Carbon Emissions Analysis by AI Techniques

A special issue of Information (ISSN 2078-2489). This special issue belongs to the section "Information Processes".

Deadline for manuscript submissions: 31 December 2025 | Viewed by 716

Special Issue Editors

College of Architecture, University of Nebraska-Lincoln, Lincoln, NE 68588, USA
Interests: AI-driven method; data mining; big data; energy efficiency; urban carbon emissions; energy prediction

E-Mail Website
Guest Editor
Department of Architecture, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
Interests: machine learning; building simulation; building energy management; optimal control; smart building
Special Issues, Collections and Topics in MDPI journals

Special Issue Information

Dear Colleagues,

In the face of escalating global concern over carbon (CO2) emissions and their impact on climate change, innovative solutions are paramount for societies of all sizes. The advent of artificial intelligence (AI) offers transformative potential to address these challenges, marking a pivotal shift in applied energy research. This Special Issue delves into the cutting-edge intersection of AI-driven technologies and carbon emissions efficiency, showcasing pioneering research and methodologies aimed at a sustainable, low-carbon future.

Despite the promising horizon, the application of AI, machine learning, and related technologies in carbon emissions evaluation and forecasting faces notable research gaps. By bringing together the latest in AI-related technologies—including machine learning, data mining, time series analytics, data-driven prediction and forecasting, the Internet of things (IoT), sensor networks, and cutting-edge computing—this Special Issue aims to chart a course toward actionable interpretable data-driven strategies for energy conservation, optimal clean energy utilization, and significant reductions in carbon emissions. This Special Issue serves as a platform for exchanging high-quality research findings, innovative solutions, and discussions that bridge these gaps. It encourages submissions that leverage data-driven techniques with a focus on enhancing interpretability, efficiency, and effectiveness in carbon emissions analytics, modeling, and forecasting.

This Special Issue highlights a spectrum of topics central to this discourse, including, but not limited to: AI-driven smart energy savings, energy efficiency and management, carbon emissions and energy forecasting, machine learning and big data analytics, smart urban development with clean energy, and energy modeling as well as optimization. Each topic represents a facet of the comprehensive approach required to tackle the multifaceted challenges of the reduction in carbon emissions and energy management in the 21st century.

Best regards,

Dr. Tian Li
Dr. Sicheng Zhan
Guest Editors

Manuscript Submission Information

Manuscripts should be submitted online at www.mdpi.com by registering and logging in to this website. Once you are registered, click here to go to the submission form. Manuscripts can be submitted until the deadline. All submissions that pass pre-check are peer-reviewed. Accepted papers will be published continuously in the journal (as soon as accepted) and will be listed together on the special issue website. Research articles, review articles as well as short communications are invited. For planned papers, a title and short abstract (about 100 words) can be sent to the Editorial Office for announcement on this website.

Submitted manuscripts should not have been published previously, nor be under consideration for publication elsewhere (except conference proceedings papers). All manuscripts are thoroughly refereed through a single-blind peer-review process. A guide for authors and other relevant information for submission of manuscripts is available on the Instructions for Authors page. Information is an international peer-reviewed open access monthly journal published by MDPI.

Please visit the Instructions for Authors page before submitting a manuscript. The Article Processing Charge (APC) for publication in this open access journal is 1800 CHF (Swiss Francs). Submitted papers should be well formatted and use good English. Authors may use MDPI's English editing service prior to publication or during author revisions.

Keywords

  • AI-driven energy analysis
  • carbon emissions and energy forecasting
  • machine learning and big data analytics
  • energy efficiency and management
  • smart urban development with clean energy
  • energy modeling and optimization

Benefits of Publishing in a Special Issue

  • Ease of navigation: Grouping papers by topic helps scholars navigate broad scope journals more efficiently.
  • Greater discoverability: Special Issues support the reach and impact of scientific research. Articles in Special Issues are more discoverable and cited more frequently.
  • Expansion of research network: Special Issues facilitate connections among authors, fostering scientific collaborations.
  • External promotion: Articles in Special Issues are often promoted through the journal's social media, increasing their visibility.
  • Reprint: MDPI Books provides the opportunity to republish successful Special Issues in book format, both online and in print.

Further information on MDPI's Special Issue policies can be found here.

Published Papers (1 paper)

Order results
Result details
Select all
Export citation of selected articles as:

Research

26 pages, 1170 KiB  
Article
Digital Empowerment, Novel Productive Forces, and Regional Green Innovation Efficiency: Causal Inference Based on Spatial Difference-in-Differences and Double Machine Learning Approaches
by Qi Liu, Siyu Liu, Tianning Guan, Luhan Yu, Zemenghong Bao, Yuzhu Wen and Kun Lv
Information 2025, 16(7), 578; https://doi.org/10.3390/info16070578 - 6 Jul 2025
Viewed by 94
Abstract
Amidst the dual challenges of escalating ecological environmental pressures and economic transformation globally, green innovation emerges as a pivotal pathway toward achieving high-quality sustainable development. To elucidate how digitalization and novel productive forces synergistically drive the green transition, the research utilizes panel data [...] Read more.
Amidst the dual challenges of escalating ecological environmental pressures and economic transformation globally, green innovation emerges as a pivotal pathway toward achieving high-quality sustainable development. To elucidate how digitalization and novel productive forces synergistically drive the green transition, the research utilizes panel data from 30 provincial-level administrative regions in China spanning 2009 to 2022, constructing a green innovation efficiency measurement frame-work grounded in the Super Slack-Based Measure (Super-SBM)model, alongside a novel productive forces evaluation system based on the triad of laborers, labor objects, and means of production. Employing spatial difference-in-differences and double machine learning methodologies within a quasi-natural experimental design, the research investigates the causal mechanisms through which digital empowerment and novel productive forces influence regional green innovation efficiency. The findings reveal that both digital empowerment and novel productive forces significantly enhance regional green innovation efficiency, exhibiting pronounced positive spatial spillover effects on neighboring regions. Heterogeneity analyses demonstrate that the promotive impacts are more pronounced in eastern provinces compared to central and western counterparts, in provinces participating in carbon trading relative to those that do not, and in innovation-driven provinces versus non-innovative ones. Mediation analysis indicates that digital empowerment operates by fostering the aggregation of innovative talent and elevating governmental ecological attentiveness, whereas new-type productivity exerts its influence primarily through intellectual property protection and the clustering of high-technology industries. The results offer empirical foundations for policymakers to devise coordinated regional green development strategies, refine digital transformation policies, and promote industrial structural optimization. Furthermore, this research provides valuable data-driven insights and theoretical guidance for local governments and enterprises in cultivating green innovation and new-type productivity. Full article
(This article belongs to the Special Issue Carbon Emissions Analysis by AI Techniques)
Show Figures

Figure 1

Back to TopTop