, Min Ouyang and Haihua Fan
Int. J. Mol. Sci. 2024, 25(4), 2018; https://doi.org/10.3390/ijms25042018 - 7 Feb 2024
Cited by 3 | Viewed by 2696
Abstract
In recent years, gold nanomaterials have become a hot topic in photothermal tumor therapy due to their unique surface plasmon resonance characteristics. The effectiveness of photothermal therapy is highly dependent on the shape and size of gold nanoparticles. In this work, we investigate [...] Read more.
In recent years, gold nanomaterials have become a hot topic in photothermal tumor therapy due to their unique surface plasmon resonance characteristics. The effectiveness of photothermal therapy is highly dependent on the shape and size of gold nanoparticles. In this work, we investigate the photothermal therapeutic effects of four different sizes of gold nanorods (GNRs). The results show that the uptake of short GNRs with aspect ratios 3.3–3.5 by cells is higher than that of GNRs with aspect ratios 4–5.5. Using a laser with single pulse energy as low as 28 pJ laser for 20 s can induce the death of liver cancer cells co-cultured with short GNRs. Long GNRs required twice the energy to achieve the same therapeutic effect. The dual-temperature model is used to simulate the photothermal response of intracellular clusters irradiated by a laser. It is found that small GNRs are easier to compact because of their morphological characteristics, and the electromagnetic coupling between GNRs is better, which increases the internal field enhancement, resulting in higher local temperature. Compared with a single GNR, GNR clusters are less dependent on polarization and wavelength, which is more conducive to the flexible selection of excitation laser sources. Full article
(This article belongs to the Special Issue Functional Optical Nano/Micromaterials 2.0)
Show Figures

Figure 1

33 pages, 4621 KiB  
Article
Virtual Test Beds for Image-Based Control Simulations Using Blender
by Akkarakaran Francis Leonard, Govanni Gjonaj, Minhazur Rahman and Helen E. Durand
Processes 2024, 12(2), 279; https://doi.org/10.3390/pr12020279 - 27 Jan 2024
Cited by 4 | Viewed by 2714
Abstract
Process systems engineering research often utilizes virtual testbeds consisting of physicsbased process models. As machine learning and image processing become more relevant sensing frameworks for control, it becomes important to address how process systems engineers can research the development of control and analysis [...] Read more.
Process systems engineering research often utilizes virtual testbeds consisting of physicsbased process models. As machine learning and image processing become more relevant sensing frameworks for control, it becomes important to address how process systems engineers can research the development of control and analysis frameworks that utilize images of physical processes. One method for achieving this is to develop experimental systems; another is to use software that integrates the visualization of systems, as well as modeling of the physics, such as three-dimensional graphics software. The prior work in our group analyzed image-based control for the small-scale example of level in a tank and hinted at some of its potential extensions, using Blender as the graphics software and programming the physics of the tank level via the Python programming interface. The present work focuses on exploring more practical applications of image-based control. Specifically, in this work, we first utilize Blender to demonstrate how a process like zinc flotation, where images of the froth can play a key role in assessing the quality of the process, can be modeled in graphics software through the integration of visualization and programming of the process physics. Then, we demonstrate the use of Blender for testing image-based controllers applied to two other processes: (1) control of the stochastic motion of a nanorod as a precursor simulation toward image-based control of colloidal self-assembly using a virtual testbed; and (2) controller updates based on environment recognition to modify the controller behavior in the presence of different levels of sunlight to reduce the impacts of environmental disturbances on the controller performance. Throughout, we discuss both the setup used in Blender for these systems, as well as some of the features when utilizing Blender for such simulations, including highlighting cases where non-physical parameters of the graphics software would need to be assumed or tuned to the needs of a given process for the testbed simulation. These studies highlight benefits and limitations of this framework as a testbed for image-based controllers and discuss how it can be used to derive insights on image-based control functionality without the development of an experimental testbed. Full article
(This article belongs to the Special Issue Recent Developments in Automatic Control and Systems Engineering)
Show Figures

Figure 1

14 pages, 10386 KiB  
Article
High-Rate One-Dimensional α-MnO2 Anode for Lithium-Ion Batteries: Impact of Polymorphic and Crystallographic Features on Lithium Storage
by Hye-min Kim, Byung-chul Cha and Dae-wook Kim
Nanomaterials 2023, 13(20), 2808; https://doi.org/10.3390/nano13202808 - 23 Oct 2023
Cited by 4 | Viewed by 3027
Abstract
Manganese dioxide (MnO2) exists in a variety of polymorphs and crystallographic structures. The electrochemical performance of Li storage can vary depending on the polymorph and the morphology. In this study, we present a new approach to fabricate polymorph- and aspect-ratio-controlled α-MnO [...] Read more.
Manganese dioxide (MnO2) exists in a variety of polymorphs and crystallographic structures. The electrochemical performance of Li storage can vary depending on the polymorph and the morphology. In this study, we present a new approach to fabricate polymorph- and aspect-ratio-controlled α-MnO2 nanorods. First, δ-MnO2 nanoparticles were synthesized using a solution plasma process assisted by three types of sugars (sucrose, glucose, and fructose) as reducing promoters; this revealed different morphologies depending on the nucleation rate and reaction time from the molecular structure of the sugars. Based on the morphology of δ-MnO2, the polymorphic-transformed three types of α-MnO2 nanorods showed different aspect ratios (c/a), which highly affected the transport of Li ions. Among them, a relatively small aspect ratio (c/a = 5.1) and wide width of α-MnO2-S nanorods (sucrose-assisted) induced facile Li-ion transport in the interior of the particles through an increased Li-ion pathway. Consequently, α-MnO2-S exhibited superior battery performance with a high-rate capability of 673 mAh g−1 at 2 A g−1, and it delivered a high reversible capacity of 1169 mAh g−1 at 0.5 A g−1 after 200 cycles. Our findings demonstrated that polymorphs and crystallographic properties are crucial factors in the electrode design of high-performance Li-ion batteries. Full article
(This article belongs to the Topic Advanced Nanomaterials for Lithium-Ion Batteries)
Show Figures

Figure 1

13 pages, 4352 KiB  
Article
Convergence Gas Sensors with One-Dimensional Nanotubes and Pt Nanoparticles Based on Ultraviolet Photonic Energy for Room-Temperature NO2 Gas Sensing
by Sohyeon Kim, Ju-Eun Yang, Yoon-Seo Park, Minwoo Park, Sang-Jo Kim and Kyoung-Kook Kim
Nanomaterials 2023, 13(20), 2780; https://doi.org/10.3390/nano13202780 - 17 Oct 2023
Cited by 8 | Viewed by 1995
Abstract
Zinc oxide (ZnO) is a promising material for nitrogen dioxide (NO2) gas sensors because of its nontoxicity, low cost, and small size. We fabricated one-dimensional (1D) and zero-dimensional (0D) convergence gas sensors activated via ultraviolet (UV) photonic energy to sense NO [...] Read more.
Zinc oxide (ZnO) is a promising material for nitrogen dioxide (NO2) gas sensors because of its nontoxicity, low cost, and small size. We fabricated one-dimensional (1D) and zero-dimensional (0D) convergence gas sensors activated via ultraviolet (UV) photonic energy to sense NO2 gas at room temperature. One-dimensional ZnO nanorod (ZNR)-based and ZnO nanotube (ZNT)-based gas sensors were synthesized using a simple hydrothermal method. All the sensors were tested under UV irradiation (365 nm) so that they could be operated at room temperature rather than a high temperature. In addition, we decorated 0D Pt nanoparticles (NPs) on the gas sensors to further improve their sensing responsivity. The NO2-sensing response of the ZNT/Pt NP convergence gas sensor was 2.93 times higher than that of the ZNR gas sensor. We demonstrated the complex effects of UV radiation on 1D ZnO nanostructures and 0D metal nanostructures in NO2 gas sensing. Full article
Show Figures

Figure 1

20 pages, 4706 KiB  
Article
Effectiveness of Gold Nanorods of Different Sizes in Photothermal Therapy to Eliminate Melanoma and Glioblastoma Cells
by Javier Domingo-Diez, Lilia Souiade, Vanesa Manzaneda-González, Marta Sánchez-Díez, Diego Megias, Andrés Guerrero-Martínez, Carmen Ramírez-Castillejo, Javier Serrano-Olmedo and Milagros Ramos-Gómez
Int. J. Mol. Sci. 2023, 24(17), 13306; https://doi.org/10.3390/ijms241713306 - 27 Aug 2023
Cited by 10 | Viewed by 2934
Abstract
Gold nanorods are the most commonly used nanoparticles in photothermal therapy for cancer treatment due to their high efficiency in converting light into heat. This study aimed to investigate the efficacy of gold nanorods of different sizes (large and small) in eliminating two [...] Read more.
Gold nanorods are the most commonly used nanoparticles in photothermal therapy for cancer treatment due to their high efficiency in converting light into heat. This study aimed to investigate the efficacy of gold nanorods of different sizes (large and small) in eliminating two types of cancer cell: melanoma and glioblastoma cells. After establishing the optimal concentration of nanoparticles and determining the appropriate time and power of laser irradiation, photothermal therapy was applied to melanoma and glioblastoma cells, resulting in the highly efficient elimination of both cell types. The efficiency of the PTT was evaluated using several methods, including biochemical analysis, fluorescence microscopy, and flow cytometry. The dehydrogenase activity, as well as calcein-propidium iodide and Annexin V staining, were employed to determine the cell viability and the type of cell death triggered by the PTT. The melanoma cells exhibited greater resistance to photothermal therapy, but this resistance was overcome by irradiating cells at physiological temperatures. Our findings revealed that the predominant cell-death pathway activated by the photothermal therapy mediated by gold nanorods was apoptosis. This is advantageous as the presence of apoptotic cells can stimulate antitumoral immunity in vivo. Considering the high efficacy of these gold nanorods in photothermal therapy, large nanoparticles could be useful for biofunctionalization purposes. Large nanorods offer a greater surface area for attaching biomolecules, thereby promoting high sensitivity and specificity in recognizing target cancer cells. Additionally, large nanoparticles could also be beneficial for theranostic applications, involving both therapy and diagnosis, due to their superior detection sensitivity. Full article
(This article belongs to the Special Issue Nanomaterials for Cancer Diagnostics and Therapy)
Show Figures

Figure 1

14 pages, 13744 KiB  
Article
Calcium Sulfate Nanoparticles in Surface Sediments of Lingding Bay of the Pearl River Estuary, China: Implications for the Nonclassical Crystallization Pathway of Gypsum in the Natural Estuary Environment
by Guoqiang Wang, Tianjian Yang, Yitong Fan, Shushu Bai and Peiyuan Yin
Minerals 2023, 13(7), 903; https://doi.org/10.3390/min13070903 - 3 Jul 2023
Cited by 1 | Viewed by 2061
Abstract
The mechanism of the nonclassical crystallization pathway of calcium sulfate dihydrate (gypsum) with calcium sulfate hemihydrate (bassanite) as a precursor has been considered in many studies. However, studies on the crystallization of gypsum in natural environments have rarely been reported, especially with regard [...] Read more.
The mechanism of the nonclassical crystallization pathway of calcium sulfate dihydrate (gypsum) with calcium sulfate hemihydrate (bassanite) as a precursor has been considered in many studies. However, studies on the crystallization of gypsum in natural environments have rarely been reported, especially with regard to natural estuaries, which are one of the most important precipitation environments for calcium sulfate. Here, surface sediments (0–5 cm) of Lingding Bay of the Pearl River Estuary in China were sampled and analyzed. X-ray powder diffraction (XRD) analysis showed that calcium sulfate in the surface sediments mainly existed in the form of gypsum. In high-resolution transmission electron microscopy (HR-TEM) analysis, calcium sulfate nanoparticles were observed in the surface sediments. These particles mainly included spherical calcium sulfate nanoparticles (diameter ranging from 10–50 nm) and bassanite nanorod clusters (sizes ranging from 30 nm × 150 nm to 100 nm × 650 nm), and their main elements included O, S and Ca, with small amounts of N, Si, Na and Mg. The bassanite nanorods self-assembled into aggregates primarily co-oriented along the c axis (i.e., [001] direction). In epitaxial growth into larger bassanite nanorods (100 nm × 650 nm), the crystal form of gypsum could be observed. Based on the observations and analyses, we proposed that the crystallization of gypsum in surface sediments of the natural estuary environment could occur through the nonclassical crystallization pathway. In this pathway, bassanite nanoparticles and nanorods appear as precursors (nanoscale precursors), grow via self-assembly, and are finally transformed into gypsum. This work provided evidence supporting and enhancing the understanding of the crystallization pathway of calcium sulfate phases in the natural estuary environment. Furthermore, the interactions between calcium sulfate nanoparticles and the natural estuary environment were examined. Full article
Show Figures

Figure 1

Back to TopTop