Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (299)

Search Parameters:
Keywords = slip boundary conditions

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
32 pages, 6134 KiB  
Article
Nonlinear Dynamic Modeling and Analysis of Drill Strings Under Stick–Slip Vibrations in Rotary Drilling Systems
by Mohamed Zinelabidine Doghmane
Energies 2025, 18(14), 3860; https://doi.org/10.3390/en18143860 - 20 Jul 2025
Viewed by 284
Abstract
This paper presents a comprehensive study of torsional stick–slip vibrations in rotary drilling systems through a comparison between two lumped parameter models with differing complexity: a simple two-degree-of-freedom (2-DOF) model and a complex high-degree-of-freedom (high-DOF) model. The two models are developed under identical [...] Read more.
This paper presents a comprehensive study of torsional stick–slip vibrations in rotary drilling systems through a comparison between two lumped parameter models with differing complexity: a simple two-degree-of-freedom (2-DOF) model and a complex high-degree-of-freedom (high-DOF) model. The two models are developed under identical boundary conditions and consider an identical nonlinear friction torque dynamic involving the Stribeck effect and dry friction phenomena. The high-DOF model is calculated with the Finite Element Method (FEM) to enable accurate simulation of the dynamic behavior of the drill string and accurate representation of wave propagation, energy build-up, and torque response. Field data obtained from an Algerian oil well with Measurement While Drilling (MWD) equipment are used to guide modeling and determine simulations. According to the findings, the FEM-based high-DOF model demonstrates better performance in simulating basic stick–slip dynamics, such as drill bit velocity oscillation, nonlinear friction torque formation, and transient bit-to-surface contacts. On the other hand, the 2-DOF model is not able to represent these effects accurately and can lead to inappropriate control actions and mitigation of vibration severity. This study highlights the importance of robust model fidelity in building reliable real-time rotary drilling control systems. From the performance difference measurement between low-resolution and high-resolution models, the findings offer valuable insights to optimize drilling efficiency further, minimize non-productive time (NPT), and improve the rate of penetration (ROP). This contribution points to the need for using high-fidelity models, such as FEM-based models, in facilitating smart and adaptive well control strategies in modern petroleum drilling engineering. Full article
(This article belongs to the Section H: Geo-Energy)
Show Figures

Figure 1

33 pages, 5578 KiB  
Review
Underwater Drag Reduction Applications and Fabrication of Bio-Inspired Surfaces: A Review
by Zaixiang Zheng, Xin Gu, Shengnan Yang, Yue Wang, Ying Zhang, Qingzhen Han and Pan Cao
Biomimetics 2025, 10(7), 470; https://doi.org/10.3390/biomimetics10070470 - 17 Jul 2025
Viewed by 504
Abstract
As an emerging energy-saving approach, bio-inspired drag reduction technology has become a key research direction for reducing energy consumption and greenhouse gas emissions. This study introduces the latest research progress on bio-inspired microstructured surfaces in the field of underwater drag reduction, focusing on [...] Read more.
As an emerging energy-saving approach, bio-inspired drag reduction technology has become a key research direction for reducing energy consumption and greenhouse gas emissions. This study introduces the latest research progress on bio-inspired microstructured surfaces in the field of underwater drag reduction, focusing on analyzing the drag reduction mechanism, preparation process, and application effect of the three major technological paths; namely, bio-inspired non-smooth surfaces, bio-inspired superhydrophobic surfaces, and bio-inspired modified coatings. Bio-inspired non-smooth surfaces can significantly reduce the wall shear stress by regulating the flow characteristics of the turbulent boundary layer through microstructure design. Bio-inspired superhydrophobic surfaces form stable gas–liquid interfaces through the construction of micro-nanostructures and reduce frictional resistance by utilizing the slip boundary effect. Bio-inspired modified coatings, on the other hand, realize the synergistic function of drag reduction and antifouling through targeted chemical modification of materials and design of micro-nanostructures. Although these technologies have made significant progress in drag reduction performance, their engineering applications still face bottlenecks such as manufacturing process complexity, gas layer stability, and durability. Future research should focus on the analysis of drag reduction mechanisms and optimization of material properties under multi-physical field coupling conditions, the development of efficient and low-cost manufacturing processes, and the enhancement of surface stability and adaptability through dynamic self-healing coatings and smart response materials. It is hoped that the latest research status of bio-inspired drag reduction technology reviewed in this study provides a theoretical basis and technical reference for the sustainable development and energy-saving design of ships and underwater vehicles. Full article
(This article belongs to the Section Biomimetic Surfaces and Interfaces)
Show Figures

Figure 1

28 pages, 17257 KiB  
Article
A Crystal Plasticity Phase-Field Study on the Effects of Grain Boundary Degradation on the Fatigue Behavior of a Nickel-Based Superalloy
by Pengfei Liu, Zhanghua Chen, Xiao Zhao, Jianxin Dong and He Jiang
Materials 2025, 18(14), 3309; https://doi.org/10.3390/ma18143309 - 14 Jul 2025
Viewed by 347
Abstract
Grain boundary weakening in high-temperature environments significantly influences the fatigue crack growth mechanisms of nickel-based superalloys, introducing challenges in accurately predicting fatigue life. In this study, a dislocation-density-based crystal plasticity phase-field (CP–PF) model is developed to simulate the fatigue crack growth behavior of [...] Read more.
Grain boundary weakening in high-temperature environments significantly influences the fatigue crack growth mechanisms of nickel-based superalloys, introducing challenges in accurately predicting fatigue life. In this study, a dislocation-density-based crystal plasticity phase-field (CP–PF) model is developed to simulate the fatigue crack growth behavior of the GH4169 alloy under both room and elevated temperatures. Grain boundaries are explicitly modeled, enabling the competition between transgranular and intergranular cracking to be accurately captured. The grain boundary separation energy and surface energy, calculated via molecular dynamics simulations, are employed as failure criteria for grain boundary and intragranular material points, respectively. The simulation results reveal that under oxygen-free conditions, fatigue crack propagation at both room and high temperatures is governed by sustained shear slip, with crack advancement hindered by grains exhibiting low Schmid factors. When grain boundary oxidation is introduced, increasing oxidation levels progressively degrade grain boundary strength and reduce overall fatigue resistance. Specifically, at room temperature, oxidation shortens the duration of crack arrest near grain boundaries. At elevated service temperatures, intensified grain boundary degradation facilitates a transition in crack growth mode from transgranular to intergranular, thereby accelerating crack propagation and exacerbating fatigue damage. Full article
(This article belongs to the Section Metals and Alloys)
Show Figures

Figure 1

20 pages, 10945 KiB  
Article
Temperature-Dependent Deformation Mechanisms in Ti65 Alloy: An In Situ Tensile Study
by Haitao Li, Chenxu Li, Dongmei Chen, Yujing Liu, Zibo Zhao, Bohua Zhang, Meng Qi, Jianrong Liu and Qingjiang Wang
Materials 2025, 18(14), 3270; https://doi.org/10.3390/ma18143270 - 11 Jul 2025
Viewed by 325
Abstract
Understanding the relationship between deformation behavior and mechanisms at elevated temperatures is of great significance for applications of high-temperature titanium alloys. This study systematically investigates the plastic deformation behavior of Ti65 alloy under both room-temperature and high-temperature conditions through in situ tensile testing, [...] Read more.
Understanding the relationship between deformation behavior and mechanisms at elevated temperatures is of great significance for applications of high-temperature titanium alloys. This study systematically investigates the plastic deformation behavior of Ti65 alloy under both room-temperature and high-temperature conditions through in situ tensile testing, combined with slip trace analysis, crystal orientation analysis, and geometrical compatibility factor evaluation. TEM observations and molecular dynamics simulations reveal that plastic deformation is predominantly accommodated by basal and prismatic slip systems with minimal pyramidal slip contribution at room temperature. However, elevated temperatures significantly promote pyramidal <a> and <c+a> slip due to thermal activation. This transition stems from a shift in deformation mechanisms: while room-temperature deformation relies on multi-slip and grain rotation to accommodate strain, high-temperature deformation is governed by efficient slip transfer across grain boundaries enabled by enhanced geometrical compatibility. Consistent with this, thermal activation at elevated temperatures reduces the critical resolved shear stress (CRSS), preferentially activating 1/3<11–23> dislocations and thereby substantially improving plastic deformation capability. These findings provide critical insights into the temperature-dependent deformation mechanisms of Ti65 alloy, offering valuable guidance for performance optimization in high-temperature applications. Full article
(This article belongs to the Section Metals and Alloys)
Show Figures

Figure 1

17 pages, 1773 KiB  
Article
Electroosmotic Slip Flow of Powell–Eyring Fluid in a Parallel-Plate Microchannel
by Yuting Jiang
Symmetry 2025, 17(7), 1071; https://doi.org/10.3390/sym17071071 - 5 Jul 2025
Viewed by 254
Abstract
The electroosmotic flow (EOF) of non-Newtonian fluids plays a significant role in microfluidic systems. The EOF of Powell–Eyring fluid within a parallel-plate microchannel, under the influence of both electric field and pressure gradient, is investigated. Navier’s boundary condition is adopted. The velocity distribution’s [...] Read more.
The electroosmotic flow (EOF) of non-Newtonian fluids plays a significant role in microfluidic systems. The EOF of Powell–Eyring fluid within a parallel-plate microchannel, under the influence of both electric field and pressure gradient, is investigated. Navier’s boundary condition is adopted. The velocity distribution’s approximate solution is derived via the homotopy perturbation technique (HPM). Optimized initial guesses enable accurate second-order approximations, dramatically lowering computational complexity. The numerical solution is acquired via the modified spectral local linearization method (SLLM), exhibiting both high accuracy and computational efficiency. Visualizations reveal how the pressure gradient/electric field, the electric double layer (EDL) width, and slip length affect velocity. The ratio of pressure gradient to electric field exhibits a nonlinear modulating effect on the velocity. The EDL is a nanoscale charge layer at solid–liquid interfaces. A thinner EDL thickness diminishes the slip flow phenomenon. The shear-thinning characteristics of the Powell–Eyring fluid are particularly pronounced in the central region under high pressure gradients and in the boundary layer region when wall slip is present. These findings establish a theoretical base for the development of microfluidic devices and the improvement of pharmaceutical carrier strategies. Full article
(This article belongs to the Section Engineering and Materials)
Show Figures

Figure 1

21 pages, 3755 KiB  
Article
Effect of Pore-Scale Anisotropic and Heterogeneous Structure on Rarefied Gas Flow in Three-Dimensional Porous Media
by Wenqiang Guo, Jinshan Zhao, Gang Wang, Ming Fang and Ke Zhu
Fluids 2025, 10(7), 175; https://doi.org/10.3390/fluids10070175 - 3 Jul 2025
Viewed by 294
Abstract
Porous media have great application prospects, such as transpiration cooling for the aerospace industry. The main challenge for the prediction of gas permeability includes the geometrical complexity and high Knudsen number of gas flow at the nano-scale to micro-scale, leading to failure of [...] Read more.
Porous media have great application prospects, such as transpiration cooling for the aerospace industry. The main challenge for the prediction of gas permeability includes the geometrical complexity and high Knudsen number of gas flow at the nano-scale to micro-scale, leading to failure of the conventional Darcy’s law. To address these issues, the Quartet Structure Generation Set (QSGS) method is improved to construct anisotropic and heterogeneous three-dimensional porous media, and the lattice Boltzmann method (LBM) with the multiple relaxation time (MRT) collision operator is adopted. Using MRT-LBM, the pressure boundary conditions at the inlet and outlet are firstly dealt with using the moment-based boundary conditions, demonstrating good agreement with the analytical solutions in two benchmark tests of three-dimensional Poiseuille flow and flow through a body-centered cubic array of spheres. Combined with the Bosanquet-type effective viscosity model and Maxwellian diffuse reflection boundary condition, the gas flow at high Knudsen (Kn) numbers in three-dimensional porous media is simulated to study the relationship between pore-scale anisotropy, heterogeneity and Kn, and permeability and micro-scale slip effects in porous media. The slip factor is positively correlated with the anisotropic factor, which means that the high Kn effect is stronger in anisotropic structures. There is no obvious correlation between the slip factor and heterogeneity factor. Full article
(This article belongs to the Section Flow of Multi-Phase Fluids and Granular Materials)
Show Figures

Figure 1

15 pages, 5288 KiB  
Article
A Mesoscale Particle Method for Simulation of Boundary Slip Phenomena in Fluid Systems
by Alexander E. Filippov, Mikhail Popov and Valentin L. Popov
Computation 2025, 13(7), 155; https://doi.org/10.3390/computation13070155 - 1 Jul 2025
Viewed by 297
Abstract
The present work aimed to develop a simple simulation tool to support studies of slip and other non-traditional boundary conditions in solid–fluid interactions. A mesoscale particle model (movable automata) was chosen to enable performant simulation of all relevant aspects of the system, including [...] Read more.
The present work aimed to develop a simple simulation tool to support studies of slip and other non-traditional boundary conditions in solid–fluid interactions. A mesoscale particle model (movable automata) was chosen to enable performant simulation of all relevant aspects of the system, including phase changes, plastic deformation and flow, interface phenomena, turbulence, etc. The physical system under study comprised two atomically flat surfaces composed of particles of different sizes and separated by a model fluid formed by moving particles with repulsing cores of different sizes and long-range attraction. The resulting simulation method was tested under a variety of particle densities and conditions. It was shown that the particles can enter different (solid, liquid, and gaseous) states, depending on the effective temperature (kinetic energy caused by surface motion and random noise generated by spatially distributed Langevin sources). The local order parameter and formation of solid domains was studied for systems with varying density. Heating of the region close to one of the plates could change the density of the liquid in its proximity and resulted in chaotization (turbulence); it also dramatically changed the system configuration, the direction of the average flow, and reduced the effective friction force. Full article
(This article belongs to the Section Computational Engineering)
Show Figures

Figure 1

21 pages, 6027 KiB  
Article
Static Characteristic Analysis of Multi-Layer Foil Thrust Bearing: Considering Parameter Effects
by Yulong Jiang, Qianjing Zhu, Zhongwen Huang and Dongyan Gao
Lubricants 2025, 13(7), 285; https://doi.org/10.3390/lubricants13070285 - 25 Jun 2025
Viewed by 459
Abstract
A modified static characteristic model for the multi-layer foil thrust bearing (MLFTB) is established. In this model, the finite difference method and the thick plate element are implemented, the compressible Reynolds equation is linearized by the Newton–Raphson method, and the evolution law of [...] Read more.
A modified static characteristic model for the multi-layer foil thrust bearing (MLFTB) is established. In this model, the finite difference method and the thick plate element are implemented, the compressible Reynolds equation is linearized by the Newton–Raphson method, and the evolution law of the static characteristics with the geometric and operational parameters is derived by iterative solution. The results indicate that the bearing capacity could be generally decreased by around 3.15% when considering the slip boundary condition, which should not be neglected. Also, when under the rigorous wedge effect, the pressure peak near the mini clearance exhibits an obvious double peak shape. The bearing capacity can be slightly enhanced by an increase in the tilt angle of the thrust disk. In comparison to data in the literature, the current model shows satisfactory precision for the multi-layer foil thrust bearing. It aims to provide effective predictive means and theoretical reference for MLFTB. Full article
Show Figures

Figure 1

16 pages, 2524 KiB  
Article
Impact of Lubrication on Shear Deformation During Asymmetrical Rolling: A Viscoplastic Analysis of Slip System Activity Using an Affine Linearization Scheme
by I Putu Widiantara, Siti Fatimah, Warda Bahanan, Jee-Hyun Kang and Young Gun Ko
Lubricants 2025, 13(6), 265; https://doi.org/10.3390/lubricants13060265 - 15 Jun 2025
Viewed by 376
Abstract
In industrial applications, rolling is commonly performed with lubrication to prevent undesirable modification of the sheet. Although it is well established that lubrication influences the microstructure and texture of deformed sheets through its effect on shear deformation, the underlying mechanisms remain insufficiently understood. [...] Read more.
In industrial applications, rolling is commonly performed with lubrication to prevent undesirable modification of the sheet. Although it is well established that lubrication influences the microstructure and texture of deformed sheets through its effect on shear deformation, the underlying mechanisms remain insufficiently understood. In this study, we investigated how lubrication affects slip system activity during asymmetrical rolling, using viscoplastic modeling of BCC ferritic steel. Two conditions—lubricated and non-lubricated samples—were examined under asymmetrical rolling. Slip system activity was inferred from the rotation axes between pairs of orientations separated by low-angle grain boundaries, based on the assumption that such boundaries represent the simplest form of orientation change. A Viscoplastic Self-Consistent (VPSC) model employing an affine linearization scheme was used. This proved sufficient for evaluating slip system activity in BCC polycrystalline metals undergoing early-stage plastic deformation involving either plane strain or combined plane strain and shear. The results demonstrated that lubrication had a limiting effect by reducing the penetration of shear deformation through the thickness of the sample. Understanding this effect could enable the optimization of lubrication strategies—not only to minimize defects such as bending, but also to achieve microstructural characteristics favorable for industrial applications. Full article
Show Figures

Figure 1

14 pages, 15625 KiB  
Article
Preparation of GRCop-42 Cu Alloy by Laser-Directed Energy Deposition: Role of Laser Power on Densification, Microstructure, and Mechanical Properties
by Chao Liu, Ping Han, Hongwei Sun and Yun Zhao
Crystals 2025, 15(6), 547; https://doi.org/10.3390/cryst15060547 - 7 Jun 2025
Viewed by 806
Abstract
This study addresses critical challenges in manufacturing GRCop-42 Cu alloy (Cu-4Cr-2Nb) components via laser-directed energy deposition (LDED). We systematically establish process–microstructure–property correlation for this alloy, demonstrating that laser power critically governs defect formation and mechanical performance. The alloy exhibited optimal microstructure and properties [...] Read more.
This study addresses critical challenges in manufacturing GRCop-42 Cu alloy (Cu-4Cr-2Nb) components via laser-directed energy deposition (LDED). We systematically establish process–microstructure–property correlation for this alloy, demonstrating that laser power critically governs defect formation and mechanical performance. The alloy exhibited optimal microstructure and properties at a laser power of 2000 W, with a room temperature tensile strength of 319 ± 6.5 MPa and an elongation of 25.42 ± 1.9%. The tensile strength in the high-temperature tensile test at 600 °C was measured at 98 ± 3.1 MPa, with an elongation of 15.83 ± 1.5%. The comprehensive performance reaches the optimal value of the processing window. Through cross-scale characterization techniques, the differences in fracture mechanisms at different temperatures are clarified for the first time: at room temperature, a microporous aggregation-type ductile fracture is observed, with plastic deformation primarily dominated by dislocation slip; in a high-temperature environment, due to the weakening of grain boundary strength, the fracture mode shifts to intergranular fracture, and the deformation mechanism evolves into a synergistic effect of dislocation slip and twinning. The findings of this study not only provide valuable insights into optimizing the LDED process parameters for the GRCop-42 alloy but also shed light on the relationship between its microstructure and mechanical properties under different temperature conditions, offering a solid foundation for the further application of this alloy in complex aerospace components. Full article
(This article belongs to the Special Issue Design, Microstructure and Mechanical Properties of Cu-Based Alloys)
Show Figures

Figure 1

18 pages, 13740 KiB  
Article
Establishment of a Numerical Model and Process Optimization for the Moving Induction Hardening of a Whole-Roll Flatness Roll
by Huaxin Yu, Shuang Liao, Zhichao Li, Ziwei Xu and Shan Li
Metals 2025, 15(4), 421; https://doi.org/10.3390/met15040421 - 9 Apr 2025
Viewed by 416
Abstract
The surface of a whole-roll flatness roll is in long-term contact with the steel strip, leading to slipping and wear and placing higher demands on the performance of the roll surface. This study establishes a finite element model for moving induction quenching and [...] Read more.
The surface of a whole-roll flatness roll is in long-term contact with the steel strip, leading to slipping and wear and placing higher demands on the performance of the roll surface. This study establishes a finite element model for moving induction quenching and a phase transformation hardness numerical model by generating multi-field simulations and hardness predictions for the flatness roll during induction quenching. First, the thermal–physical properties of the roll material, MC3, are calculated using JMatPro V13.0. The dynamic domain and moving mesh techniques are applied in COMSOL Multiphysics to simulate time-varying boundary conditions, and the JMAK and K-M phase transformation models are used for electromagnetic–thermal–microstructure field simulations. Subsequently, the Taguchi method is used to optimize the induction quenching process of the flatness roll. After optimization, the martensitic hardened layer depth along the axial direction of the roll becomes uniformly distributed near the target value of 3 mm. Finally, through the modified Maynier hardness model, the corrected formula for the Vickers hardness of MC3 is obtained. The calculated hardness value of the roll surface in the simulation model reaches 950 HV, which agrees well with the experimental hardness results, validating the ability of the numerical model to guide specific processes. Full article
Show Figures

Figure 1

25 pages, 6535 KiB  
Article
ANN-Based Prediction and RSM Optimization of Radiative Heat Transfer in Couple Stress Nanofluids with Thermodiffusion Effects
by Reima Daher Alsemiry, Sameh E. Ahmed, Mohamed R. Eid and Essam M. Elsaid
Processes 2025, 13(4), 1055; https://doi.org/10.3390/pr13041055 - 1 Apr 2025
Cited by 2 | Viewed by 451
Abstract
This research investigates the impact of second-order slip conditions, Stefan flow, and convective boundary constraints on the stagnation-point flow of couple stress nanofluids over a solid sphere. The nanofluid density is expressed as a nonlinear function of temperature, while the diffusion-thermo effect, chemical [...] Read more.
This research investigates the impact of second-order slip conditions, Stefan flow, and convective boundary constraints on the stagnation-point flow of couple stress nanofluids over a solid sphere. The nanofluid density is expressed as a nonlinear function of temperature, while the diffusion-thermo effect, chemical reaction, and thermal radiation are incorporated through linear models. The governing equations are transformed using appropriate non-similar transformations and solved numerically via the finite difference method (FDM). Key physical parameters, including the heat transfer rate, are analyzed in relation to the Dufour number, velocity, and slip parameters using an artificial neural network (ANN) framework. Furthermore, response surface methodology (RSM) is employed to optimize skin friction, heat transfer, and mass transfer by considering the influence of radiation, thermal slip, and chemical reaction rate. Results indicate that velocity slip enhances flow behavior while reducing temperature and concentration distributions. Additionally, an increase in the Dufour number leads to higher temperature profiles, ultimately lowering the overall heat transfer rate. The ANN-based predictive model exhibits high accuracy with minimal errors, offering a robust tool for analyzing and optimizing the thermal and transport characteristics of couple stress nanofluids. Full article
Show Figures

Figure 1

18 pages, 18055 KiB  
Article
Creep Mechanism and Microstructure Evolution of a Directionally Solidified Ni-Based Superalloy with Different Orientations at 850 °C
by Anping Long, Jiangying Xiong, Bing Wei, Gaoxiang Zhang, Ganjiang Feng, Jianzheng Guo and Rutie Liu
Materials 2025, 18(7), 1540; https://doi.org/10.3390/ma18071540 - 28 Mar 2025
Cited by 3 | Viewed by 747
Abstract
The creep properties of directionally solidified superalloys are largely influenced by the degradation rate of the γ/γ’ microstructure and the dislocation motion, which exhibit distinct mechanisms under varying temperature and stress conditions. In this study, the creep deformation mechanisms and microstructural evolution of [...] Read more.
The creep properties of directionally solidified superalloys are largely influenced by the degradation rate of the γ/γ’ microstructure and the dislocation motion, which exhibit distinct mechanisms under varying temperature and stress conditions. In this study, the creep deformation mechanisms and microstructural evolution of a directionally solidified nickel-based superalloy in the longitudinal (L) and transverse (T) orientations at 850 °C are comprehensively investigated. Creep testing and characterization of the dislocation structure revealed superior creep properties in the L direction compared to the T direction. The creep mechanism in the L direction involves the activation of multiple {111}<110> slip systems, shearing the γ’ precipitates through antiphase boundaries (APBs). Conversely, the creep mechanism in the T direction involves the activation of {111}<112> slip systems, shearing the γ’ precipitates through a superlattice intrinsic stacking fault (SISF) and forming slip bands inclined to the stress axis. Aluminum was identified as the controlling element for the γ’ rafting. The longitudinal specimens exhibited P-type rafting due to the activation of multiple slip systems and sufficient plastic strain flow from the dislocation motion. In contrast, the transverse specimens show little rafting due to limited slip system activation. These findings can serve as a reference for better understanding the anisotropy of directionally solidified superalloys and provide a basis for their broader application. Full article
Show Figures

Figure 1

16 pages, 11798 KiB  
Article
Strain Response Analysis and Experimental Study of the Cross-Fault Buried Pipelines
by Yuan Li, Shaofeng Chen, Yu Hou, Wangqiang Xiao, Ling Fan, Zhiqin Cai, Jiayong Wu and Yanbin Li
Symmetry 2025, 17(4), 501; https://doi.org/10.3390/sym17040501 - 26 Mar 2025
Viewed by 412
Abstract
Monitoring and early warning systems for cross-fault buried pipelines are critical measures to ensure the safe operation of oil and gas pipelines. Accurately acquiring pipeline strain response serves as the fundamental basis for achieving this objective. This study proposes a comprehensive analytical methodology [...] Read more.
Monitoring and early warning systems for cross-fault buried pipelines are critical measures to ensure the safe operation of oil and gas pipelines. Accurately acquiring pipeline strain response serves as the fundamental basis for achieving this objective. This study proposes a comprehensive analytical methodology combining finite element analysis (FEA) and experimental verification to investigate strain responses in cross-fault buried pipelines. Firstly, a finite element modeling approach with equivalent-spring boundaries was established for cross-fault pipeline systems. Secondly, based on the similarity ratio theory, an experimental platform was designed using Φ89 mm X42 steel pipes and in situ soil materials. Subsequently, the finite element model of the experimental conditions was constructed using the proposed FEA. Guided by simulation results, strain sensors were strategically deployed on test pipelines to capture strain response data under mechanical loading. Finally, prototype-scale strain responses were obtained through similarity ratio inverse modeling, and a comparative analysis with full-scale FEA results was performed. The results demonstrate that strike-slip fault displacement induces characteristic “S”-shaped antisymmetric deformation in pipelines, with maximum strain concentrations occurring near the fault plane. Both the magnitude and location of maximum strain derived from similarity ratio inverse modeling show close agreement with FEA predictions, with relative discrepancies within 18%. This consistency validates the reliability of the experimental design and confirms the accuracy of the finite element model. The proposed methodology provides valuable technical guidance for implementing strain-based monitoring and early warning systems in cross-fault buried pipeline applications. Full article
(This article belongs to the Special Issue Advances in Design and Analysis of Asymmetric Structures)
Show Figures

Figure 1

25 pages, 6881 KiB  
Article
Evaluation on the Global Response Characteristics of a Rotor/Stator Rubbing System: Experiment and Dynamic Simulation
by Shunzeng Wang, Yang Li and Xiaoming Liu
Symmetry 2025, 17(3), 447; https://doi.org/10.3390/sym17030447 - 17 Mar 2025
Viewed by 365
Abstract
The global response characteristics of rotor/stator rubbing systems are critical for the optimal design and safe operation of rotating machinery. Based on the mathematical model, numerical simulation and theoretical analysis have been widely carried out to study the regions of different responses, which [...] Read more.
The global response characteristics of rotor/stator rubbing systems are critical for the optimal design and safe operation of rotating machinery. Based on the mathematical model, numerical simulation and theoretical analysis have been widely carried out to study the regions of different responses, which have not been globally explored and evaluated by experiments with the unified parameters of a mathematical and physical model. Thus, the existence conditions of the global responses of a rubbing rotor are experimentally investigated and then quantitatively compared with theoretical solutions and dynamic simulation results. With the equivalent stiffness and the kinetic dry friction identified by the aid of a new voltage divider, the rubbing rotors are accurately tested by the new experimental technique and dynamically simulated by rigid-flexible coupling technique. From the comparison results of orbit and full spectrum, it is shown that the response characteristics of no rub motion, synchronous full annular rub, partial rub, and dry friction backward whirl obtained by experiment and dynamic simulation are in good agreement with theoretical solutions. Then, it is also concluded that all boundaries of the existence/co-existence regions of the whirling motions are proved to be valid. Moreover, stick-slip oscillation is detected in the rotor/stator testing system. Full article
(This article belongs to the Section Engineering and Materials)
Show Figures

Figure 1

Back to TopTop