Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (11)

Search Parameters:
Keywords = single-molecule FET

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
19 pages, 9207 KiB  
Article
Growth and Characterization of Centimeter-Scale Pentacene Crystals for Optoelectronic Devices
by Valery A. Postnikov, Artem A. Kulishov, Georgy A. Yurasik, Nataliya I. Sorokina, Timofei A. Sorokin and Vadim V. Grebenev
Crystals 2023, 13(7), 999; https://doi.org/10.3390/cryst13070999 - 22 Jun 2023
Cited by 5 | Viewed by 2316
Abstract
In this work, we present results on the growth of centimeter-scale pentacene crystals using the physical vapor transport method in a dual-temperature zone horizontal furnace. It was established that intensive crystal growth processes occurred in transition regions with sudden temperature changes, while crystal [...] Read more.
In this work, we present results on the growth of centimeter-scale pentacene crystals using the physical vapor transport method in a dual-temperature zone horizontal furnace. It was established that intensive crystal growth processes occurred in transition regions with sudden temperature changes, while crystal growth was practically not observed in regions with slightly varying temperatures. During crystal growth, co-precipitating golden needle-like crystals reaching lengths of more than 10 mm were obtained. Using the method of single-crystal X-ray diffraction at 85 and 293 K for dark-blue lamellar pentacene crystals, the crystal structure was refined in a triclinic system with sp.gr. P1¯. It was established that the golden needle crystals consisted of molecules of the pentacene derivative—5,14-pentacenedione, the crystal structure of which was solved for the first time in a rhombic system with sp.gr. P212121. The absorption and luminescence spectra of pentacene and 5,14-pentacenedione in toluene solutions were obtained and analyzed. The electrical properties of the prepared pentacene thin films and single crystals grown under physical vapor transport conditions were evaluated by fabricating and characterizing field-effect transistors (FETs). It was shown that the presence of impurities in the commercial pentacene material had a significant effect on the morphological quality of thin polycrystalline films and noticeably reduced the hole mobility. Full article
Show Figures

Figure 1

16 pages, 2756 KiB  
Article
Ultra-Scaled Si Nanowire Biosensors for Single DNA Molecule Detection
by Aryan Afzalian and Denis Flandre
Sensors 2023, 23(12), 5405; https://doi.org/10.3390/s23125405 - 7 Jun 2023
Cited by 2 | Viewed by 1682
Abstract
In this study, we use NEGF quantum transport simulations to study the fundamental detection limit of ultra-scaled Si nanowire FET (NWT) biosensors. A N-doped NWT is found to be more sensitive for negatively charged analytes as explained by the nature of the detection [...] Read more.
In this study, we use NEGF quantum transport simulations to study the fundamental detection limit of ultra-scaled Si nanowire FET (NWT) biosensors. A N-doped NWT is found to be more sensitive for negatively charged analytes as explained by the nature of the detection mechanism. Our results predict threshold voltage shifts due to a single-charge analyte of tens to hundreds of mV in air or low-ionic solutions. However, with typical ionic solutions and SAM conditions, the sensitivity rapidly drops to the mV/q range. Our results are then extended to the detection of a single 20-base-long DNA molecule in solution. The impact of front- and/or back-gate biasing on the sensitivity and limit of detection is studied and a signal-to-noise ratio of 10 is predicted. Opportunities and challenges to reach down to single-analyte detection in such systems are also discussed, including the ionic and oxide-solution interface-charge screening and ways to recover unscreened sensitivities. Full article
(This article belongs to the Special Issue Advanced Field-Effect Sensors: Volume II)
Show Figures

Figure 1

15 pages, 6776 KiB  
Communication
Graphene Nanoribbon Field Effect Transistor Simulations for the Detection of Sugar Molecules: Semi-Empirical Modeling
by Asma Wasfi, Ahmed Al Hamarna, Omar Mohammed Hasani Al Shehhi, Hazza Fahad Muhsen Al Ameri and Falah Awwad
Sensors 2023, 23(6), 3010; https://doi.org/10.3390/s23063010 - 10 Mar 2023
Cited by 5 | Viewed by 2948
Abstract
Graphene has remarkable characteristics that make it a potential candidate for optoelectronics and electronics applications. Graphene is a sensitive material that reacts to any physical variation in its environment. Due to its extremely low intrinsic electrical noise, graphene can detect even a single [...] Read more.
Graphene has remarkable characteristics that make it a potential candidate for optoelectronics and electronics applications. Graphene is a sensitive material that reacts to any physical variation in its environment. Due to its extremely low intrinsic electrical noise, graphene can detect even a single molecule in its proximity. This feature makes graphene a potential candidate for identifying a wide range of organic and inorganic compounds. Graphene and its derivatives are considered one of the best materials to detect sugar molecules due to their electronic properties. Graphene has low intrinsic noise, making it an ideal membrane for detecting low concentrations of sugar molecules. In this work, a graphene nanoribbon field effect transistor (GNR-FET) is designed and utilized to identify sugar molecules such as fructose, xylose, and glucose. The variation in the current of the GNR-FET in the presence of each of the sugar molecules is utilized as the detection signal. The designed GNR-FET shows a clear change in the device density of states, transmission spectrum, and current in the presence of each of the sugar molecules. The simulated sensor is made of a pair of metallic zigzag graphene nanoribbons (ZGNR) joint via a channel of armchair graphene nanoribbon (AGNR) and a gate. The Quantumwise Atomistix Toolkit (ATK) is used to design and conduct the nanoscale simulations of the GNR-FET. Semi-empirical modeling, along with non-equilibrium Green’s functional theory (SE + NEGF), is used to develop and study the designed sensor. This article suggests that the designed GNR transistor has the potential to identify each of the sugar molecules in real time with high accuracy. Full article
(This article belongs to the Section Chemical Sensors)
Show Figures

Figure 1

11 pages, 1859 KiB  
Article
Solution pH Effect on Drain-Gate Characteristics of SOI FET Biosensor
by Anastasia Bulgakova, Anton Berdyugin, Olga Naumova, Boris Fomin, Dmitrii Pyshnyi, Alexey Chubarov, Elena Dmitrienko and Alexander Lomzov
Electronics 2023, 12(3), 777; https://doi.org/10.3390/electronics12030777 - 3 Feb 2023
Cited by 5 | Viewed by 2609
Abstract
Nanowire or nanobelt sensors based on silicon-on-insulator field-effect transistors (SOI-FETs) are one of the leading directions of label-free biosensors. An essential issue in this device construction type is obtaining reproducible results from electrochemical measurements. It is affected by many factors, including the measuring [...] Read more.
Nanowire or nanobelt sensors based on silicon-on-insulator field-effect transistors (SOI-FETs) are one of the leading directions of label-free biosensors. An essential issue in this device construction type is obtaining reproducible results from electrochemical measurements. It is affected by many factors, including the measuring solution and the design parameters of the sensor. The biosensor surface should be charged minimally for the highest sensitivity and maximum effect from interaction with other charged molecules. Therefore, the pH value should be chosen so that the surface has a minimum charge. Here, we studied the SOI-FET sensor containing 12 nanobelt elements concatenated on a single substrate. Two types of sensing elements of similar design and different widths (0.2 or 3 μm) were located in the chips. The drain-gate measurements of wires with a width of 3 µm are sufficiently reproducible for the entire chip to obtain measurement statistics in air and deionized water. For the pH values from 3 to 12, we found significant changes in source-drain characteristics of nanobelts, which reach the plateau at pH values of 7 and higher. High pH sensitivity (ca. 1500 and 970 mV/pH) was observed in sensors of 3 μm and 0.2 μm in width in the range of pH values from 3 to 7. We found a higher “on” current to “off” current ratio for wide wires. At all studied pH values, Ion/Ioff was up to 4600 and 30,800 for 0.2 and 3 μm wires, respectively. In the scheme on the source-drain current measurements at fixed gate voltages, the highest sensitivity to the pH changes reaches a gate voltage of 13 and 19 V for 0.2 μm and 3 μm sensors, respectively. In summary, the most suitable is 3 μm nanobelt sensing elements for the reliable analysis of biomolecules and measurements at pH over 7. Full article
Show Figures

Figure 1

23 pages, 5722 KiB  
Article
Design of Pyrrole-Based Gate-Controlled Molecular Junctions Optimized for Single-Molecule Aflatoxin B1 Detection
by Fabrizio Mo, Chiara Elfi Spano, Yuri Ardesi, Massimo Ruo Roch, Gianluca Piccinini and Mariagrazia Graziano
Sensors 2023, 23(3), 1687; https://doi.org/10.3390/s23031687 - 3 Feb 2023
Cited by 6 | Viewed by 2718
Abstract
Food contamination by aflatoxins is an urgent global issue due to its high level of toxicity and the difficulties in limiting the diffusion. Unfortunately, current detection techniques, which mainly use biosensing, prevent the pervasive monitoring of aflatoxins throughout the agri-food chain. In this [...] Read more.
Food contamination by aflatoxins is an urgent global issue due to its high level of toxicity and the difficulties in limiting the diffusion. Unfortunately, current detection techniques, which mainly use biosensing, prevent the pervasive monitoring of aflatoxins throughout the agri-food chain. In this work, we investigate, through ab initio atomistic calculations, a pyrrole-based Molecular Field Effect Transistor (MolFET) as a single-molecule sensor for the amperometric detection of aflatoxins. In particular, we theoretically explain the gate-tuned current modulation from a chemical–physical perspective, and we support our insights through simulations. In addition, this work demonstrates that, for the case under consideration, the use of a suitable gate voltage permits a considerable enhancement in the sensor performance. The gating effect raises the current modulation due to aflatoxin from 100% to more than 103÷104%. In particular, the current is diminished by two orders of magnitude from the μA range to the nA range due to the presence of aflatoxin B1. Our work motivates future research efforts in miniaturized FET electrical detection for future pervasive electrical measurement of aflatoxins. Full article
(This article belongs to the Special Issue Advanced Field-Effect Sensors)
Show Figures

Figure 1

38 pages, 8219 KiB  
Review
A Mini Review on the Development of Conjugated Polymers: Steps towards the Commercialization of Organic Solar Cells
by Ahmed G. S. Al-Azzawi, Shujahadeen B. Aziz, Elham M. A. Dannoun, Ahmed Iraqi, Muaffaq M. Nofal, Ary R. Murad and Ahang M. Hussein
Polymers 2023, 15(1), 164; https://doi.org/10.3390/polym15010164 - 29 Dec 2022
Cited by 48 | Viewed by 7835
Abstract
This review article covers the synthesis and design of conjugated polymers for carefully adjusting energy levels and energy band gap (EBG) to achieve the desired photovoltaic performance. The formation of bonds and the delocalization of electrons over conjugated chains are both explained by [...] Read more.
This review article covers the synthesis and design of conjugated polymers for carefully adjusting energy levels and energy band gap (EBG) to achieve the desired photovoltaic performance. The formation of bonds and the delocalization of electrons over conjugated chains are both explained by the molecular orbital theory (MOT). The intrinsic characteristics that classify conjugated polymers as semiconducting materials come from the EBG of organic molecules. A quinoid mesomeric structure (D-A ↔ D+ = A) forms across the major backbones of the polymer as a result of alternating donor–acceptor segments contributing to the pull–push driving force between neighboring units, resulting in a smaller optical EBG. Furthermore, one of the most crucial factors in achieving excellent performance of the polymer is improving the morphology of the active layer. In order to improve exciton diffusion, dissociation, and charge transport, the nanoscale morphology ensures nanometer phase separation between donor and acceptor components in the active layer. It was demonstrated that because of the exciton’s short lifetime, only small diffusion distances (10–20 nm) are needed for all photo-generated excitons to reach the interfacial region where they can separate into free charge carriers. There is a comprehensive explanation of the architecture of organic solar cells using single layer, bilayer, and bulk heterojunction (BHJ) devices. The short circuit current density (Jsc), open circuit voltage (Voc), and fill factor (FF) all have a significant impact on the performance of organic solar cells (OSCs). Since the BHJ concept was first proposed, significant advancement and quick configuration development of these devices have been accomplished. Due to their ability to combine great optical and electronic properties with strong thermal and chemical stability, conjugated polymers are unique semiconducting materials that are used in a wide range of applications. According to the fundamental operating theories of OSCs, unlike inorganic semiconductors such as silicon solar cells, organic photovoltaic devices are unable to produce free carrier charges (holes and electrons). To overcome the Coulombic attraction and separate the excitons into free charges in the interfacial region, organic semiconductors require an additional thermodynamic driving force. From the molecular engineering of conjugated polymers, it was discovered that the most crucial obstacles to achieving the most desirable properties are the design and synthesis of conjugated polymers toward optimal p-type materials. Along with plastic solar cells (PSCs), these materials have extended to a number of different applications such as light-emitting diodes (LEDs) and field-effect transistors (FETs). Additionally, the topics of fluorene and carbazole as donor units in conjugated polymers are covered. The Stille, Suzuki, and Sonogashira coupling reactions widely used to synthesize alternating D–A copolymers are also presented. Moreover, conjugated polymers based on anthracene that can be used in solar cells are covered. Full article
(This article belongs to the Special Issue Advanced Polymers for Solar Cells Applications)
Show Figures

Figure 1

11 pages, 2311 KiB  
Article
Molecular Recognition by Silicon Nanowire Field-Effect Transistor and Single-Molecule Force Spectroscopy
by Francisco M. Espinosa, Manuel R. Uhlig and Ricardo Garcia
Micromachines 2022, 13(1), 97; https://doi.org/10.3390/mi13010097 - 8 Jan 2022
Cited by 7 | Viewed by 3233
Abstract
Silicon nanowire (SiNW) field-effect transistors (FETs) have been developed as very sensitive and label-free biomolecular sensors. The detection principle operating in a SiNW biosensor is indirect. The biomolecules are detected by measuring the changes in the current through the transistor. Those changes are [...] Read more.
Silicon nanowire (SiNW) field-effect transistors (FETs) have been developed as very sensitive and label-free biomolecular sensors. The detection principle operating in a SiNW biosensor is indirect. The biomolecules are detected by measuring the changes in the current through the transistor. Those changes are produced by the electrical field created by the biomolecule. Here, we have combined nanolithography, chemical functionalization, electrical measurements and molecular recognition methods to correlate the current measured by the SiNW transistor with the presence of specific molecular recognition events on the surface of the SiNW. Oxidation scanning probe lithography (o-SPL) was applied to fabricate sub-12 nm SiNW field-effect transistors. The devices were applied to detect very small concentrations of proteins (500 pM). Atomic force microscopy (AFM) single-molecule force spectroscopy (SMFS) experiments allowed the identification of the protein adsorption sites on the surface of the nanowire. We detected specific interactions between the biotin-functionalized AFM tip and individual avidin molecules adsorbed to the SiNW. The measurements confirmed that electrical current changes measured by the device were associated with the deposition of avidin molecules. Full article
Show Figures

Figure 1

14 pages, 2246 KiB  
Article
A Reliable BioFET Immunosensor for Detection of p53 Tumour Suppressor in Physiological-Like Environment
by Chiara Baldacchini, Antonino Francesco Montanarella, Luca Francioso, Maria Assunta Signore, Salvatore Cannistraro and Anna Rita Bizzarri
Sensors 2020, 20(21), 6364; https://doi.org/10.3390/s20216364 - 8 Nov 2020
Cited by 24 | Viewed by 5831
Abstract
The concentration of wild-type tumour suppressor p53wt in cells and blood has a clinical significance for early diagnosis of some types of cancer. We developed a disposable, label-free, field-effect transistor-based immunosensor (BioFET), able to detect p53wt in physiological buffer solutions, over [...] Read more.
The concentration of wild-type tumour suppressor p53wt in cells and blood has a clinical significance for early diagnosis of some types of cancer. We developed a disposable, label-free, field-effect transistor-based immunosensor (BioFET), able to detect p53wt in physiological buffer solutions, over a wide concentration range. Microfabricated, high-purity gold electrodes were used as single-use extended gates (EG), which avoid direct interaction between the transistor gate and the biological solution. Debye screening, which normally hampers target charge effect on the FET gate potential and, consequently, on the registered FET drain-source current, at physiological ionic strength, was overcome by incorporating a biomolecule-permeable polymer layer on the EG electrode surface. Determination of an unknown p53wt concentration was obtained by calibrating the variation of the FET threshold voltage versus the target molecule concentration in buffer solution, with a sensitivity of 1.5 ± 0.2 mV/decade. The BioFET specificity was assessed by control experiments with proteins that may unspecifically bind at the EG surface, while 100pM p53wt concentration was established as limit of detection. This work paves the way for fast and highly sensitive tools for p53wt detection in physiological fluids, which deserve much interest in early cancer diagnosis and prognosis. Full article
(This article belongs to the Section Biosensors)
Show Figures

Figure 1

17 pages, 6923 KiB  
Article
Simulations of Graphene Nanoribbon Field Effect Transistor for the Detection of Propane and Butane Gases: A First Principles Study
by Muhammad Haroon Rashid, Ants Koel and Toomas Rang
Nanomaterials 2020, 10(1), 98; https://doi.org/10.3390/nano10010098 - 3 Jan 2020
Cited by 18 | Viewed by 6124
Abstract
During the last few years graphene has emerged as a potential candidate for electronics and optoelectronics applications due to its several salient features. Graphene is a smart material that responds to any physical change in its surrounding environment. Graphene has a very low [...] Read more.
During the last few years graphene has emerged as a potential candidate for electronics and optoelectronics applications due to its several salient features. Graphene is a smart material that responds to any physical change in its surrounding environment. Graphene has a very low intrinsic electronic noise and it can detect even a single gas molecule in its proximity. This property of graphene makes is a suitable and promising candidate to detect a large variety of organic/inorganic chemicals and gases. Typical solid state gas sensors usually requires high operating temperature and they cannot detect very low concentrations of gases efficiently due to intrinsic noise caused by thermal motion of charge carriers at high temperatures. They also have low resolution and stability issues of their constituent materials (such as electrolytes, electrodes, and sensing material itself) in harsh environments. It accelerates the need of development of robust, highly sensitive and efficient gas sensor with low operating temperature. Graphene and its derivatives could be a prospective replacement of these solid-state sensors due to their better electronic attributes for moderate temperature applications. The presence of extremely low intrinsic noise in graphene makes it highly suitable to detect a very low concentration of organic/inorganic compounds (even a single molecule ca be detected with graphene). In this article, we simulated a novel graphene nanoribbon based field effect transistor (FET) and used it to detect propane and butane gases. These are flammable household/industrial gases that must be detected to avoid serious accidents. The effects of atmospheric oxygen and humidity have also been studied by mixing oxygen and water molecules with desired target gases (propane and butane). The change in source-to-drain current of FET in the proximity of the target gases has been used as a detection signal. Our simulated FET device showed a noticeable change in density of states and IV-characteristics in the presence of target gas molecules. Nanoscale simulations of FET based gas sensor have been done in Quantumwise Atomistix Toolkit (ATK). ATK is a commercially available nanoscale semiconductor device simulator that is used to model a large variety of nanoscale devices. Our proposed device can be converted into a physical device to get a low cost and small sized integrated gas sensor. Full article
(This article belongs to the Special Issue Carbon-Based Nanomaterials for (Bio)Sensors Development)
Show Figures

Figure 1

11 pages, 378 KiB  
Communication
Biofunctionalized Zinc Oxide Field Effect Transistors for Selective Sensing of Riboflavin with Current Modulation
by Joshua A. Hagen, Sang N. Kim, Burhan Bayraktaroglu, Kevin Leedy, Jorge L. Chávez, Nancy Kelley-Loughnane, Rajesh R. Naik and Morley O. Stone
Sensors 2011, 11(7), 6645-6655; https://doi.org/10.3390/s110706645 - 27 Jun 2011
Cited by 51 | Viewed by 10712
Abstract
Zinc oxide field effect transistors (ZnO-FET), covalently functionalized with single stranded DNA aptamers, provide a highly selective platform for label-free small molecule sensing. The nanostructured surface morphology of ZnO provides high sensitivity and room temperature deposition allows for a wide array of substrate [...] Read more.
Zinc oxide field effect transistors (ZnO-FET), covalently functionalized with single stranded DNA aptamers, provide a highly selective platform for label-free small molecule sensing. The nanostructured surface morphology of ZnO provides high sensitivity and room temperature deposition allows for a wide array of substrate types. Herein we demonstrate the selective detection of riboflavin down to the pM level in aqueous solution using the negative electrical current response of the ZnO-FET by covalently attaching a riboflavin binding aptamer to the surface. The response of the biofunctionalized ZnO-FET was tuned by attaching a redox tag (ferrocene) to the 3’ terminus of the aptamer, resulting in positive current modulation upon exposure to riboflavin down to pM levels. Full article
(This article belongs to the Special Issue Nano-Biosensors)
Show Figures

8 pages, 444 KiB  
Article
A Single Polyaniline Nanofiber Field Effect Transistor and Its Gas Sensing Mechanisms
by Dajing Chen, Sheng Lei and Yuquan Chen
Sensors 2011, 11(7), 6509-6516; https://doi.org/10.3390/s110706509 - 24 Jun 2011
Cited by 80 | Viewed by 12585
Abstract
A single polyaniline nanofiber field effect transistor (FET) gas sensor fabricated by means of electrospinning was investigated to understand its sensing mechanisms and optimize its performance. We studied the morphology, field effect characteristics and gas sensitivity of conductive nanofibers. The fibers showed Schottky [...] Read more.
A single polyaniline nanofiber field effect transistor (FET) gas sensor fabricated by means of electrospinning was investigated to understand its sensing mechanisms and optimize its performance. We studied the morphology, field effect characteristics and gas sensitivity of conductive nanofibers. The fibers showed Schottky and Ohmic contacts based on different electrode materials. Higher applied gate voltage contributes to an increase in gas sensitivity. The nanofiber transistor showed a 7% reversible resistance change to 1 ppm NH3 with 10 V gate voltage. The FET characteristics of the sensor when exposed to different gas concentrations indicate that adsorption of NH3 molecules reduces the carrier mobility in the polyaniline nanofiber. As such, nanofiber-based sensors could be promising for environmental and industrial applications. Full article
(This article belongs to the Section Chemical Sensors)
Show Figures

Back to TopTop