Design of Pyrrole-Based Gate-Controlled Molecular Junctions Optimized for Single-Molecule Aflatoxin B1 Detection
Abstract
:1. Introduction
2. Theoretical Background
2.1. Single-Molecule Junction as a Two-Terminal Device: Working Principles
2.2. Single-Molecule FET: Working Principles
2.3. Sensing Principle and Amperometric Detection
3. Methodology and Computational Methods
4. Simulation Results and Analysis
4.1. Adsorption Configuration
4.2. Equilibrium , Fermi Level Position and Contacts
4.3. Two Terminal Device Current and Sensing
4.4. Gate Voltage Tuning and Gate Coupling Factor
4.5. Sensor Response Enhancement through
4.6. Transmission Properties in Presence of AFB1
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Conflicts of Interest
References
- Wang, Q.; Yang, Q.; Wu, W. Progress on Structured Biosensors for Monitoring Aflatoxin B1 From Biofilms: A Review. Front. Microbiol. 2020, 11, 408. [Google Scholar] [CrossRef] [PubMed]
- Edite Bezerra da Rocha, M.; da Chagas Oliveira Freire, F.; Erlan Feitosa Maia, F.; Izabel Florindo Guedes, M.; Rondina, D. Mycotoxins and their effects on human and animal health. Food Control 2014, 36, 159–165. [Google Scholar] [CrossRef]
- Joint FAO; World Health Organization; WHO Expert Committee on Food Additives. Evaluation of Certain Contaminants in Food: Eighty-Third Report of the Joint FAO/WHO Expert Committee on Food Additives; World Health Organization: Geneva, Switzerland, 2017; p. 182.
- IARC Working Group on the Evaluation of Carcinogenic Risks to Humans. Some traditional herbal medicines, some mycotoxins, naphthalene and styrene. IARC Monogr. Eval. Carcinog. Risks Hum. 2002, 82, 1–556. [Google Scholar]
- Miklós, G.; Angeli, C.; Ambrus, Á.; Nagy, A.; Kardos, V.; Zentai, A.; Kerekes, K.; Farkas, Z.; Jóźwiak, Á.; Bartók, T. Detection of 633 aflatoxins in different matrices and food-chain positions. Front. Microbiol. 2020, 11, 1916. [Google Scholar] [CrossRef] [PubMed]
- Tang, D.; Sauceda, J.C.; Lin, Z.; Ott, S.; Basova, E.; Goryacheva, I.; Biselli, S.; Lin, J.; Niessner, R.; Knopp, D. Magnetic nanogold microspheres-based lateral-flow immunodipstick for rapid detection of aflatoxin B2 in food. Biosens Bioelectron 2009, 25, 514–518. [Google Scholar] [CrossRef]
- Xue, Z.; Zhang, Y.; Yu, W.; Zhang, J.; Wang, J.; Wan, F.; Kim, Y.; Liu, Y.; Kou, X. Recent advances in aflatoxin B1 detection based on nanotechnology and nanomaterials-A review. Anal. Chim. Acta 2019, 1069, 1–27. [Google Scholar] [CrossRef]
- Umapathi, R.; Ghoreishian, S.M.; Sonwal, S.; Rani, G.M.; Huh, Y.S. Portable electrochemical sensing methodologies for on-site detection of pesticide residues in fruits and vegetables. Coord. Chem. Rev. 2022, 453, 214305. [Google Scholar] [CrossRef]
- Umapathi, R.; Park, B.; Sonwal, S.; Rani, G.M.; Cho, Y.; Huh, Y.S. Advances in optical-sensing strategies for the on-site detection of pesticides in agricultural foods. Trends Food Sci. Technol. 2022, 119, 69–89. [Google Scholar] [CrossRef]
- Liu, Z.; Hua, Q.; Wang, J.; Liang, Z.; Li, J.; Wu, J.; Shen, X.; Lei, H.; Li, X. A smartphone-based dual detection mode device integrated with two lateral flow immunoassays for multiplex mycotoxins in cereals. Biosens. Bioelectron. 2020, 158, 112178. [Google Scholar] [CrossRef]
- Ko, J.; Lee, C.; Choo, J. Highly sensitive SERS-based immunoassay of aflatoxin B1 using silica-encapsulated hollow gold nanoparticles. J. Hazard. Mater. 2014, 285, 11–17. [Google Scholar] [CrossRef] [PubMed]
- Li, Y.; Yang, C.; Guo, X. Single-Molecule Electrical Detection: A Promising Route toward the Fundamental Limits of Chemistry and Life Science. Accounts Chem. Res. 2020, 53, 159–169. [Google Scholar] [CrossRef] [PubMed]
- Gooding, J.J.; Gaus, K. Single-molecule sensors: Challenges and opportunities for quantitative analysis. Angew. Chem. Int. Ed. 2016, 55, 11354–11366. [Google Scholar] [CrossRef] [PubMed]
- Ohshiro, T. Nanodevices for Biological and Medical Applications: Development of Single-Molecule Electrical Measurement Method. Appl. Sci. 2022, 12, 1539. [Google Scholar] [CrossRef]
- Tour, J. Molecular Electronics: Commercial Insights, Chemistry, Devices, Architecture and Programming; EBSCO Ebook Academic Collection, World Scientific: Singapore, 2003. [Google Scholar]
- Tour, J.M. Molecular electronics. Synthesis and testing of components. Acc. Chem. Res. 2000, 33, 791–804. [Google Scholar] [CrossRef]
- Mathew, P.T.; Fang, F. Advances in Molecular Electronics: A Brief Review. Engineering 2018, 4, 760–771. [Google Scholar] [CrossRef]
- Roemer, M.; Gillespie, A.; Jago, D.; Costa-Milan, D.; Alqahtani, J.; Hurtado-Gallego, J.; Sadeghi, H.; Lambert, C.J.; Spackman, P.R.; Sobolev, A.N.; et al. 2,7- and 4,9-Dialkynyldihydropyrene Molecular Switches: Syntheses, Properties, and Charge Transport in Single-Molecule Junctions. J. Am. Chem. Soc. 2022, 144, 12698–12714. [Google Scholar] [CrossRef] [PubMed]
- Meng, L.; Xin, N.; Hu, C.; Al Sabea, H.; Zhang, M.; Jiang, H.; Ji, Y.; Jia, C.; Yan, Z.; Zhang, Q.; et al. Dual-gated single-molecule field-effect transistors beyond Moore’s law. Nat. Commun. 2022, 13, 1410. [Google Scholar] [CrossRef] [PubMed]
- Capozzi, B.; Xia, J.; Adak, O.; Dell, E.; Liu, Z.F.; Taylor, J.; Neaton, J.; Campos, L.; Venkataraman, L. Single-molecule diodes with high rectification ratios through environmental control. Nat. Nanotechnol. 2015, 10, 522–527. [Google Scholar] [CrossRef]
- Li, H.B.; Tebikachew, B.E.; Wiberg, C.; Moth-Poulsen, K.; Hihath, J. A Memristive Element Based on an Electrically Controlled Single-Molecule Reaction. Angew. Chem. Int. Ed. 2020, 59, 11641–11646. [Google Scholar] [CrossRef]
- Yu, P.; Chen, L.; Zhang, Y.; Zhao, S.; Chen, Z.; Hu, Y.; Liu, J.; Yang, Y.; Shi, J.; Yao, Z.; et al. Single-Molecule Tunneling Sensors for Nitrobenzene Explosives. Anal. Chem. 2022, 94, 12042–12050. [Google Scholar] [CrossRef]
- Li, Y.; Zhao, L.; Yao, Y.; Guo, X. Single-Molecule Nanotechnologies: An Evolution in Biological Dynamics Detection. ACS Appl. Bio Mater. 2020, 3, 68–85. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wen, H.; Li, W.; Chen, J.; He, G.; Li, L.; Olson, M.A.; Sue, A.C.H.; Stoddart, J.F.; Guo, X. Complex formation dynamics in a single-molecule electronic device. Sci. Adv. 2016, 2, e1601113. [Google Scholar] [CrossRef] [PubMed]
- Mo, F.; Ardesi, Y.; Roch, M.R.; Graziano, M.; Piccinini, G. Investigation of Amperometric Sensing Mechanism in Gold–C60–Gold Molecular Dot. IEEE Sens. J. 2022, 22, 19152–19161. [Google Scholar] [CrossRef]
- Mo, F.; Spano, C.E.; Ardesi, Y.; Roch, M.R.; Piccinini, G.; Graziano, M. Single-molecule Aflatoxin B1 Sensing via Pyrrole-based Molecular Quantum Dot. In Proceedings of the 2022 IEEE 22nd International Conference on Nanotechnology (NANO), Palma de Mallorca, Spain, 4–8 July 2022; pp. 153–156. [Google Scholar] [CrossRef]
- Arroyo, C.R.; Frisenda, R.; Moth-Poulsen, K.; Seldenthuis, J.S.; Bjørnholm, T.; van der Zant, H.S. Quantum interference effects at room temperature in OPV-based single-molecule junctions. Nanoscale Res. Lett. 2013, 8, 234. [Google Scholar] [CrossRef]
- Chen, H.; Hou, S.; Wu, Q.; Jiang, F.; Zhou, P.; Zhang, L.; Jiao, Y.; Song, B.; Guo, Q.H.; Chen, X.Y.; et al. Promotion and suppression of single-molecule conductance by quantum interference in macrocyclic circuits. Matter 2021, 4, 3662–3676. [Google Scholar] [CrossRef]
- Spano, C.E.; Ardesi, Y.; Piccinini, G.; Graziano, M. Enhancing the On/Off Current Ratio in Single-Molecule FET via Destructive Quantum Interference. IEEE Trans. Electron Devices 2022, 69, 5906–5912. [Google Scholar] [CrossRef]
- Fahlgren, A.; Bratengeier, C.; Gelmi, A.; Semeins, C.M.; Klein-Nulend, J.; Jager, E.W.H.; Bakker, A.D. Biocompatibility of Polypyrrole with Human Primary Osteoblasts and the Effect of Dopants. PLoS ONE 2015, 10, e0134023. [Google Scholar] [CrossRef]
- Wang, X.; Gu, X.; Yuan, C.; Chen, S.; Zhang, P.; Zhang, T.; Yao, J.; Chen, F.; Chen, G. Evaluation of biocompatibility of polypyrrole in vitro and in vivo. J. Biomed. Mater. Res. A 2004, 68, 411–422. [Google Scholar] [CrossRef]
- Li, H.; Shi, W.; Song, J.; Jang, H.J.; Dailey, J.; Yu, J.; Katz, H.E. Chemical and Biomolecule Sensing with Organic Field-Effect Transistors. Chem. Rev. 2019, 119, 3–35. [Google Scholar] [CrossRef]
- Yuvaraja, S.; Nawaz, A.; Liu, Q.; Dubal, D.; Surya, S.G.; Salama, K.N.; Sonar, P. Organic field-effect transistor-based flexible sensors. Chem. Soc. Rev. 2020, 49, 3423–3460. [Google Scholar] [CrossRef]
- Liu, K.; Ouyang, B.; Guo, X.; Guo, Y.; Liu, Y. Advances in flexible organic field-effect transistors and their applications for flexible electronics. Npj Flex. Electron. 2022, 6, 1. [Google Scholar] [CrossRef]
- Luo, L.; Liu, Z. Recent progress in organic field-effect transistor-based chem/bio-sensors. VIEW 2022, 3, 20200115. [Google Scholar] [CrossRef]
- Datta, S. Electronic Transport in Mesoscopic Systems; Cambridge University Press: Cambridge, UK, 1995. [Google Scholar]
- Fuller, C.W.; Padayatti, P.S.; Abderrahim, H.; Adamiak, L.; Alagar, N.; Ananthapadmanabhan, N.; Baek, J.; Chinni, S.; Choi, C.; Delaney, K.J.; et al. Molecular electronics sensors on a scalable semiconductor chip: A platform for single-molecule measurement of binding kinetics and enzyme activity. Proc. Natl. Acad. Sci. USA 2022, 119, e2112812119. [Google Scholar] [CrossRef] [PubMed]
- Mo, F.; Spano, C.E.; Ardesi, Y.; Piccinini, G.; Graziano, M. Beyond-CMOS Artificial Neuron: A Simulation- Based Exploration of the Molecular-FET. IEEE Trans. Nanotechnol. 2021, 20, 903–911. [Google Scholar] [CrossRef]
- Hammer, B.; Norskov, J.K. Why gold is the noblest of all the metals. Nature 1995, 376, 238–240. [Google Scholar] [CrossRef]
- Böhler, T.; Grebing, J.; Mayer-Gindner, A.; Löhneysen, H.; Scheer, E. Mechanically controllable break-junctions for use as electrodes for molecular electronics. Nanotechnology 2004, 15, S465–S471. [Google Scholar] [CrossRef]
- Rattalino, I.; Motto, P.; Piccinini, G.; Demarchi, D. A new validation method for modeling nanogap fabrication by electromigration, based on the Resistance–Voltage (R–V) curve analysis. Phys. Lett. A 2012, 376, 2134–2140. [Google Scholar] [CrossRef]
- Demarchi, D.; Civera, P.; Piccinini, G.; Cocuzza, M.; Perrone, D. Electrothermal modelling for EIBJ nanogap fabrication. Electrochim. Acta 2009, 54, 6003–6009. [Google Scholar] [CrossRef]
- Dubois, V.; Raja, S.N.; Gehring, P.; Caneva, S.; van der Zant, H.S.J.; Niklaus, F.; Stemme, G. Massively parallel fabrication of crack-defined gold break junctions featuring sub-3 nm gaps for molecular devices. Nat. Commun. 2018, 9, 3433. [Google Scholar] [CrossRef]
- Xiang, D.; Jeong, H.; Kim, D.; Lee, T.; Cheng, Y.; Wang, Q.; Mayer, D. Three-Terminal Single-Molecule Junctions Formed by Mechanically Controllable Break Junctions with Side Gating. Nano Lett. 2013, 13, 2809–2813. [Google Scholar] [CrossRef]
- Tat’yana, V.V.; Efimov, O.N. Polypyrrole: A conducting polymer; its synthesis, properties and applications. Russ. Chem. Rev. 1997, 66, 443. [Google Scholar]
- Lu, Z.; Zheng, J.; Shi, J.; Zeng, B.F.; Yang, Y.; Hong, W.; Tian, Z.Q. Application of Micro/Nanofabrication Techniques to On-Chip Molecular Electronics. Small Methods 2021, 5, 2001034. [Google Scholar] [CrossRef]
- Cui, A.; Dong, H.; Hu, W. Nanogap Electrodes towards Solid State Single-Molecule Transistors. Small 2015, 11, 6115–6141. [Google Scholar] [CrossRef] [PubMed]
- Vercelli, B.; Zotti, G.; Berlin, A.; Grimoldi, S. Polypyrrole Self-Assembled Monolayers and Electrostatically Assembled Multilayers on Gold and Platinum Electrodes for Molecular Junctions. Chem. Mater. 2006, 18, 3754–3763. [Google Scholar] [CrossRef]
- Cheynet, M.C.; Pokrant, S.; Tichelaar, F.D.; Rouvière, J.L. Crystal structure and band gap determination of HfO2 thin films. J. Appl. Phys. 2007, 101, 054101. [Google Scholar] [CrossRef]
- Jain, A.; Ong, S.P.; Hautier, G.; Chen, W.; Richards, W.D.; Dacek, S.; Cholia, S.; Gunter, D.; Skinner, D.; Ceder, G.; et al. Commentary: The Materials Project: A materials genome approach to accelerating materials innovation. APL Mater. 2013, 1, 011002. [Google Scholar] [CrossRef]
- Datta, S. Quantum Transport: Atom to Transistor; Cambridge University Press: Cambridge, UK, 2005. [Google Scholar] [CrossRef]
- Lambert, C.J. Quantum Transport in Nanostructures and Molecules; IOP Publishing: Bristol, UK, 2021; pp. 2053–2563. [Google Scholar]
- Danilov, A.; Kubatkin, S.; Stuhr-Hansen, N.; Moth-Poulsen, K.; Bjørnholm, T. Electronic Transport in Single Molecule Junctions: Control of the Molecule-Electrode Coupling through Intramolecular Tunneling Barriers. Nano Lett. 2008, 8, 1–5. [Google Scholar] [CrossRef]
- Smidstrup, S.; Markussen, T.; Vancraeyveld, P.; Wellendorff, J.; Schneider, J.; Gunst, T.; Verstichel, B.; Stradi, D.; Martinez, U.; Blom, A.; et al. QuantumATK: An integrated platform of electronic and atomic-scale modelling tools. J. Phys. Condens. Matter 2019, 32, 015901. [Google Scholar] [CrossRef]
- Zahir, A. Molecular FET: From Device Modeling to Circuit Design and Simulation. Ph.D. Thesis, Politecnico di Torino, Turin, Italy, 2015. [Google Scholar]
- Garner, M.H.; Bro-Jørgensen, W.; Pedersen, P.D.; Solomon, G.C. Reverse Bond-Length Alternation in Cumulenes: Candidates for Increasing Electronic Transmission with Length. J. Phys. Chem. C 2018, 122, 26777–26789. [Google Scholar] [CrossRef]
- Xiaoxiao, F.; Zhang, R.; Zhang, G.P.; Li, Z.L. Rectifying Properties of Oligo(Phenylene Ethynylene) Heterometallic Molecular Junctions: Molecular Length and Side Group Effects. Sci. Rep. 2014, 4, 6357. [Google Scholar]
- Zotti, L.A.; Kirchner, T.; Cuevas, J.C.; Pauly, F.; Huhn, T.; Scheer, E.; Erbe, A. Revealing the Role of Anchoring Groups in the Electrical Conduction Through Single-Molecule Junctions. Small 2010, 6, 1529–1535. [Google Scholar] [CrossRef] [Green Version]
- Li, J.; Li, T.; Zhou, Y.; Wu, W.; Zhang, L.; Li, H. Distinctive electron transport on pyridine-linked molecular junctions with narrow monolayer graphene nanoribbon electrodes compared with metal electrodes and graphene electrodes. Phys. Chem. Chem. Phys. 2016, 18, 28217–28226. [Google Scholar] [CrossRef]
- Champagne, A.R.; Pasupathy, A.N.; Ralph, D.C. Mechanically Adjustable and Electrically Gated Single-Molecule Transistors. Nano Lett. 2005, 5, 305–308. [Google Scholar] [CrossRef] [PubMed]
- Song, H.; Kim, Y.; Jang, Y.H.; Jeong, H.; Reed, M.A.; Lee, T. Observation of molecular orbital gating. Nature 2009, 462, 1039–1043. [Google Scholar] [CrossRef] [PubMed]
- Wu, C.; Qiao, X.; Robertson, C.M.; Higgins, S.J.; Cai, C.; Nichols, R.J.; Vezzoli, A. A Chemically Soldered Polyoxometalate Single-Molecule Transistor. Angew. Chem. Int. Ed. 2020, 59, 12029–12034. [Google Scholar] [CrossRef] [PubMed]
- Yan, Z.; Li, X.; Li, Y.; Jia, C.; Xin, N.; Li, P.; Meng, L.; Zhang, M.; Chen, L.; Yang, J.; et al. Single-molecule field effect and conductance switching driven by electric field and proton transfer. Sci. Adv. 2022, 8, eabm3541. [Google Scholar] [CrossRef]
- Osorio, E.A.; O’Neill, K.; Stuhr-Hansen, N.; Nielsen, O.F.; Bjørnholm, T.; van der Zant, H.S. Addition energies and vibrational fine structure measured in electromigrated single-molecule junctions based on an oligophenylenevinylene derivative. Adv. Mater. 2007, 19, 281–285. [Google Scholar] [CrossRef]
- Perrin, M.; Burzuri, E.; Zant, H. Single-molecule transistors. Chem. Soc. Rev. 2014, 44, 902–919. [Google Scholar] [CrossRef]
- Ke, G.; Duan, C.; Huang, F.; Guo, X. Electrical and spin switches in single-molecule junctions. InfoMat 2020, 2, 92–112. [Google Scholar] [CrossRef]
- Osorio, H.M.; Catarelli, S.; Cea, P.; Gluyas, J.B.G.; Hartl, F.; Higgins, S.J.; Leary, E.; Low, P.J.; Martín, S.; Nichols, R.J.; et al. Electrochemical Single-Molecule Transistors with Optimized Gate Coupling. J. Am. Chem. Soc. 2015, 137, 14319–14328. [Google Scholar] [CrossRef]
- Steiner, T. The hydrogen bond in the solid state. Angew. Chem. Int. Ed. 2002, 41, 48–76. [Google Scholar] [CrossRef]
- Neese, F. The ORCA program system. Wiley Interdiscip. Rev. Comput. Mol. Sci. 2012, 2, 73–78. [Google Scholar] [CrossRef]
- Grimme, S.; Ehrlich, S.; Goerigk, L. Effect of the damping function in dispersion corrected density functional theory. J. Comput. Chem. 2011, 32, 1456–1465. [Google Scholar] [CrossRef] [PubMed]
- Grimme, S.; Antony, J.; Ehrlich, S.; Krieg, H. A consistent and accurate ab initio parametrization of density functional dispersion correction (DFT-D) for the 94 elements H-Pu. J. Chem. Phys. 2010, 132, 154104. [Google Scholar] [CrossRef] [PubMed]
- Ciriaco, F.; De Leo, V.; Catucci, L.; Pascale, M.; Logrieco, A.F.; DeRosa, M.C.; De Girolamo, A. An in silico pipeline for rapid screening of DNA aptamers against mycotoxins: The case-study of Fumonisin B1, Aflatoxin B1 and Ochratoxin A. Polymers 2020, 12, 2983. [Google Scholar] [CrossRef]
- Ma, L.; Wang, J.; Zhang, Y. Probing the characterization of the interaction of aflatoxins B1 and G1 with calf thymus DNA in vitro. Toxins 2017, 9, 209. [Google Scholar] [CrossRef] [Green Version]
y Rotation | x Rotation | (kJ/mol) | y Rotation | x Rotation | (kJ/mol) |
---|---|---|---|---|---|
+159.26 | −54.29 | ||||
+158.65 | −61.64 | ||||
+158.07 | −57.57 | ||||
+166.18 | −55.81 | ||||
+152.81 | −58.68 | ||||
+161.23 | −49.19 | ||||
−74.28 | −50.85 | ||||
+156.84 | −49.96 | ||||
−56.48 | −59.93 | ||||
−67.66 | −60.61 | ||||
−45.60 | −53.64 | ||||
−53.32 | −72.24 | ||||
−56.02 | −82.07 | ||||
−57.65 | −76.57 | ||||
−63.07 | −78.54 | ||||
−86.75 | −70.95 | ||||
−91.06 | −83.99 | ||||
−41.70 | −54.41 | ||||
−45.09 | −59.47 | ||||
−53.19 | −52.94 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mo, F.; Spano, C.E.; Ardesi, Y.; Ruo Roch, M.; Piccinini, G.; Graziano, M. Design of Pyrrole-Based Gate-Controlled Molecular Junctions Optimized for Single-Molecule Aflatoxin B1 Detection. Sensors 2023, 23, 1687. https://doi.org/10.3390/s23031687
Mo F, Spano CE, Ardesi Y, Ruo Roch M, Piccinini G, Graziano M. Design of Pyrrole-Based Gate-Controlled Molecular Junctions Optimized for Single-Molecule Aflatoxin B1 Detection. Sensors. 2023; 23(3):1687. https://doi.org/10.3390/s23031687
Chicago/Turabian StyleMo, Fabrizio, Chiara Elfi Spano, Yuri Ardesi, Massimo Ruo Roch, Gianluca Piccinini, and Mariagrazia Graziano. 2023. "Design of Pyrrole-Based Gate-Controlled Molecular Junctions Optimized for Single-Molecule Aflatoxin B1 Detection" Sensors 23, no. 3: 1687. https://doi.org/10.3390/s23031687
APA StyleMo, F., Spano, C. E., Ardesi, Y., Ruo Roch, M., Piccinini, G., & Graziano, M. (2023). Design of Pyrrole-Based Gate-Controlled Molecular Junctions Optimized for Single-Molecule Aflatoxin B1 Detection. Sensors, 23(3), 1687. https://doi.org/10.3390/s23031687