Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (52)

Search Parameters:
Keywords = single-board satellite

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
19 pages, 1107 KiB  
Article
A Novel Harmonic Clocking Scheme for Concurrent N-Path Reception in Wireless and GNSS Applications
by Dina Ibrahim, Mohamed Helaoui, Naser El-Sheimy and Fadhel Ghannouchi
Electronics 2025, 14(15), 3091; https://doi.org/10.3390/electronics14153091 - 1 Aug 2025
Viewed by 195
Abstract
This paper presents a novel harmonic-selective clocking scheme that facilitates concurrent downconversion of spectrally distant radio frequency (RF) signals using a single low-frequency local oscillator (LO) in an N-path receiver architecture. The proposed scheme selectively generates LO harmonics aligned with multiple RF bands, [...] Read more.
This paper presents a novel harmonic-selective clocking scheme that facilitates concurrent downconversion of spectrally distant radio frequency (RF) signals using a single low-frequency local oscillator (LO) in an N-path receiver architecture. The proposed scheme selectively generates LO harmonics aligned with multiple RF bands, enabling simultaneous downconversion without modification of the passive mixer topology. The receiver employs a 4-path passive mixer configuration to enhance harmonic selectivity and provide flexible frequency planning.The architecture is implemented on a printed circuit board (PCB) and validated through comprehensive simulation and experimental measurements under continuous wave and modulated signal conditions. Measured results demonstrate a sensitivity of 55dBm and a conversion gain varying from 2.5dB to 9dB depending on the selected harmonic pair. The receiver’s performance is further corroborated by concurrent (dual band) reception of real-world signals, including a GPS signal centered at 1575 MHz and an LTE signal at 1179 MHz, both downconverted using a single 393 MHz LO. Signal fidelity is assessed via Normalized Mean Square Error (NMSE) and Error Vector Magnitude (EVM), confirming the proposed architecture’s effectiveness in maintaining high-quality signal reception under concurrent multiband operation. The results highlight the potential of harmonic-selective clocking to simplify multiband receiver design for wireless communication and global navigation satellite system (GNSS) applications. Full article
(This article belongs to the Section Microwave and Wireless Communications)
Show Figures

Figure 1

18 pages, 1411 KiB  
Article
A Framework for Joint Beam Scheduling and Resource Allocation in Beam-Hopping-Based Satellite Systems
by Jinfeng Zhang, Wei Li, Yong Li, Haomin Wang and Shilin Li
Electronics 2025, 14(14), 2887; https://doi.org/10.3390/electronics14142887 - 18 Jul 2025
Viewed by 238
Abstract
With the rapid development of heterogeneous satellite networks integrating geostationary earth orbit (GEO) and low earth orbit (LEO) satellite systems, along with the significant growth in the number of satellite users, it is essential to consider frequency compatibility and coexistence between GEO and [...] Read more.
With the rapid development of heterogeneous satellite networks integrating geostationary earth orbit (GEO) and low earth orbit (LEO) satellite systems, along with the significant growth in the number of satellite users, it is essential to consider frequency compatibility and coexistence between GEO and LEO systems, as well as to design effective system resource allocation strategies to achieve efficient utilization of system resources. However, existing beam-hopping (BH) resource allocation algorithms in LEO systems primarily focus on beam scheduling within a single time slot, lacking unified beam management across the entire BH cycle, resulting in low beam-resource utilization. Moreover, existing algorithms often employ iterative optimization across multiple resource dimensions, leading to high computational complexity and imposing stringent requirements on satellite on-board processing capabilities. In this paper, we propose a BH-based beam scheduling and resource allocation framework. The proposed framework first employs geographic isolation to protect the GEO system from the interference of the LEO system and subsequently optimizes beam partitioning over the entire BH cycle, time-slot beam scheduling, and frequency and power resource allocation for users within the LEO system. The proposed scheme achieves frequency coexistence between the GEO and LEO satellite systems and performs joint optimization of system resources across four dimensions—time, space, frequency, and power—with reduced complexity and a progressive optimization framework. Simulation results demonstrate that the proposed framework achieves effective suppression of both intra-system and inter-system interference via geographic isolation, while enabling globally efficient and dynamic beam scheduling across the entire BH cycle. Furthermore, by integrating the user-level frequency and power allocation algorithm, the scheme significantly enhances the total system throughput. The proposed progressive optimization framework offers a promising direction for achieving globally optimal and computationally tractable resource management in future satellite networks. Full article
Show Figures

Figure 1

22 pages, 6875 KiB  
Article
A Near-Real-Time Imaging Algorithm for Focusing Spaceborne SAR Data in Multiple Modes Based on an Embedded GPU
by Yunju Zhang, Mingyang Shang, Yini Lv and Xiaolan Qiu
Remote Sens. 2025, 17(9), 1495; https://doi.org/10.3390/rs17091495 - 23 Apr 2025
Cited by 1 | Viewed by 467
Abstract
To achieve on-board real-time processing for sliding-spotlight mode synthetic aperture radar (SAR), on the one hand, this paper proposes an adaptive and efficient imaging algorithm for the sliding-spotlight mode. On the other hand, a batch processing method was designed and optimized based on [...] Read more.
To achieve on-board real-time processing for sliding-spotlight mode synthetic aperture radar (SAR), on the one hand, this paper proposes an adaptive and efficient imaging algorithm for the sliding-spotlight mode. On the other hand, a batch processing method was designed and optimized based on the AGX Orin platform to implement the algorithm effectively. Based on the chirp scaling (CS) algorithm, sliding-spotlight mode imaging can be achieved by adding Deramp preprocessing along with either zero-padding or performing an extra chirp scaling operation. This article analyzes the computational complexity of the two algorithms and provides a criterion called the Method Choice Indicator (MCI) for selecting the appropriate method. Additionally, the mathematical expressions for time–frequency transformation are derived, providing the theoretical basis for calculating the equivalent PRF and the azimuth width represented by a single pixel. To increase the size of the data that AGX Orin can process, the batch processing method was proposed to reduce peak memory usage during imaging, so that the limited memory could be better utilized. Meanwhile, this algorithm was also compatible with strip mode and TOPSAR (Terrain Observation by Progressive scans SAR) mode imaging. While batch processing increased data transfers, the integrated architecture of AGX Orin minimized the negative impact. Subsequently, through a series of optimizations of the algorithm, the efficiency of the algorithm was further improved. As a result, it took 19.25 s to complete the imaging process for sliding-spotlight mode data with a size of 42,966 × 27,648. Since satellite data acquisition time was 11.43 s, it can be considered that this method achieved near-real-time imaging. The experimental results demonstrate the feasibility of on-board processing. Full article
Show Figures

Graphical abstract

26 pages, 15156 KiB  
Article
Research on the Lossless Data Compression System of the Argo Buoy Based on BiLSTM-MHSA-MLP
by Sumin Guo, Wenqi Zhang, Yuhong Zheng, Hongyu Li, Yilin Yang and Jiayi Xu
J. Mar. Sci. Eng. 2024, 12(12), 2298; https://doi.org/10.3390/jmse12122298 - 13 Dec 2024
Cited by 1 | Viewed by 972
Abstract
This study addresses the issues of the limited data storage capacity of Argo buoys and satellite communication charges on the basis of data volume by proposing a block lossless data compression method that combines bidirectional long short-term memory networks and multi-head self-attention with [...] Read more.
This study addresses the issues of the limited data storage capacity of Argo buoys and satellite communication charges on the basis of data volume by proposing a block lossless data compression method that combines bidirectional long short-term memory networks and multi-head self-attention with a multilayer perceptron (BiLSTM-MHSA-MLP). We constructed an Argo buoy data compression system using the main buoy control board, Jetson nano development board, and the BeiDou-3 satellite transparent transmission module. By processing input sequences bidirectionally, BiLSTM enhances the understanding of the temporal relationships within profile data, whereas the MHSA processes the outputs of the BiLSTM layer in parallel to obtain richer representations. Building on this preliminary probability prediction model, a multilayer perceptron (MLP) and a block length parameter (block_len) are introduced to achieve block compression during training, dynamically updating the model and optimizing symbol probability distributions for more accurate predictions. Experiments conducted on multiple 4000 m single-batch profile datasets from both the PC and Jetson nano platforms demonstrate that this method achieves a lower compression ratio, shorter compression time, and greater specificity. This approach significantly reduces the communication time between Argo buoys and satellites, laying a foundation for the future integration of Jetson Nano into Argo buoys for real-time data compression. Full article
(This article belongs to the Special Issue Machine Learning Methodologies and Ocean Science)
Show Figures

Figure 1

19 pages, 8144 KiB  
Article
Thermal Optimization Design for a Small Flat-Panel Synthetic Aperture Radar Satellite
by Tian Bai, Yuanbo Zhang, Lin Kong, Hongrui Ao, Jisong Yu and Lei Zhang
Aerospace 2024, 11(12), 982; https://doi.org/10.3390/aerospace11120982 - 27 Nov 2024
Viewed by 1358
Abstract
This article introduces a small microwave remote sensing satellite weighing 310 kg, operating in low earth orbit (LEO). It is equipped with an X-band synthetic aperture radar (SAR) antenna, capable of a maximum imaging resolution of 0.6 m. To achieve the objectives of [...] Read more.
This article introduces a small microwave remote sensing satellite weighing 310 kg, operating in low earth orbit (LEO). It is equipped with an X-band synthetic aperture radar (SAR) antenna, capable of a maximum imaging resolution of 0.6 m. To achieve the objectives of lower cost, reduced weight, minimized power consumption, and enhanced temperature stability, an optimized thermal design method tailored for satellites has been developed, with a particular focus on SAR antennas. The thermal control method of the antenna is closely integrated with structural design, simplifying the thermal design and its assembly process, reducing the resource consumption of thermal control systems. The distribution of thermal interface material (TIM) in the antenna assembly has been carefully calculated, achieving a zero-consumption thermal design for the SAR antenna. And the temperature difference of the entire antennas when powered on and powered off would not exceed 17 °C, meeting the specification requirements. In addition, to ensure the accuracy of antenna pointing, the support plate of antennas requires stable temperature. The layout of the heaters on the board has been optimized, reducing the use of heaters by 30% while ensuring that the temperature variation of the support board remains within 5 °C. Then, an on-orbit thermal simulation analysis of the satellite was conducted to refine the design and verification. Finally, the thermal test of the SAR satellite under vacuum conditions was conducted, involving operating the high-power antenna, verifying that the peak temperature of T/RM is below 29 °C, the temperature fluctuation amplitude during a single imaging task is 10 °C, and the lowest temperature point of the support plate is 16 °C. The results of the thermal simulation and test are highly consistent, verifying the correctness and effectiveness of the thermal design. Full article
(This article belongs to the Section Astronautics & Space Science)
Show Figures

Figure 1

17 pages, 11505 KiB  
Article
Retrieval and Comparison of Multi-Satellite Polar Ozone Data from the EMI Series Instruments
by Kaili Wu, Ziqiang Xu, Yuhan Luo, Qidi Li, Kai Yu and Fuqi Si
Remote Sens. 2024, 16(19), 3619; https://doi.org/10.3390/rs16193619 - 28 Sep 2024
Viewed by 1099
Abstract
The Environmental Trace Gases Monitoring Instrument (EMI) series are second-generation Chinese spectrometers on board the GaoFen-5 (GF-5) and DaQi-1 (DQ-1) satellites. In this study, a comparative analysis of EMI series data was conducted to determine the daily trend of ozone concentration changes owing [...] Read more.
The Environmental Trace Gases Monitoring Instrument (EMI) series are second-generation Chinese spectrometers on board the GaoFen-5 (GF-5) and DaQi-1 (DQ-1) satellites. In this study, a comparative analysis of EMI series data was conducted to determine the daily trend of ozone concentration changes owing to different transit times and to improve the overall quality and reliability of EMI series datasets. The daily EMI total ozone column (TOC) obtained using the Differential Optical Absorption Spectroscopy (DOAS) method were compared to vertical column density (VCD) gathered by the TROPOspheric Monitoring Instrument (TROPOMI). The results from October to November 2023 indicated a fine correlation (R = 0.98) between the daily EMI series data and a fine correlation (R ≥ 0.95) and spatial distribution closely resembling that of the TROPOMI TOCs. Furthermore, the EMI series data fusion results were highly correlated with TROPOMI TOCs (R = 0.99). Since the EMI series instruments had two different overpass times and the volume of available data at same pixel was increased by approximately three-fold, the temporal and spatial resolution was improved a lot. The results indicated that, compared to a single sensor, the EMI series DOAS TOCs generated more accurate and stable global TOC results and also enabled looking at the changes in the intraday TOCs. These outcomes highlight the potential of the EMI instruments for reliably monitoring the ozone variations in polar regions. Full article
Show Figures

Figure 1

15 pages, 2044 KiB  
Article
Investigation of Single-Event Effects for Space Applications: Instrumentation for In-Depth System Monitoring
by André M. P. Mattos, Douglas A. Santos, Lucas M. Luza, Viyas Gupta and Luigi Dilillo
Electronics 2024, 13(10), 1822; https://doi.org/10.3390/electronics13101822 - 8 May 2024
Cited by 1 | Viewed by 1427
Abstract
Ionizing radiation induces the degradation of electronic systems. For memory devices, this phenomenon is often observed as the corruption of the stored data and, in some cases, the occurrence of sudden increases in current consumption during the operation. In this work, we propose [...] Read more.
Ionizing radiation induces the degradation of electronic systems. For memory devices, this phenomenon is often observed as the corruption of the stored data and, in some cases, the occurrence of sudden increases in current consumption during the operation. In this work, we propose enhanced experimental instrumentation to perform in-depth Single-Event Effects (SEE) monitoring and analysis of electronic systems. In particular, we focus on the Single-Event Latch-up (SEL) phenomena in memory devices, in which current monitoring and control are required for testing. To expose the features and function of the proposed instrumentation, we present results for a case study of an SRAM memory that has been used on-board PROBA-V ESA satellite. For this study, we performed experimental campaigns in two different irradiation facilities with protons and heavy ions, demonstrating the instrumentation capabilities, such as synchronization, high sampling rate, fast response time, and flexibility. Using this instrumentation, we could report the cross section for the observed SEEs and further investigate their correlation with the observed current behavior. Notably, it allowed us to identify that 95% of Single-Event Functional Interrupts (SEFIs) were triggered during SEL events. Full article
(This article belongs to the Special Issue New Insights in Radiation-Tolerant Electronics)
Show Figures

Figure 1

45 pages, 25052 KiB  
Article
Micro-Satellite Systems Design, Integration, and Flight
by Philip Naumann and Timothy Sands
Micromachines 2024, 15(4), 455; https://doi.org/10.3390/mi15040455 - 28 Mar 2024
Cited by 2 | Viewed by 2251
Abstract
Within the past decade, the aerospace engineering industry has evolved beyond the constraints of using single, large, custom satellites. Due to the increased reliability and robustness of commercial, off-the-shelf printed circuit board components, missions have instead transitioned towards deploying swarms of smaller satellites. [...] Read more.
Within the past decade, the aerospace engineering industry has evolved beyond the constraints of using single, large, custom satellites. Due to the increased reliability and robustness of commercial, off-the-shelf printed circuit board components, missions have instead transitioned towards deploying swarms of smaller satellites. Such an approach significantly decreases the mission cost by reducing custom engineering and deployment expenses. Nanosatellites can be quickly developed with a more modular design at lower risk. The Alpha mission at the Cornell University Space Systems Studio is fabricated in this manner. However, for the purpose of development, the initial proof of concept included a two-satellite system. The manuscript will discuss system engineering approaches used to model and mature the design of the pilot satellite. The two systems that will be primarily focused on are the attitude control system of the carrier nanosatellite and the radio frequency communications on the excreted femto-satellites. Milestones achieved include ChipSat to ChipSat communication, ChipSat to ground station communication, packet creation, error correction, appending a preamble, and filtering the signal. Other achievements include controller traceability/verification and validation, software rigidity tests, hardware endurance testing, Kane damper, and inertial measurement unit tuning. These developments matured the technological readiness level (TRL) of systems in preparation for satellite deployment. Full article
(This article belongs to the Section A:Physics)
Show Figures

Figure 1

15 pages, 3371 KiB  
Article
Design of Novel Reconfigurable Single-Board Satellite for Enhanced Space Environment Detection
by Yixiao Wang, Cui Tu, Feng Wei and Xiong Hu
Electronics 2023, 12(23), 4761; https://doi.org/10.3390/electronics12234761 - 24 Nov 2023
Viewed by 1337
Abstract
In response to the growing need for enhanced space environment detection in ultra-low Earth orbits, this study introduces a pioneering design for a reconfigurable single-board satellite. Beyond the conventional attributes of compactness and a lightweight design, the single-board satellite also has unique features [...] Read more.
In response to the growing need for enhanced space environment detection in ultra-low Earth orbits, this study introduces a pioneering design for a reconfigurable single-board satellite. Beyond the conventional attributes of compactness and a lightweight design, the single-board satellite also has unique features that are reconfigurable for the space detection mission it undertakes, as well as autonomous Earth communication capabilities that are not available in other very small satellites. Such advancements address the limitations of traditional very small satellites such as CubeSats and ChipSats. This paper delves deeply into the satellite’s design feasibility, including its functional requirements, power equilibrium, and communication links. Supplementing our design, a proof-of-concept prototype was crafted, and rigorous laboratory tests were performed to corroborate its key specifications and functionalities. Full article
Show Figures

Figure 1

19 pages, 6785 KiB  
Article
Hardware-Aware Design of Speed-Up Algorithms for Synthetic Aperture Radar Ship Target Detection Networks
by Yue Zhang, Shuai Jiang, Yue Cao, Jiarong Xiao, Chengkun Li, Xuan Zhou and Zhongjun Yu
Remote Sens. 2023, 15(20), 4995; https://doi.org/10.3390/rs15204995 - 17 Oct 2023
Cited by 3 | Viewed by 1926
Abstract
Recently, synthetic aperture radar (SAR) target detection algorithms based on Convolutional Neural Networks (CNN) have received increasing attention. However, the large amount of computation required burdens the real-time detection of SAR ship targets on resource-limited and power-constrained satellite-based platforms. In this paper, we [...] Read more.
Recently, synthetic aperture radar (SAR) target detection algorithms based on Convolutional Neural Networks (CNN) have received increasing attention. However, the large amount of computation required burdens the real-time detection of SAR ship targets on resource-limited and power-constrained satellite-based platforms. In this paper, we propose a hardware-aware model speed-up method for single-stage SAR ship targets detection tasks, oriented towards the most widely used hardware for neural network computing—Graphic Processing Unit (GPU). We first analyze the process by which the task of detection is executed on GPUs and propose two strategies according to this process. Firstly, in order to speed up the execution of the model on a GPU, we propose SAR-aware model quantification to allow the original model to be stored and computed in a low-precision format. Next, to ensure the loss of accuracy is negligible after the acceleration and compression process, precision-aware scheduling is used to filter out layers that are not suitable for quantification and store and execute them in a high-precision mode. Trained on the dataset HRSID, the effectiveness of this model speed-up algorithm was demonstrated by compressing four different sizes of models (yolov5n, yolov5s, yolov5m, yolov5l). The experimental results show that the detection speeds of yolov5n, yolov5s, yolov5m, and yolov5l can reach 234.7785 fps, 212.8341 fps, 165.6523 fps, and 139.8758 fps on the NVIDIA AGX Xavier development board with negligible loss of accuracy, which is 1.230 times, 1.469 times, 1.955 times, and 2.448 times faster than the original before the use of this method, respectively. Full article
(This article belongs to the Special Issue Microwave Remote Sensing for Object Detection)
Show Figures

Figure 1

16 pages, 8988 KiB  
Article
Monitoring Suspended Sediment Concentration in the Yellow River Estuary and Its Vicinity Waters on the Basis of SDGSAT-1 Multispectral Imager
by Yingzhuo Hou, Qianguo Xing, Xiangyang Zheng, Dezhi Sheng and Futao Wang
Water 2023, 15(19), 3522; https://doi.org/10.3390/w15193522 - 9 Oct 2023
Cited by 11 | Viewed by 2699
Abstract
Suspended sediments have profound impacts on marine primary productivity and the ecological environment. The Yellow River estuary and its vicinity waters, with a high dynamic range of suspended sediment concentration (SSC), have important eco-environmental functions for the sustainable development in this region. The [...] Read more.
Suspended sediments have profound impacts on marine primary productivity and the ecological environment. The Yellow River estuary and its vicinity waters, with a high dynamic range of suspended sediment concentration (SSC), have important eco-environmental functions for the sustainable development in this region. The multispectral imager (MI) on board China’s first Sustainable Development Goals Science Satellite 1 (SDGSAT-1) features seven high-resolution bands (10 m). This study employs multispectral imagery obtained from SDGSAT-1 with single-band and band-ratio models to monitor the SSC in the Yellow River estuary and its vicinity waters. The results show that SDGSAT-1 images can be used to estimate the SSC in the Yellow River estuary and its vicinity waters. The overall pattern of the SSC exhibits a notable pattern of higher concentrations in nearshore areas and lower concentrations in offshore areas, and the retrieved SSC can attain values surpassing 1000 mg/L in nearshore areas. The R2 values of both the single-band and the band-ratio models for SSC inversion exceed 0.7. The single-band model R(854) demonstrates superior performance, achieving the highest R2 value of 0.93 and the lowest mean absolute percentage error (MAPE) of 44.04%. The single-band model based on SDGSAT-1 R(854) tends to outperform the band-ratio models for waters with algal blooms, which may be used for inversions of SSC and/or suspended particulate matter (SPM) in the waters full of algal blooms and suspended sediments. The monitoring results by SDGSAT-1 suggest that the complex SSC distributions in the Yellow River estuary and its vicinity waters were highly impacted by the river sediments discharge, tide, currents and wind-induced waves. Full article
Show Figures

Figure 1

23 pages, 1700 KiB  
Article
Cuckoo Bloom Hybrid Filter: Algorithm and Hardware Architecture for High Performance Satellite Internet Protocol Route Lookup
by Yi Zhang, Lufeng Qiao, Lin Hu, Xin Xu and Qinghua Chen
Appl. Sci. 2023, 13(18), 10360; https://doi.org/10.3390/app131810360 - 15 Sep 2023
Cited by 2 | Viewed by 1791
Abstract
The next-generation satellite Internet Protocol (IP) router is required to achieve tens of millions of route lookups per second, since satellite Internet services based on low Earth orbit (LEO) constellations have become a reality. Due to the limitation of hardware resources on satellites [...] Read more.
The next-generation satellite Internet Protocol (IP) router is required to achieve tens of millions of route lookups per second, since satellite Internet services based on low Earth orbit (LEO) constellations have become a reality. Due to the limitation of hardware resources on satellites and the high reliability requirements for equipment, a new satellite IP route lookup architecture is proposed in this paper. The proposed architecture uses a Bloom and cuckoo filter-based structure called cuckoo Bloom hybrid filter (CBHF), which guarantees only one off-chip memory access per lookup, to accelerate the Prefix-Route Trie (PR-Trie) algorithm. The proposed architecture has been evaluated through both a behavioral simulation in C++ language and a hardware implementation in Verilog hardware description language (HDL). Our simulation and implementation results show that the proposed satellite IP route lookup architecture can achieve a single-port throughput beyond 13 Gbps on a field programmable gate array (FPGA) board with a single DDR3 memory chip when operating at 200 MHz. In addition, the resource utilization in the FPGA shows that the proposed architecture also supports triple modular redundancy (TMR) to enhance reliability. Full article
(This article belongs to the Section Electrical, Electronics and Communications Engineering)
Show Figures

Figure 1

15 pages, 3556 KiB  
Article
Climatology of Cloud Base Height Retrieved from Long-Term Geostationary Satellite Observations
by Zhonghui Tan, Xianbin Zhao, Shensen Hu, Shuo Ma, Li Wang, Xin Wang and Weihua Ai
Remote Sens. 2023, 15(13), 3424; https://doi.org/10.3390/rs15133424 - 6 Jul 2023
Cited by 3 | Viewed by 2710
Abstract
Cloud base height (CBH) is crucial for parameterizing the cloud vertical structure (CVS), but knowledge concerning the temporal and spatial distribution of CBH is still poor owing to the lack of large-scale and continuous CBH observations. Taking advantage of high temporal and spatial [...] Read more.
Cloud base height (CBH) is crucial for parameterizing the cloud vertical structure (CVS), but knowledge concerning the temporal and spatial distribution of CBH is still poor owing to the lack of large-scale and continuous CBH observations. Taking advantage of high temporal and spatial resolution observations from the Advanced Himawari Imager (AHI) on board the geostationary Himawari-8 satellite, this study investigated the climatology of CBH by applying a novel CBH retrieval algorithm to AHI observations. We first evaluated the accuracy of the AHI-derived CBH retrievals using the active measurements of CVS from the CloudSat and CALIPSO satellites, and the results indicated that our CBH retrievals for single-layer clouds perform well, with a mean bias of 0.3 ± 1.9 km. Therefore, the CBH climatology was compiled based on AHI-derived CBH retrievals for single-layer clouds for the time period between September 2015 and August 2018. Overall, the distribution of CBH is tightly associated with cloud phase, cloud type, and cloud top height and also exhibits significant geographical distribution and temporal variation. Clouds at low latitudes are generally higher than those at middle and high latitudes, with CBHs peaking in summer and lowest in winter. In addition, the surface type affects the distribution of CBH. The proportion of low clouds over the ocean is larger than that over the land, while high cloud occurs most frequently over the coastal area. Due to periodic changes in environmental conditions, cloud types also undergo significant diurnal changes, resulting in periodic changes in the vertical structure of clouds. Full article
(This article belongs to the Section Environmental Remote Sensing)
Show Figures

Figure 1

18 pages, 7587 KiB  
Article
Detecting the Auroral Oval through CSES-01 Electric Field Measurements in the Ionosphere
by Emanuele Papini, Mirko Piersanti, Giulia D’Angelo, Antonio Cicone, Igor Bertello, Alexandra Parmentier, Piero Diego, Pietro Ubertini, Giuseppe Consolini and Zeren Zhima
Remote Sens. 2023, 15(6), 1568; https://doi.org/10.3390/rs15061568 - 13 Mar 2023
Cited by 4 | Viewed by 2033
Abstract
We present the results of a systematic study of the ionospheric electric field in the Auroral Oval (AO) region in the southern hemisphere. We exploit one year of electric field measurements taken by the Electric Field Detector (EFD) on board the Chinese Seismo-Electromagnetic [...] Read more.
We present the results of a systematic study of the ionospheric electric field in the Auroral Oval (AO) region in the southern hemisphere. We exploit one year of electric field measurements taken by the Electric Field Detector (EFD) on board the Chinese Seismo-Electromagnetic Satellite-01 (CSES-01), flying at around 500 km altitude in a sun-synchronous orbit. We exploit the high temporal resolution of the EFD to devise a new technique for the detection of CSES-01 crossing of the AO using electric field measurements only. This new technique combines a Median-Weighted Local Variance Measure with Fast Iterative Filtering to automatically isolate high levels of electromagnetic activity caused by, e.g., particle precipitation and Field Aligned Currents (FACs) at auroral latitudes. We validate this new method against other standard proxies, such as the single-FAC product from the Swarm mission and the auroral radiance emission measured by the Special Sensor Ultraviolet Spectrographic Imager (SSUSI) units on board the Defense Meteorological Satellite Program (DMSP) constellation. Furthermore, we identify ∼3000 orbits (out of a dataset of ∼10,000) where CSES-01 crosses the AO boundary under conditions of high geomagnetic activity. This dataset represents the first step in the systematic study of the auroral electric field, with many potential applications to space weather, thanks to the large amount of continuous observations of the ionosphere by CSES-01 and the forthcoming CSES-02 mission. Full article
(This article belongs to the Special Issue Advances in Remote Sensing of Pulsating Aurora from Space and Earth)
Show Figures

Figure 1

21 pages, 6492 KiB  
Article
Accuracy Examination of the SDCM Augmentation System in Aerial Navigation
by Kamil Krasuski, Adam Ciećko, Mieczysław Bakuła and Grzegorz Grunwald
Energies 2022, 15(20), 7776; https://doi.org/10.3390/en15207776 - 20 Oct 2022
Cited by 2 | Viewed by 1926
Abstract
The paper presents a modified algorithm for determining the accuracy parameter of the system for differential corrections and monitoring (SDCM) navigation solution in air navigation. For this purpose, a solution to determine the resultant accuracy parameter was proposed by using two on-board global [...] Read more.
The paper presents a modified algorithm for determining the accuracy parameter of the system for differential corrections and monitoring (SDCM) navigation solution in air navigation. For this purpose, a solution to determine the resultant accuracy parameter was proposed by using two on-board global navigation satellite system (GNSS) receivers. The mathematical algorithm takes into account the calculation of a single point positioning accuracy for a given GNSS receiver and a weighting factor combining the position error values. The weighting factor was determined as a function of the number of tracked GNSS satellites used in the SDCM single point positioning solution. The resultant accuracy parameter was expressed in ellipsoidal coordinates BLh (B—latitude, L—longitude, h—ellipsoidal height). The study used GNSS kinematic data recorded by two on-board receivers: Trimble Alloy and Septentrio AsterRx2i, located in a Diamond DA 20-C1 aircraft. The test flight was performed near the city of Olsztyn in north-eastern Poland. Calculations and analyses were performed using RTKLIB software and the Scilab environment. On the basis of the performed tests, it was found that the proposed algorithm for SDCM system allows for improvement in the determination of the resultant accuracy value by 56–80% in relation to the results of position errors from a single GNSS receiver. Additionally, the proposed algorithm was tested for the European Geostationary Navigation Overlay Service (EGNOS) system, and in this case, the improvement in the accuracy parameter was even better and was in the range of 69–89%. The resulting SDCM and EGNOS positioning accuracy met the International Civil Aviation Organization (ICAO) certification requirements for SBAS systems in air navigation. The mathematical algorithm developed in this work was tested positively and can be implemented within the SBAS augmentation system in air navigation. Full article
(This article belongs to the Special Issue Advanced Technologies in New Energy Vehicle)
Show Figures

Figure 1

Back to TopTop