Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (438)

Search Parameters:
Keywords = slack based measure

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
25 pages, 1150 KiB  
Article
Comparative Assessment of Health Systems Resilience: A Cross-Country Analysis Using Key Performance Indicators
by Yu-Hsiu Chuang and Jin-Li Hu
Systems 2025, 13(8), 663; https://doi.org/10.3390/systems13080663 - 5 Aug 2025
Abstract
Although organizational resilience is well established, refining the systematic quantitative evaluation of health systems resilience (HSR) remains an ongoing opportunity for advancement. Research either focuses on individual HSR indicators, such as social welfare policy, public expenditure, health insurance, healthcare quality, and technology, or [...] Read more.
Although organizational resilience is well established, refining the systematic quantitative evaluation of health systems resilience (HSR) remains an ongoing opportunity for advancement. Research either focuses on individual HSR indicators, such as social welfare policy, public expenditure, health insurance, healthcare quality, and technology, or broadly examines socio-economic factors, highlighting the need for a more comprehensive methodological approach. This study employed the Slacks-Based Measure (SBM) within Data Envelopment Analysis (DEA) to analyze efficiency by maximizing outputs. It systematically examined key HSR factors across countries, providing insights for improved policymaking and resource allocation. Taking a five-year (2016–2020) dataset that covered 55 to 56 countries and evaluating 17 indicators across governance, health systems, and economic aspects, the paper presents that all sixteen top-ranked countries with a perfect efficiency score of 1 belonged to the high-income group, with ten in Europe, highlighting regional HSR differences. This paper concludes that adequate economic resources form the foundation of HSR and ensure stability and sustained progress. A properly supported healthcare workforce is essential for significantly enhancing health systems and delivering quality care. Last, effective governance and the equitable allocation of resources are crucial for fostering sustainable development and strengthening HSR. Full article
(This article belongs to the Section Systems Practice in Social Science)
Show Figures

Figure 1

36 pages, 2033 KiB  
Article
Beyond GDP: COVID-19’s Effects on Macroeconomic Efficiency and Productivity Dynamics in OECD Countries
by Ümit Sağlam
Econometrics 2025, 13(3), 29; https://doi.org/10.3390/econometrics13030029 - 4 Aug 2025
Abstract
The COVID-19 pandemic triggered unprecedented economic disruptions, raising critical questions about the resilience and adaptability of macroeconomic productivity across countries. This study examines the impact of COVID-19 on macroeconomic efficiency and productivity dynamics in 37 OECD countries using quarterly data from 2018Q1 to [...] Read more.
The COVID-19 pandemic triggered unprecedented economic disruptions, raising critical questions about the resilience and adaptability of macroeconomic productivity across countries. This study examines the impact of COVID-19 on macroeconomic efficiency and productivity dynamics in 37 OECD countries using quarterly data from 2018Q1 to 2024Q4. By employing a Slack-Based Measure Data Envelopment Analysis (SBM-DEA) and the Malmquist Productivity Index (MPI), we decompose total factor productivity (TFP) into efficiency change (EC) and technological change (TC) across three periods: pre-pandemic, during-pandemic, and post-pandemic. Our framework incorporates both desirable (GDP) and undesirable outputs (inflation, unemployment, housing price inflation, and interest rate distortions), offering a multidimensional view of macroeconomic efficiency. Results show broad but uneven productivity gains, with technological progress proving more resilient than efficiency during the pandemic. Post-COVID recovery trajectories diverged, reflecting differences in structural adaptability and innovation capacity. Regression analysis reveals that stringent lockdowns in 2020 were associated with lower productivity in 2023–2024, while more adaptive policies in 2021 supported long-term technological gains. These findings highlight the importance of aligning crisis response with forward-looking economic strategies and demonstrate the value of DEA-based methods for evaluating macroeconomic performance beyond GDP. Full article
(This article belongs to the Special Issue Advancements in Macroeconometric Modeling and Time Series Analysis)
Show Figures

Figure 1

27 pages, 3470 KiB  
Article
Spatiotemporal Evolution and Influencing Factors of Carbon Emission Efficiency of Apple Production in China from 2003 to 2022
by Dejun Tan, Juanjuan Cheng, Jin Yu, Qian Wang and Xiaonan Chen
Agriculture 2025, 15(15), 1680; https://doi.org/10.3390/agriculture15151680 - 2 Aug 2025
Viewed by 232
Abstract
Understanding the carbon emission efficiency of apple production (APCEE) is critical for promoting green and low-carbon agricultural development. However, the spatiotemporal dynamics and driving factors of APCEE in China remain inadequately explored. This study employs life cycle assessment, super-efficiency slacks-based measures, [...] Read more.
Understanding the carbon emission efficiency of apple production (APCEE) is critical for promoting green and low-carbon agricultural development. However, the spatiotemporal dynamics and driving factors of APCEE in China remain inadequately explored. This study employs life cycle assessment, super-efficiency slacks-based measures, and a panel Tobit model to evaluate the carbon footprint, APCEE, and its determinants in China’s two major production regions from 2003 to 2022. The results reveal that: (1) Producing one ton of apples in China results in 0.842 t CO2e emissions. Land carbon intensity and total carbon emissions peaked in 2010 (28.69 t CO2e/ha) and 2014 (6.52 × 107 t CO2e), respectively, exhibiting inverted U-shaped trends. Carbon emissions from various production areas show significant differences, with higher pressure on carbon emission reduction in the Loess Plateau region, especially in Gansu Province. (2) The APCEE in China exhibits a W-shaped trend (mean: 0.645), with overall low efficiency loss. The Bohai Bay region outperforms the Loess Plateau and national averages. (3) The structure of the apple industry, degree of agricultural mechanization, and green innovation positively influence APCEE, while the structure of apple cultivation, education level, and agricultural subsidies negatively impact it. Notably, green innovation and agricultural subsidies display lagged effects. Moreover, the drivers of APCEE differ significantly between the two major production regions. These findings provide actionable pathways for the green and low-carbon transformation of China’s apple industry, emphasizing the importance of spatially tailored green policies and technology-driven decarbonization strategies. Full article
(This article belongs to the Section Agricultural Economics, Policies and Rural Management)
Show Figures

Figure 1

28 pages, 3057 KiB  
Article
Exploring the Role of Energy Consumption Structure and Digital Transformation in Urban Logistics Carbon Emission Efficiency
by Yanfeng Guan, Junding Yang, Rong Wang, Ling Zhang and Mingcheng Wang
Atmosphere 2025, 16(8), 929; https://doi.org/10.3390/atmos16080929 (registering DOI) - 31 Jul 2025
Viewed by 203
Abstract
As the climate problem is getting more and more serious and the “low-carbon revolution” of globalization is emerging, the logistics industry, as a high-end service industry, must also take the road of low-carbon development. Improving logistics carbon emission efficiency (LCEE) is gradually becoming [...] Read more.
As the climate problem is getting more and more serious and the “low-carbon revolution” of globalization is emerging, the logistics industry, as a high-end service industry, must also take the road of low-carbon development. Improving logistics carbon emission efficiency (LCEE) is gradually becoming an inevitable choice to maintain sustainable social development. The study uses the Super-SBM (Super-Slack-Based Measure) model to evaluate the urban LCEE from 2013 to 2022, explores the contribution of efficiency changes and technological progress to LCEE through the decomposition of the GML (Global Malmquist–Luenberger) index, and reveals the influence of digital transformation and energy consumption structure on LCEE by using the Spatial Durbin Model, concluding as follows: (1) LCEE declines from east to west, with large regional differences. (2) LCEE has steadily increased over the past decade, with slower growth from east to west. It fell in 2020 due to COVID-19 but has since recovered. (3) LCEE shows a catching-up effect among the three major regions, with technological progress being a key driver of improvement. (4) LCEE has significant spatial dependence. Energy consumption structure has a short-term negative spillover effect, while digital transformation has a positive spillover effect. Full article
(This article belongs to the Special Issue Urban Carbon Emissions (2nd Edition))
Show Figures

Figure 1

24 pages, 2013 KiB  
Article
Can Local Industrial Policy Enhance Urban Land Green Use Efficiency? Evidence from the “Made in China 2025” National Demonstration Zone Policy
by Shoupeng Wang, Haixin Huang and Fenghua Wu
Land 2025, 14(8), 1567; https://doi.org/10.3390/land14081567 - 31 Jul 2025
Viewed by 188
Abstract
As the fundamental physical carrier for human production and socio-economic endeavors, enhancing urban land green use efficiency (ULGUE) is crucial for realizing sustainable development. To effectively enhance urban land green use efficiency, this study systematically examines the intrinsic relationship between industrial policies and [...] Read more.
As the fundamental physical carrier for human production and socio-economic endeavors, enhancing urban land green use efficiency (ULGUE) is crucial for realizing sustainable development. To effectively enhance urban land green use efficiency, this study systematically examines the intrinsic relationship between industrial policies and ULGUE based on panel data from 286 Chinese cities (2010–2022), employing an integrated methodology that combines the Difference-in-Differences (DID) model, Super-Efficiency Slacks-Based Measure Data Envelopment Analysis model, and ArcGIS spatial analysis techniques. The findings clearly demonstrate that the establishment of the “Made in China 2025” pilot policy significantly improves urban land green use efficiency in pilot cities, a conclusion that endures following a succession of stringent evaluations. Moreover, studying its mechanisms suggests that the pilot policy primarily enhances urban land green use efficiency by promoting industrial upgrading, accelerating technological innovation, and strengthening environmental regulations. Heterogeneity analysis further indicates that the policy effects are more significant in urban areas characterized by high manufacturing agglomeration, non-provincial capital/non-municipal status, high industrial intelligence levels, and less sophisticated industrial structure. This research not only provides valuable policy insights for China to enhance urban land green use efficiency and promote high-quality regional sustainable development but also offers meaningful references for global efforts toward advancing urban sustainability. Full article
Show Figures

Figure 1

23 pages, 2253 KiB  
Article
Robust Underwater Vehicle Pose Estimation via Convex Optimization Using Range-Only Remote Sensing Data
by Sai Krishna Kanth Hari, Kaarthik Sundar, José Braga, João Teixeira, Swaroop Darbha and João Sousa
Remote Sens. 2025, 17(15), 2637; https://doi.org/10.3390/rs17152637 - 29 Jul 2025
Viewed by 201
Abstract
Accurate localization plays a critical role in enabling underwater vehicle autonomy. In this work, we develop a robust infrastructure-based localization framework that estimates the position and orientation of underwater vehicles using only range measurements from long baseline (LBL) acoustic beacons to multiple on-board [...] Read more.
Accurate localization plays a critical role in enabling underwater vehicle autonomy. In this work, we develop a robust infrastructure-based localization framework that estimates the position and orientation of underwater vehicles using only range measurements from long baseline (LBL) acoustic beacons to multiple on-board receivers. The proposed framework integrates three key components, each formulated as a convex optimization problem. First, we introduce a robust calibration function that unifies multiple sources of measurement error—such as range-dependent degradation, variable sound speed, and latency—by modeling them through a monotonic function. This function bounds the true distance and defines a convex feasible set for each receiver location. Next, we estimate the receiver positions as the center of this feasible region, using two notions of centrality: the Chebyshev center and the maximum volume inscribed ellipsoid (MVE), both formulated as convex programs. Finally, we recover the vehicle’s full 6-DOF pose by enforcing rigid-body constraints on the estimated receiver positions. To do this, we leverage the known geometric configuration of the receivers in the vehicle and solve the Orthogonal Procrustes Problem to compute the rotation matrix that best aligns the estimated and known configurations, thereby correcting the position estimates and determining the vehicle orientation. We evaluate the proposed method through both numerical simulations and field experiments. To further enhance robustness under real-world conditions, we model beacon-location uncertainty—due to mooring slack and water currents—as bounded spherical regions around nominal beacon positions. We then mitigate the uncertainty by integrating the modified range constraints into the MVE position estimation formulation, ensuring reliable localization even under infrastructure drift. Full article
Show Figures

Figure 1

23 pages, 3773 KiB  
Article
Spatiotemporal Differentiation of Carbon Emission Efficiency and Influencing Factors in the Five Major Maize Producing Areas of China
by Zhiyuan Zhang and Huiyan Qin
Agriculture 2025, 15(15), 1621; https://doi.org/10.3390/agriculture15151621 - 26 Jul 2025
Viewed by 208
Abstract
Understanding the carbon emission efficiency (CEE) of maize production and its determinants is critical to supporting China’s dual-carbon goals and advancing sustainable agriculture. This study employs a super-efficiency slack-based measure model (SBM) to evaluate the CEE of five major maize-producing regions in China [...] Read more.
Understanding the carbon emission efficiency (CEE) of maize production and its determinants is critical to supporting China’s dual-carbon goals and advancing sustainable agriculture. This study employs a super-efficiency slack-based measure model (SBM) to evaluate the CEE of five major maize-producing regions in China from 2001 to 2022. Kernel density estimation and the Dagum Gini coefficient are used to analyze spatiotemporal disparities, while a geographically and temporally weighted regression (GTWR) model explores the underlying drivers. Results indicate that the national average maize CEE was 0.86, exhibiting a “W-shaped” fluctuation with turning points in 2009 and 2016. From 2001 to 2015, the Southwestern Mountainous Region led with an average efficiency of 0.76. Post-2015, the Northern Spring Maize Region emerged as the most efficient area, reaching 0.90. Efficiency levels have generally become more concentrated across regions, though the Southern Hilly and Northwest Irrigated Regions showed higher volatility. Inter-regional differences were the primary source of overall CEE disparity, with an average annual contribution of 46.66%, largely driven by the efficiency gap between the Northwest Irrigated Region and other areas. Spatial heterogeneity was evident in the impact of key factors. Agricultural mechanization, cropping structure, and environmental regulation exhibited region-specific effects. Rural economic development and agricultural fiscal support were positively associated with CEE, while urbanization had a negative correlation. These findings provide a theoretical foundation and policy reference for region-specific emission reduction strategies and the green transition of maize production in China. Full article
(This article belongs to the Section Agricultural Economics, Policies and Rural Management)
Show Figures

Figure 1

21 pages, 1566 KiB  
Article
Environmental Degradation and Its Implications for Forestry Resource Efficiency and Total Factor Forestry Productivity in China
by Fuxi Wu, Rizwana Yasmeen, Xiaowei Xu, Heshan Sameera Kankanam Pathiranage, Wasi Ul Hassan Shah and Jintao Shen
Forests 2025, 16(7), 1166; https://doi.org/10.3390/f16071166 - 15 Jul 2025
Viewed by 340
Abstract
Environmental costs (carbon emissions) have come with China’s economic rise, and its forestry sector now faces difficulties in maintaining both its profit and the health of its ecosystems. This study assesses the impact of carbon emissions on forestry efficiency and total factor productivity [...] Read more.
Environmental costs (carbon emissions) have come with China’s economic rise, and its forestry sector now faces difficulties in maintaining both its profit and the health of its ecosystems. This study assesses the impact of carbon emissions on forestry efficiency and total factor productivity (TFFP) in China’s 31 provinces between 2001 and 2021. Using the data envelopment analysis (DEA) model through the slack-based measure (SBM framework) and Malmquist–Luenberger index (MLI), we examine the efficiency and productivity growth of forestry, both with and without accounting for carbon emissions. The study reveals that when carbon emissions are not taken into account, traditional measures of productivity tend to overstate both efficiency and total factor forestry productivity (TFFP) growth, resulting in an average of 7.7 percent higher efficiency and 1.6 percent of additional TFFP growth per year. If we compare the regions, coast provinces with stricter technical regulations have improved efficiency in usage, but places like Tibet and Qinghai, with more vulnerable ecosystems, endure harsher consequences. Regardless of incorporating bad output into the TFFP estimation, China’s growth in forestry productivity primarily depends on efficiency change (EC) rather than technological change (TC). Full article
Show Figures

Figure 1

19 pages, 865 KiB  
Article
Improved SBM Model Based on Asymmetric Data—Mathematical Evaluation and Analysis of Green Innovation Efficiency
by Limei Chen, Yao Yao and Can Yang
Symmetry 2025, 17(7), 1132; https://doi.org/10.3390/sym17071132 - 15 Jul 2025
Viewed by 285
Abstract
Green innovation has become a core driving force for promoting sustainable development, making the accurate evaluation of enterprises’ green innovation efficiency an important research topic. Based on the Environmental, Social, and Governance (ESG) framework, this paper improves the SBM model to overcome shortcomings [...] Read more.
Green innovation has become a core driving force for promoting sustainable development, making the accurate evaluation of enterprises’ green innovation efficiency an important research topic. Based on the Environmental, Social, and Governance (ESG) framework, this paper improves the SBM model to overcome shortcomings such as homogeneity in traditional SBM models during efficiency evaluation. By introducing an asymmetric slack measure, it breaks through the limitation of efficiency value ceilings, enabling gradient ranking of decision-making units and precisely distinguishing between efficient and inefficient enterprises, thereby better assessing the green innovation efficiency of hydrogen energy companies. The study shows that the improved SBM model significantly enhances the accuracy of enterprise efficiency evaluation. The contribution of this paper lies in constructing an improved SBM model integrated within the ESG framework, compensating for the lack of environmental dimensions in traditional evaluation methods, addressing issues of efficiency homogeneity and the static nature of the frontier, and achieving optimized ranking of frontier-efficient enterprises. Full article
(This article belongs to the Section Mathematics)
Show Figures

Figure 1

26 pages, 1170 KiB  
Article
Digital Empowerment, Novel Productive Forces, and Regional Green Innovation Efficiency: Causal Inference Based on Spatial Difference-in-Differences and Double Machine Learning Approaches
by Qi Liu, Siyu Liu, Tianning Guan, Luhan Yu, Zemenghong Bao, Yuzhu Wen and Kun Lv
Information 2025, 16(7), 578; https://doi.org/10.3390/info16070578 - 6 Jul 2025
Viewed by 307
Abstract
Amidst the dual challenges of escalating ecological environmental pressures and economic transformation globally, green innovation emerges as a pivotal pathway toward achieving high-quality sustainable development. To elucidate how digitalization and novel productive forces synergistically drive the green transition, the research utilizes panel data [...] Read more.
Amidst the dual challenges of escalating ecological environmental pressures and economic transformation globally, green innovation emerges as a pivotal pathway toward achieving high-quality sustainable development. To elucidate how digitalization and novel productive forces synergistically drive the green transition, the research utilizes panel data from 30 provincial-level administrative regions in China spanning 2009 to 2022, constructing a green innovation efficiency measurement frame-work grounded in the Super Slack-Based Measure (Super-SBM)model, alongside a novel productive forces evaluation system based on the triad of laborers, labor objects, and means of production. Employing spatial difference-in-differences and double machine learning methodologies within a quasi-natural experimental design, the research investigates the causal mechanisms through which digital empowerment and novel productive forces influence regional green innovation efficiency. The findings reveal that both digital empowerment and novel productive forces significantly enhance regional green innovation efficiency, exhibiting pronounced positive spatial spillover effects on neighboring regions. Heterogeneity analyses demonstrate that the promotive impacts are more pronounced in eastern provinces compared to central and western counterparts, in provinces participating in carbon trading relative to those that do not, and in innovation-driven provinces versus non-innovative ones. Mediation analysis indicates that digital empowerment operates by fostering the aggregation of innovative talent and elevating governmental ecological attentiveness, whereas new-type productivity exerts its influence primarily through intellectual property protection and the clustering of high-technology industries. The results offer empirical foundations for policymakers to devise coordinated regional green development strategies, refine digital transformation policies, and promote industrial structural optimization. Furthermore, this research provides valuable data-driven insights and theoretical guidance for local governments and enterprises in cultivating green innovation and new-type productivity. Full article
(This article belongs to the Special Issue Carbon Emissions Analysis by AI Techniques)
Show Figures

Figure 1

27 pages, 2236 KiB  
Article
Dynamic Evaluation of Forest Carbon Sink Efficiency and Its Driver Configurational Identification in China: A Sustainable Forestry Perspective
by Yingyiwen Ding, Jing Zhao and Chunhua Li
Sustainability 2025, 17(13), 5931; https://doi.org/10.3390/su17135931 - 27 Jun 2025
Viewed by 280
Abstract
Improving forest carbon sink efficiency (FCSE) is the key to mitigating climate change and achieving sustainable forest resource management in China. However, current research on FCSE remains predominantly focused on static perspectives and singular linear effects. Based on panel data from 30 provinces [...] Read more.
Improving forest carbon sink efficiency (FCSE) is the key to mitigating climate change and achieving sustainable forest resource management in China. However, current research on FCSE remains predominantly focused on static perspectives and singular linear effects. Based on panel data from 30 provinces (autonomous regions and municipalities) in China from 2008 to 2022, this study integrated the super-efficiency Slack-Based Measure (SBM)-Malmquist–Luenberger (ML) model, spatial autocorrelation analysis, and dynamic fuzzy set qualitative comparative analysis (fsQCA) to reveal the spatiotemporal differentiation characteristics of FCSE and the multi-factor synergistic driving mechanism. The results showed that (1) the average value of the FCSE in China was 1.1. Technological progress (with an average technological change of 1.21) is the core growth driver, but the imbalance of technological efficiency change (EC) among regions restricts long-term sustainability. (2) The spatial distribution exhibited a U-shaped gradient pattern of “eastern—southwestern”, and the synergy effect between nature and economy is significant. (3) The dynamic fsQCA identified three sustainable improvement paths: the “precipitation–economy” collaborative type, the multi-factor co-creation type, and “precipitation–industry-driven” type; precipitation was the universal core condition. (4) Regional differences exist in path application; the eastern part depends on economic coordination, the central part is suitable for industry driving, and the western part requires multi-factor linkage. By introducing a dynamic configuration perspective, analyzing FCSE’s spatiotemporal drivers. We propose a sustainable ‘Nature–Society–Management’ interaction framework and region-specific policy strategies, offering both theoretical and practical tools for sustainable forestry policy design. Full article
Show Figures

Figure 1

32 pages, 2492 KiB  
Article
A Study on the Correlation Between Urbanization and Agricultural Economy Based on Efficiency Measurement and Quantile Regression: Evidence from China
by Hong Ye, Yaoyao Ding, Rong Zhang and Yuntao Zou
Sustainability 2025, 17(13), 5908; https://doi.org/10.3390/su17135908 - 26 Jun 2025
Viewed by 342
Abstract
The impact of urbanization on the agricultural economy has long attracted scholarly attention. Taking China as a case, this study investigates the relationship between urbanization and agricultural development under the dual progress of urbanization and the rural revitalization strategy. Based on panel data [...] Read more.
The impact of urbanization on the agricultural economy has long attracted scholarly attention. Taking China as a case, this study investigates the relationship between urbanization and agricultural development under the dual progress of urbanization and the rural revitalization strategy. Based on panel data from 31 mainland provinces, this paper measures agricultural economic efficiency using the global slack-based measure (SBM) model and employs quantile regression to systematically analyze the influence of various urbanization factors across different levels of agricultural efficiency. A Tobit regression model is further adopted for robustness checks. The results show that representative urbanization factors, such as the proportion of urban population and the prevalence of higher education, exert significant negative impacts on agricultural efficiency, particularly in regions with higher efficiency levels. Freight volume has a significantly negative effect in regions with medium and low efficiency, while freight turnover negatively impacts medium- to high-efficiency areas. In contrast, improvements in healthcare services and digital infrastructure are found to consistently enhance agricultural efficiency. Although the corporatization of agriculture is often regarded as a key outcome of urbanization, its efficiency-improving effect is not statistically significant in most models and is mainly concentrated in high-efficiency regions. Overall, the improvement in China’s agricultural economic efficiency relies more on direct support from the rural revitalization strategy, while rapid urbanization has failed to bring substantial benefits and has even led to structural negative effects. These adverse outcomes may stem from the rapid occupation of suburban farmland, increased logistics costs due to the relocation of agricultural activities, and the ineffective absorption of surplus rural labor. This study highlights the need for future urbanization policies in China to pay greater attention to the coordinated development of the agricultural economy. The methods and findings of this research also provide reference value for other developing regions facing similar urbanization-agriculture dynamics. Full article
Show Figures

Figure 1

25 pages, 2402 KiB  
Article
Research on Different Energy Transition Pathway Analysis and Low-Carbon Electricity Development: A Case Study of an Energy System in Inner Mongolia
by Boyi Li, Richao Cong, Toru Matsumoto and Yajuan Li
Energies 2025, 18(12), 3129; https://doi.org/10.3390/en18123129 - 14 Jun 2025
Viewed by 617
Abstract
To achieve carbon neutrality targets in the power sector, regions with rich coal and renewable energy resources are facing unprecedented pressure. This paper explores the decarbonization pathway in the power sector in Inner Mongolia, China, under different energy transition scenarios based on the [...] Read more.
To achieve carbon neutrality targets in the power sector, regions with rich coal and renewable energy resources are facing unprecedented pressure. This paper explores the decarbonization pathway in the power sector in Inner Mongolia, China, under different energy transition scenarios based on the Long-Range Energy Alternatives Planning System (LEAP) model. This includes renewable energy expansion, carbon capture and storage (CCS) applications, demand response, and economic regulation scenarios. Subsequently, a combination of the Logarithmic Mean Divisia Index (LMDI) and Slack-Based Measure Data Envelopment Analysis (SBM-DEA) model was developed to investigate the influencing factors and power generation efficiency in low-carbon electricity. The results revealed that this region emphasizes first developing renewable energy and improving the carbon and green electricity market and then accelerating CCS technology. Its carbon emissions are among the lowest, at about 77.29 million tons, but the cost could reach CNY 229.8 billion in 2060. We also found that the influencing factors of carbon productivity, low-carbon electricity structures, and carbon emissions significantly affected low-carbon electricity generation; their cumulative contribution rate is 367–588%, 155–399%, and −189–−737%, respectively. Regarding low-carbon electricity efficiency, the demand response scenario is the lowest at about 0.71; other scenarios show similar efficiency values. This value could be improved by optimizing the energy consumption structure and the installed capacity configuration. Full article
(This article belongs to the Special Issue Energy Transition and Environmental Sustainability: 3rd Edition)
Show Figures

Figure 1

27 pages, 2976 KiB  
Article
Urban Agglomeration Technology Innovation Networks, Spatial Spillover, and Agricultural Ecological Efficiency: Evidence from the Urban Agglomeration in the Middle Reaches of the Yangtze River in China
by Weihui Peng, Zehuan Hu, Jie Li and Chenggang Li
Sustainability 2025, 17(11), 5109; https://doi.org/10.3390/su17115109 - 2 Jun 2025
Cited by 1 | Viewed by 625
Abstract
Urban agglomerations serve as essential platforms for regional innovation, while agricultural technology innovation and diffusion play pivotal roles in enhancing agricultural eco-efficiency (AEE). Based on panel data from the Urban Agglomeration in the Middle Reaches of the Yangtze River (UAMRYR) (2001–2023), this study [...] Read more.
Urban agglomerations serve as essential platforms for regional innovation, while agricultural technology innovation and diffusion play pivotal roles in enhancing agricultural eco-efficiency (AEE). Based on panel data from the Urban Agglomeration in the Middle Reaches of the Yangtze River (UAMRYR) (2001–2023), this study employs a super-efficiency slacks-based measure model incorporating undesirable outputs to evaluate agricultural eco-efficiency. A modified gravity model is utilized to construct agricultural technology innovation networks (ATINs) in urban agglomerations, and a spatial Durbin model is applied to examine the spillover effects of network structure on eco-efficiency. The results indicate that: (1) Higher-degree centrality within the innovation network significantly improves local agricultural eco-efficiency and produces positive spillover effects on neighboring cities; (2) both direct and spillover effects are significant in central cities, whereas sub-central cities exhibit only a significant direct effect, and peripheral cities display an insignificant direct effect but a significant spillover effect; and (3) enhanced urban informatization, agricultural financial development, and industrial scale substantially strengthen the spatial spillover effects of the innovation network, thereby further advancing agricultural eco-efficiency within the agglomeration. These findings offer theoretical and empirical support for optimizing agricultural technology pathways and enhancing eco-efficiency in urban agglomerations. Full article
(This article belongs to the Special Issue Advanced Agricultural Economy: Challenges and Opportunities)
Show Figures

Figure 1

21 pages, 3735 KiB  
Article
Spatiotemporal Evolution and Influencing Factors of Carbon Emission Efficiency in Western Valley Cities in China
by Xinhong Zhang, Na Zhang, Shihan Wang, Jianhong Dong and Xiaofeng Pan
Sustainability 2025, 17(11), 5025; https://doi.org/10.3390/su17115025 - 30 May 2025
Cited by 1 | Viewed by 479
Abstract
As China steadily advances its “dual carbon” strategy, understanding the factors influencing carbon emission efficiency (CEE) is crucial for promoting high-quality urban development. This study examines Western Valley cities (WVCs), which play a key role in regional development and exhibit a distinct spatial [...] Read more.
As China steadily advances its “dual carbon” strategy, understanding the factors influencing carbon emission efficiency (CEE) is crucial for promoting high-quality urban development. This study examines Western Valley cities (WVCs), which play a key role in regional development and exhibit a distinct spatial structure. Using a super-efficiency slacks-based measure (SBM) model and economic and social panel data, we measured CEE and analyzed its spatiotemporal evolution. A geographically and temporally weighted regression (GTWR) was then applied to assess the spatiotemporal heterogeneity of influencing factors. Our findings revealed that the overall CEE of these cities remains relatively low, with a complex pattern of change. While efficiency levels in northern, southern, and central cities have gradually increased, there are notable differences in the quantity and spatial distribution of cities with high, relatively high, relatively low, and low efficiency over time. Additionally, the positive effects of technological investment, road density, population density, and per capita gross domestic product on CEE follow an increasing trend, whereas the negative impacts of energy intensity, green space ratio, secondary industry proportion, land use scale, and gas consumption gradually weaken. Additionally, the magnitude and direction of these effects vary significantly across northern, central, and southern cities. These findings provide important theoretical and practical insights for region-specific strategies aimed at reducing emissions and improving efficiency in WVCs. Full article
Show Figures

Figure 1

Back to TopTop