Biomass-Derived-Carbon-Supported Spinel Cobalt Molybdate as High-Efficiency Electrocatalyst for Oxygen Evolution Reaction
Abstract
:1. Introduction
2. Results and Discussion
2.1. Morphological and Structural Characterizations
2.2. OER Activity
3. Experimental Section
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Zhang, J.; Ye, Y.; Wang, Z.; Xu, Y.; Gui, L.; He, B.; Zhao, L. Probing dynamic self-Reconstruction on perovskite fluorides toward ultrafast oxygen evolution. Adv. Sci. 2022, 9, 2201916. [Google Scholar] [CrossRef] [PubMed]
- Yi, M.; Ma, J.; Ren, Y.; Wang, H.; Xie, L.; Zhu, Z.; Zhang, J. Ionic Liquid Meets MOF: A facile method to optimize the structure of CoSe2-NiSe2 heterojunctions with N, P, and F triple-doped carbon using ionic liquid for efficient hydrogen evolution and flexible supercapacitors. Adv. Sci. 2023, 10, 2206029. [Google Scholar] [CrossRef] [PubMed]
- Xiao, J.; Zhang, S.; Sun, Y.; Liu, X.; He, G.; Liu, H.; Khan, J.; Zhu, Y.; Su, Y.; Wang, S.; et al. Urchin-like structured MoO2/Mo3P/Mo2C triple-interface heterojunction encapsulated within nitrogen-doped carbon for enhanced hydrogen evolution reaction. Small 2023, 19, 2206472. [Google Scholar] [CrossRef] [PubMed]
- Zhang, R.; Pan, L.; Guo, B.; Huang, Z.F.; Chen, Z.; Wang, L.; Zhang, X.; Guo, Z.; Xu, W.; Loh, K.P.; et al. Tracking the role of defect types in Co3O4 structural evolution and active motifs during oxygen evolution reaction. J. Am. Chem. Soc. 2023, 145, 2271–2281. [Google Scholar] [CrossRef]
- Wang, R.; Wang, X.; Cheng, M.; Wei, Y.; Xia, J.; Lin, H.; Sun, W.; Hu, W. Phosphatizing engineering of heterostructured Rh2P/Rh nanoparticles on doped graphene for efficient hydrogen evolution in alkaline and acidic media. Int. J. Hydrogen Energy 2022, 47, 24669–24679. [Google Scholar] [CrossRef]
- Li, D.; Li, J.; Yi, L.; Wang, R.; Wei, Y.; Fang, C.; Sun, W.; Li, Y.; Hu, W. Ultrathin metal–organic framework hybrid nanosheets enabled active oxygen evolution electrocatalysis in alkaline media. J. Electroanal. Chem. 2022, 922, 116765. [Google Scholar] [CrossRef]
- Qin, M.; Chen, L.; Zhang, H.; Humayun, M.; Fu, Y.; Xu, X.; Xue, X.; Wang, C. Achieving highly efficient pH-universal hydrogen evolution by Mott-Schottky heterojunction of Co2P/Co4N. Chem. Eng. J. 2023, 454, 140230. [Google Scholar] [CrossRef]
- Shi, W.; Zhu, J.; Gong, L.; Feng, D.; Ma, Q.; Yu, J.; Tang, H.; Zhao, Y.; Mu, S. Fe-incorporated Ni/MoO2 hollow heterostructure nanorod arrays for high-efficiency overall water splitting in alkaline and seawater media. Small 2022, 18, 2205683. [Google Scholar] [CrossRef]
- Hou, G.; Jia, X.; Kang, H.; Qiao, X.; Liu, Y.; Li, Y.; Wu, X.; Qin, W. CoNi nano-alloys modified yolk-shell structure carbon cage via Saccharomycetes as carbon template for efficient oxygen evolution reaction. Appl. Catal. B Environ. 2022, 315, 121551. [Google Scholar] [CrossRef]
- Zhao, Y.; Zhang, Z.; Liu, L.; Wang, Y.; Wu, T.; Qin, W.; Liu, S.; Jia, B.; Wu, H.; Zhang, D.; et al. S and O co-coordinated Mo single sites in hierarchically porous tubes from sulfur-enamine copolymerization for oxygen reduction and evolution. J. Am. Chem. Soc. 2022, 144, 20571–20581. [Google Scholar] [CrossRef]
- Zhu, L.; Zhang, S.; Ai, Z.; Zhang, Y.; Wang, B.; Zou, R.; Sun, W. Investigation of seawater electrolyte on hydrogen evolution reaction from the perspective of kinetics and energy consumption using an Ni-based electrocatalyst supported on carbon nanotubes. Phys. Chem. Chem. Phys. 2023, 25, 29774–29782. [Google Scholar] [CrossRef] [PubMed]
- Wang, B.; Shi, F.; Sun, Y.; Yan, L.; Zhang, X.; Wang, B.; Sun, W. Ni-enhanced molybdenum carbide loaded N-doped graphitized carbon as bifunctional electrocatalyst for overall water splitting. Appl. Surf. Sci. 2022, 572, 151480. [Google Scholar] [CrossRef]
- Wu, L.; Shen, X.; Ji, Z.; Yuan, J.; Yang, S.; Zhu, G.; Chen, L.; Kong, L.; Zhou, H. Facile synthesis of medium-entropy metal sulfides as high-efficiency electrocatalysts toward oxygen evolution reaction. Adv. Funct. Mater. 2023, 33, 2208170. [Google Scholar] [CrossRef]
- He, W.; Zhang, R.; Cao, D.; Li, Y.; Zhang, J.; Hao, Q.; Liu, H.; Zhao, J.; Xin, H.L. Super-hydrophilic microporous Ni (OH)x/Ni3S2 heterostructure electrocatalyst for large-current-density hydrogen Evolution. Small 2023, 19, 2205719. [Google Scholar] [CrossRef]
- Hu, F.; Yu, D.; Ye, M.; Wang, H.; Hao, Y.; Wang, L.; Li, L.; Han, X.; Peng, S. Lattice-matching formed mesoporous transition metal oxide heterostructures advance water splitting by active Fe-O-Cu bridges. Adv. Energy Mater. 2022, 12, 2200067. [Google Scholar] [CrossRef]
- Zhao, J.; Chen, F.W.; Zhao, X.Y.; Wang, X.J.; Li, Y.P.; Li, F.T. Self-composition of hierarchical core-shell-structured NiCo2O4@ NiCo2O4 microspheres with oxygen vacancies for efficient oxygen evolution electrocatalysis. Energy Fuels 2023, 37, 18111–18119. [Google Scholar] [CrossRef]
- Bahadur, A.; Hussain, W.; Iqbal, S.; Ullah, F.; Shoaib, M.; Liu, G.; Feng, K. A morphology controlled surface sulfurized CoMn2O4 microspike electrocatalyst for water splitting with excellent OER rate for binder-free electrocatalytic oxygen evolution. J. Mater. Chem. A 2021, 9, 12255–12264. [Google Scholar] [CrossRef]
- Zheng, Z.; Chen, Y.; Yin, H.; Xiao, H.; Zhou, X.; Li, Z.; Li, X.; Chen, J.; Yuan, S.; Guo, J.; et al. Stabilizing the dissolution kinetics by interstitial Zn cations in CoMoO4 for oxygen evolution reaction at high potential. Electrochim. Acta 2024, 473, 143386. [Google Scholar] [CrossRef]
- Shao, X.; Li, D.; Zhou, A.; Zhu, L.; Du, Y.; Li, B.; Zhang, Y.; Cao, L.; Yang, J. Superhydrophilic CoMoO4 with high oxygen vacancy for outstanding alkaline OER. Int. J. Hydrogen Energy 2024, 58, 1284–1294. [Google Scholar] [CrossRef]
- Yang, W.D.; Xiang, J.; Zhao, R.D.; Loy, S.; Li, M.T.; Ma, D.M.; Li, J.; Wu, F.F. Nanoengineering of ZnCo2O4@ CoMoO4 heterogeneous structures for supercapacitor and water splitting applications. Ceram. Int. 2023, 49, 4422–4434. [Google Scholar] [CrossRef]
- Xu, Y.; Xie, L.; Li, D.; Yang, R.; Jiang, D.; Chen, M. Engineering Ni(OH)2 nanosheet on CoMoO4 nanoplate array as efficient electrocatalyst for oxygen evolution reaction. ACS Sustain. Chem. Eng. 2018, 6, 16086–16095. [Google Scholar] [CrossRef]
- You, N.; Cao, S.; Huang, M.; Fan, X.; Shi, K.; Huang, H.; Chen, Z.; Yang, Z.; Zhang, W. Constructing P-CoMoO4@NiCoP heterostructure nanoarrays on Ni foam as efficient bifunctional electrocatalysts for overall water splitting. Nano Mater. Sci. 2023, 5, 278–286. [Google Scholar] [CrossRef]
- Wang, J.; Guo, Z.; Liu, M.; Wang, Y.; Liu, H.; Wu, L.; Xue, Y.; Cai, N.; Li, H.; Yu, F. CoMoO4 nanoparticles decorated ultrathin nanoplates constructed porous flower as an electrocatalyst toward overall water splitting and Zn-air batteries. Renew. Energy 2023, 212, 751–760. [Google Scholar] [CrossRef]
- Xie, W.; Huang, J.; Huang, L.; Geng, S.; Song, S.; Tsiakaras, P.; Wang, Y. Novel fluorine-doped cobalt molybdate nanosheets with enriched oxygen-vacancies for improved oxygen evolution reaction activity. Appl. Catal. B Environ. 2022, 303, 120871. [Google Scholar] [CrossRef]
- Luo, J.; Zhou, Y.; Wang, X.; Gu, Y.; Liu, W.; Wang, S.; Zhang, J. CoMoO4-CoP/NC heterostructure anchored on hollow polyhedral N-doped carbon skeleton for efficient water splitting. J. Colloid Interface Sci. 2023, 648, 90–101. [Google Scholar] [CrossRef]
- Liu, Z.; Zhou, Q.; Zhao, B.; Li, S.; Xiong, Y.; Xu, W. Few-layer N-doped porous carbon nanosheets derived from corn stalks as a bifunctional electrocatalyst for overall water splitting. Fuel 2020, 280, 118567. [Google Scholar] [CrossRef]
- Kumaresan, N.; Karuppasamy, P.; Kumar, M.P.; Peera, S.G.; AlSalhi, M.S.; Devanesan, S.; Mangalaraja, R.; Ramasamy, P.; de Oliveira, T.F.; Murugadoss, G. Synthesis and characterization of metal-free nanosheets of carbo-catalysts for bifunctional electrocatalyst towards HER and OER application. Mol. Catal. 2023, 539, 113043. [Google Scholar] [CrossRef]
- Yang, L.; Zeng, X.; Wang, D.; Cao, D. Biomass-derived FeNi alloy and nitrogen-codoped porous carbons as highly efficient oxygen reduction and evolution bifunctional electrocatalysts for rechargeable Zn-air battery. Energy Storage Mater. 2018, 12, 277–283. [Google Scholar] [CrossRef]
- Ma, X.; Guo, C.; Xiang, J.; Qi, Y.; Yu, J.; Li, K.; Tao, Z.; Wu, J.; Lv, Y. Synthesis and applications of biomass-derived electrocatalysts in water electrolysis. Int. J. Hydrogen Energy 2024, 60, 845–866. [Google Scholar] [CrossRef]
- Wang, L.; Liang, K.; Deng, L.; Liu, Y.-N. Protein hydrogel networks: A unique approach to heteroatom self-doped hierarchically porous carbon structures as an efficient ORR electrocatalyst in both basic and acidic conditions. Appl. Catal. B Environ. 2019, 246, 89–99. [Google Scholar] [CrossRef]
- Sun, Y.; Sun, W.; Huang, J.; Li, G.; Wang, L.; Li, S.; Meng, A.; Li, Z. Tailoring the local electron and modulating morphology to enhance the overall water splitting and urea electrolysis of CoMoO4@Cu2S electrocatalyst with superhydrophilicity. Chem. Eng. J. 2023, 477, 147016. [Google Scholar] [CrossRef]
- Li, Q.; Li, X.; Zhang, K.; He, J.; Lou, Y.; Chen, J. Rod-like CoMoO4 grows on lamellar Fe-MOF to assemble the composite electrocatalyst for efficient oxygen evolution reaction. Inorg. Chem. Commun. 2023, 153, 110835. [Google Scholar] [CrossRef]
- Jiang, M.; Hu, Z.; Zou, Y.; Xiang, C.; Xu, F.; Sun, L.; Hu, X. NiSe-modified CoMoO4 nanosheets as bifunctional electrocatalysts for hydrogen and oxygen evolution reactions. J. Alloys Compd. 2024, 978, 173495. [Google Scholar] [CrossRef]
- Yu, M.Q.; Jiang, L.X.; Yang, H.G. Ultrathin nanosheets constructed CoMoO4 porous flowers with high activity for electrocatalytic oxygen evolution. Chem. Commun. 2015, 51, 14361–14364. [Google Scholar] [CrossRef] [PubMed]
- Chi, K.; Tian, X.; Wang, Q.; Zhang, Z.; Zhang, X.; Zhang, Y.; Jing, F.; Lv, Q.; Yao, W.; Xiao, F.; et al. Oxygen vacancies engineered CoMoO4 nanosheet arrays as efficient bifunctional electrocatalysts for overall water splitting. J. Catal. 2020, 381, 44–52. [Google Scholar] [CrossRef]
- Fei, B.; Chen, Z.; Ha, Y.; Wang, R.; Yang, H.; Xu, H.; Wu, R. Anion-cation co-substitution activation of spinel CoMoO4 for efficient oxygen evolution reaction. Chem. Eng. J. 2020, 394, 124926. [Google Scholar] [CrossRef]
- Liu, X.; Yang, Y.; Guan, S. An efficient electrode based on one-dimensional CoMoO4 nanorods for oxygen evolution reaction. Chem. Phys. Lett. 2017, 675, 11–14. [Google Scholar] [CrossRef]
- Yin, Z.; Chen, Y.; Zhao, Y.; Li, C.; Zhu, C.; Zhang, X. Hierarchical nanosheet-based CoMoO4-NiMoO4 nanotubes for applications in asymmetric supercapacitors and the oxygen evolution reaction. J. Mater. Chem. A 2015, 3, 22750–22758. [Google Scholar] [CrossRef]
- Srirapu, V.; Kumar, A.; Kumari, N.; Srivastava, P.; Singh, R.N. A comparative study of electrocatalytic performance of metal molybdates for the water oxidation. Int. J. Hydrogen Energy 2018, 43, 16543–16555. [Google Scholar] [CrossRef]
- Li, Y.; Wang, C.; Cui, M.; Chen, S.; Ma, T. A novel strategy to synthesize CoMoO4 nanotube as highly efficient oxygen evolution reaction electrocatalyst. Catal. Commun. 2019, 131, 105800. [Google Scholar] [CrossRef]
- Ahmed, J.; Ubaidullah, M.; Ahmad, T.; Alhokbany, N.; Alshehri, S.M. Synthesis of graphite oxide/cobalt molybdenum oxide hybrid nanosheets for enhanced electrochemical performance in supercapacitors and the oxygen evolution reaction. ChemElectroChem 2019, 6, 2524–2530. [Google Scholar] [CrossRef]
- Gong, Y.; Yang, Z.; Lin, Y.; Wang, J.; Pan, H.; Xu, Z. Hierarchical heterostructure NiCo2O4@CoMoO4/NF as an efficient bifunctional electrocatalyst for overall water splitting. J. Mater. Chem. A 2018, 6, 16950–16958. [Google Scholar] [CrossRef]
- Connor, P.; Schuch, J.; Kaiser, B.; Jaegermann, W. The determination of electrochemical active surface area and specific capacity revisited for the system MnOx as an oxygen evolution catalyst. Z. Phys. Chem. 2020, 234, 979–994. [Google Scholar] [CrossRef]
Catalyst | η (mV vs. RHE) | Tafel Slope (mV dec−1) | Electrolyte (KOH) | Refs. |
---|---|---|---|---|
CoMoO4/GPLC | η10, 289 | 60.4 | 1.0 M | This work |
CoMoO4 flowers | η10, 312 | 56 | 1.0 M | [34] |
NF/H-CoMoO4 | η10, 295 | / | 1.0 M | [35] |
Fe0.5Co0.5MoO4−xSx | η10, 268 | 87 | 1.0 M | [36] |
CoMoO4 nanorods | η10, 343 | 67 | 1.0 M | [37] |
CoMoO4-NiMoO4 | η10, 300 | 68 | 1.0 M | [38] |
CoMoO4/G | η10, 327 | 43 | 1.0 M | [39] |
CoMoO4 nanotube | η10, 315 | 108 | 1.0 M | [40] |
rGO/CoMoO4 | η10, 475 | 167 | 1.0 M | [41] |
NiCo2O4@CoMoO4/NF−7 | η20, 265 | 102 | 1.0 M | [42] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, B.; Yang, X.; Chen, Y.; Wang, J.; Lan, M.; Tang, K.; Yang, F. Biomass-Derived-Carbon-Supported Spinel Cobalt Molybdate as High-Efficiency Electrocatalyst for Oxygen Evolution Reaction. Molecules 2024, 29, 4953. https://doi.org/10.3390/molecules29204953
Wang B, Yang X, Chen Y, Wang J, Lan M, Tang K, Yang F. Biomass-Derived-Carbon-Supported Spinel Cobalt Molybdate as High-Efficiency Electrocatalyst for Oxygen Evolution Reaction. Molecules. 2024; 29(20):4953. https://doi.org/10.3390/molecules29204953
Chicago/Turabian StyleWang, Baoli, Xiujiu Yang, Yan Chen, Jiahan Wang, Mingguo Lan, Kai Tang, and Feng Yang. 2024. "Biomass-Derived-Carbon-Supported Spinel Cobalt Molybdate as High-Efficiency Electrocatalyst for Oxygen Evolution Reaction" Molecules 29, no. 20: 4953. https://doi.org/10.3390/molecules29204953
APA StyleWang, B., Yang, X., Chen, Y., Wang, J., Lan, M., Tang, K., & Yang, F. (2024). Biomass-Derived-Carbon-Supported Spinel Cobalt Molybdate as High-Efficiency Electrocatalyst for Oxygen Evolution Reaction. Molecules, 29(20), 4953. https://doi.org/10.3390/molecules29204953