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Abstract: Within the past decade, the aerospace engineering industry has evolved beyond the
constraints of using single, large, custom satellites. Due to the increased reliability and robustness
of commercial, off-the-shelf printed circuit board components, missions have instead transitioned
towards deploying swarms of smaller satellites. Such an approach significantly decreases the mission
cost by reducing custom engineering and deployment expenses. Nanosatellites can be quickly
developed with a more modular design at lower risk. The Alpha mission at the Cornell University
Space Systems Studio is fabricated in this manner. However, for the purpose of development,
the initial proof of concept included a two-satellite system. The manuscript will discuss system
engineering approaches used to model and mature the design of the pilot satellite. The two systems
that will be primarily focused on are the attitude control system of the carrier nanosatellite and
the radio frequency communications on the excreted femto-satellites. Milestones achieved include
ChipSat to ChipSat communication, ChipSat to ground station communication, packet creation, error
correction, appending a preamble, and filtering the signal. Other achievements include controller
traceability / verification and validation, software rigidity tests, hardware endurance testing, Kane
damper, and inertial measurement unit tuning. These developments matured the technological
readiness level (TRL) of systems in preparation for satellite deployment.

Keywords: systems engineering; MBSE; RF communication; GFSK; CDMA; forward error correction;
matched filtering; TI-RTOS; RTL-SDR; TinyGS; controller optimization controller modeling; controller
verification and validation; Kane damper; PD controller; IMU tuning

1. Introduction

The development of a nanosatellite as a carrier for a fleet of light sail-propelled
picosatellites (ChipSats) is depicted in Figure 1.

Figure 1. (a) Moment of inertia testing for CubeSat attitude control system development; (b) balloon
test to validate ChipSat long-range radio frequency capabilities.

Satellite development has historically been a complex and expensive venture, acces-
sible only to government agencies and large industry at a high financial and technolog-
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ical barrier of entry. NASA'’s space shuttle had a cost of about USD 1.5 billion to launch
27,500 kilograms into low-earth orbit, or USD 54,500 per kilogram [1]. Meanwhile, commer-
cial launches have reduced the cost of low-earth orbit twenty-folds. There is an increasing
urgency to expand horizons in space, not only for scientific knowledge and exploration but
also for interplanetary travel and access to natural resources.

1.1. Background on Satellite Development

In response to the rampant development of electronic systems in the early 21st cen-
tury [2], a gateway to cheaper satellite development has emerged, allowing for competition
in the commercial space. Development within the areas of microchips, semiconductors, and
batteries has paved the way for cheaper, lighter, and more powerful cyberinfrastructures.
Complex satellites are now being fabricated at the nano/picosatellite scale. Additionally,
satellite designs are becoming more modular. Commercial off-the-shelf (COTS) components
have replaced custom-developed ones, allowing for mature, modular technologies and
faster turnaround times.

Background of the Alpha Mission

The manuscript will examine systems design and analysis of the Alpha mission
developed at the Cornell Space Systems Studio. The mission aims to be a proof of the
concept of interstellar travel, furthering the maturity of (1) a CubeSat satellite deployer,
(2) an autonomous picosatellite [3], and (3) light sail technology [4]. These technologies
would parallel techniques proposed by the Breakthrough Starshot initiative. The CubeSat
approach was a vital medium for this mission. Due to its modular and versatile chassis, a
CubeSat was used as the capsule of our payload. Using the standardized CubeSat structure
will simplify replication and further development for other developers [5]. In addition,
other CubeSat missions [6,7] could re-use the approaches outlined in this manuscript. Most
importantly, the CubeSat was used to mimic the approach of Breakthrough Starshot [8].
Breakthrough Starshot proposes the first solution for space travel into another solar sys-
tem [9]. The idea theorizes accelerating a diminutive payload (with a mass of about a
gram) to a fifth of the speed of light propelled by high-power lasers reflecting off a light
sail [10]. According to the theory, the tiny payload would be accelerated within seconds.
With the payload pointed at Alpha Centauri (the closest star system outside of our solar
system) at 4.37, it could be possible that this distance could be reached within 25 years. To
minimize the risk of failure, thousands of payloads would be deployed with the hope of a
few being successfully received by the Alpha Centauri solar system. The purpose of the
Alpha mission is to successfully deploy and stabilize a single payload light sail system [11].
For this to happen, the carrier CubeSat detumbles and stabilizes itself, successfully ejects
the light sail payload, and the payload must power up and communicate with the ground
station [12,13].

1.2. Background on Subsystems Covered in This Manuscript

The manuscript will review the two most influential systems responsible for meeting
the mission goal, namely, the stabilization of the CubeSat and the radio frequency (RF)
communication infrastructure between the picosatellite (ChipSat) and ground station.

The first half of the manuscript will discuss the use of RF communication for robust,
long-range, and low-power transmissions. For the Alpha project, the picosatellite payload
was developed by Dr. Van Hunter Adams [14,15], (previously at Cornell). The satellite is
printed on a thin Kapton substrate [16,17] and only has a solar panel, processor, IMU, GPS,
light sensor, and RF transceiver. The satellite is named ChipSat.

The second half of the manuscript will discuss the ACS of a 1U CubeSat. This de-
velopment was built off the progress of Armin [18] and Carabellese [19] (previously at
Cornell). For the Alpha mission, a CubeSat is used to transport our payload because of
the affordability of the satellite type [20] and the simplicity the satellite structure offers.
The one-unit (1U) CubeSat is a 10 cm by 10 cm by 11.35 cm sized satellite [21] with small
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rectangular rails on each of the corners. CubeSats can exist in several multiples of the
one-unit size up to 12U [22]. The modular size standard of the CubeSat is chosen such
that several of these satellites can be easily loaded onto a canisterized satellite dispenser
(CSD) [23,24]. The CDS dispenser is spring-loaded and fastened to the payload of a launch
vehicle [25]. When activated, the CSD will eject the payloads into low-earth orbit (LEO).

Systems Analysis Approach

The manuscript will use a model-based systems engineering (MBSE) approach [26-28]
to analyze and design both the CubeSat and the ChipSat. The MBSE approach maintains
traceability throughout the satellite’s life cycle [29]. The design process can be shown by
the systems engineering Vee diagram [30], which is a flow chart of the product life cycle.
The left side of the Vee diagram shows how the design process goes from a high-level
concept to specific component-level requirements. Then, the right side of the Vee diagram
shows the integration process. On the right side, the system is assembled from component
to working prototype through validation and verification methods. Expressed briefly, a
product is designed from the top down but tested from the bottom up. The Vee approach
makes sure that the design remains consistent with the original problem description. It also
guarantees final functionality. Testing begins at the component level, so that functionality
is tracked up to the final acceptance testing. Below, in Figure 2, is a visual representation of
the Vee diagram used in the manuscript.
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operations
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I?i_,',, Requirements __:‘r‘_::r
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Figure 2. The systems engineering “Vee Diagram”.

The manuscript will use the Vee diagram process. Section 2 starts with modeling the
mission systems. The satellite systems are described and then broken down (top-down
from concept design to the component level).

Sections 3 and 4 track the ChipSat and CubeSat development. The satellite require-
ments are stated and then followed bottom-up through verification and validation tests.
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2. Systems Modeling of the CubeSat
2.1. Function-Centric Models

The design process [31,32] began with a context diagram of the CubeSat nanosatellite.
The context diagram shows the external and internal interfaces to track resource usage
from start to finish and set clear interface boundaries. The modeling approach followed the
systems models created by George E. Mobus and Michael C. Kalton in the book “Principles
of Systems Science” [33].

A concept diagram, as defined by George E. Mobus, identifies the sources, sinks,
stocks, and interfaces of a system. These were first found externally. Figure 3 presents the
“Black Box” of the CubeSat system. Here, all of the system inputs and outputs can be easily
seen. The inputs are labeled as sources, as shown on the left of the diagram. The sinks are
shown going out of the system to the right. In equilibrium, there is conservation of mass
and energy across the system. See Figure 3.

Radiation Dissipated heat

(from stars)

Dissipated light

Light

Fo
(from stars)

Digital
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Packets
Thermal
energy
Kinetic
energy
Waste
Magnetic products/
field debris

Figure 3. Black box diagram (George E. Mobus and Michael C. Kalton, p. 604 [33]).

The function that a resource flow goes through is represented by the F values in
Figure 3. The M indicates a movement of data inside the function. Table 1 explains what
the functions in Figure 3 mean.

Table 1. System top-level black box interfaces.

Variable/Acronym Definition Variable/Acronym Definition
F1 Solar panel F3 Thermistor
F2 Ambient light sensor F5 Gyroscope
F6 Malfunctions/damage F8 RF transceiver
F7 Torque coils F9 Dissipated light
F10 Dissipated heat

A useful way to analyze the system is to divide it into smaller parts and see how
they influence each other. The products that are produced in the “Black Box” can be
by-products, waste products, catalysts, or reaction intermediates that help achieve the
intended functional requirements. By understanding the interactions between subsystems
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and their products both inside and outside of the system, it was possible to improve the
interfaces within the software more effectively. See Figure 4.
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Figure 4. Subsystem black box diagram (George E. Mobus Michael C. Kalton, p. 607 [33]).

The IMU function that the system uses is shown in Table 2. The IMU location does not
depend on any input from the environment, so there is no outside source.

Table 2. Immediate subsystem.

Variable/Acronym Definition

F4 IMU

The model can also be improved to show how energy and information are transferred
within the system. The internal interface diagram shows the flow, stocks, buffers, amplifiers,
and valves of the model. Moreover, an internal network can map the resources and track
the flows from where they begin to where they end. Then, mass and energy continuity
can be followed. The internal interfaces show a complete view of every function that the
CubeSat needs to do to move from its inputs to it outputs. In the center of Figure 5, S1 is
visible. S1 is the buffer memory of the Teensy microcontroller. The data collected are sent
to the buffer and then changed into digital data packets that are then moved through the
transceiver. See Figure 5.

Table 3 defines the processes in Figure 5 that are part of the satellite system. They
handle the processing and setting up of the data packets.

These models enabled the representation of the exchanges with the external environ-
ment and the movement of resources inside.

Table 3. Full system breakdown.

Variable/Acronym Definition Variable/Acronym Definition

F11-F14 Analog to digital converter F15 PWM Modulator
F16 Data Packager
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Figure 5. Process diagram (George E. Mobus Michael C. Kalton, p. 609 [33]).

2.2. Network Models

Figures 2—4 show models that focus on functions; a model that shows subsystems at
the individual level is also needed. A network model would be a better way to analyze a
system at the component level because it reveals the interface between the subsystems.

Using network theory made it possible to see more clearly how the components
interact. There are different network models that could model the CubeSat system. Even
though the subsystems could be modeled as clusters, they all connect to the processor in a
broader sense. So, for this manuscript, a central network model is enough.

To make a network diagram, the context of each component is recorded. A common
way to make a network diagram is to list all of the components of a subsystem and make
an interface matrix. A more general system interface matrix was made for simplicity. See

Figure 6 below.
AR > 2
5 e |5 |z |8 |2 |»|=2
Interface Matrix = § § é 2 %1 < 2
5 |2 |2 217|122
B | % g s &
Solar Pannels X
Processor X X
Transceiver
IMU X X
Thermistor X X
LEDs X
ADC X
Torque Coils X

Figure 6. Interface matrix.

The relationships in Figure 6 also have a direction. Each cell with an X marks an
interaction between two subsystems. The side of the diagonal that an entry is on indicates
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the direction of the interaction. An X means that a flow starts from the subsystem in the
row and ends at the subsystem in the matching column.

Based on the information in Figure 6, the network diagram can be derived from
the interface matrix. Figure 6 shows the basic structure of the network in CubeSat. The
network in CubeSat can show how subcomponents that need an interface are connected.
See Figure 7.

Gyroscope .Magnetometer

Temperature

Accelerometer sensor

Ambient light
sensor
LEDs

Torque coils
q Solar panels

Processor Transceiver

GPS )
Receiver
[ J

Transmitter

Figure 7. Network diagram.

The system becomes clearer when the subsystems are separated and the directions are
added to Figure 7. Figure 8 displays the five sensors, the torque coils, solar panels, and RF
transceiver that the CubeSat has. This helps to see how data move in the system. Refer to
Figure 8 below.
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Y axis
Z axis
X axis
X axis Gyroscope Magnetometer
- Temperature
Y axis sensor
IM
7 axis Accelerometer Ambient light
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LEDs o

X axis "
Positive Torque / Solar Panels
) Torque coils
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Processor Transceiver
[ ]
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Transmitter
X axis
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Figure 8. Full network diagram.
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Figure 8 shows each value that each of the sensors recorded. This breakdown shows
how the data points are recorded by the Teensy 3.5 microcontroller in real time. Each data
packet in the network has 17 different data points

2.3. Flight Assembly

To take a systems perspective of the CubeSat’s hardware and assembly, the Engineer-
ing Development Unit (EDU) satellite was constructed. The EDU was built to perform
verification and validation testing, as shown on the right side of the Vee diagram. A com-
plete version (EDU) of the satellite was made. The EDU version was the same as the flight
version. However, it would not go to space; it only serves as the standard for the flight
satellite. See Figure 9 below.

@) (b)

Figure 9. (a) Integration testing flight hardware; (b) flight-ready electronics aboard the CubeSat.

Some of the components used include the following;:

Teensy 3.5 flight computer microcontroller.
RockBLOCK radio transceiver (Iridium network).
Adafruit LSM9DS1 IMU.

Two SparkFun TB6612FNG dual Motor Drivers.
INA169 Analog DC Current Sensor Breakout Board.
5V regulator.

5V Reg cam.

The documentation that was made while putting together the EDU version helped to
make the Flight Unit CubeSat. Also, the work instruction that was created was used as a
reference for other modular CubeSat missions.

3. ChipSat RTOS and RF Development

This section discusses the testing and modification of the RF system on the ChipSat
picosatellites, one of the systems that was worked on. The system level requirements for
Alpha are shown in Table 4 below.

Table 4. Requirement table for the ChipSat RF subsystem.

ID

Requirement ID Requirement

1.0 The systems SHALL communicate over RF 50  The system SHALL add a preamble

2.0  The system SHALL capture IMU data in a packet 51  The preamble SHALL consist of 4 8-bit barker codes
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Table 4. Cont.

ID Requirement ID Requirement

21  The system SHALL have 16-bit data 6.0  The system SHALL apply matched filtering

2.2 z:cel ;};ifgo?:gg; icr(il?l)egtsr;;igenetometer, accelerometer, 7.0 The signal SHALL be received by a ground station
3.0 The system SHALL be frequency modulated 7.1 The signal SHALL be demodulated

4.0 The system SHALL forward error correct (FEC) the data

3.1. Testing RF on the TI Launchpads

To transmit the sensor readings to be recorded, EM communication is needed because
the ChipSats are not going to be retrieved. This fulfills requirement 1.0 (see Table 4), which
was achieved using RF communication.

The TI launchpad CC1310 was used as a testing device when developing the RF
transmission code since it has the same microcontroller [34] as the ChipSats. The TI boards
made the testing setup easier because the ChipSats had to be programmed through the
launchpad. Also, it reduced the risk of harming the ChipSats if something went wrong at
the beginning.

The functionality of the TI launchpads and the speed, range, power, and filtering
abilities of their transmissions could be checked and tested using SmartRF Studio version
2.18. Two TI launchpad CC1310s [35] were used with SmartRF Studio 7 for these tests.
After installing and opening SmartRF Studio 7, the following screen will show up. See
Figure 10.

&8 SmartRF Studio 7 - Texas Instruments - a X

Smart ™ Studio?7

Help

Sub-1 GHz (1 Connected)

CC1352R CC1350
Dual Band ub-1GH: Dual Band Sub-1GHz
Wireless MCU Wireless MCU Wireless MCU

CcC1121
Sub-1GHz 1 Sub-1GHz
Transceiver ns r Transmitter

CCc1110
Sub-1GHz USB Sub-1GHz
Wireless MCU Wireless MCU

CC430
Sub-1GHz
Wireless MCU

List of Connected Devices: Refresh List: @

D L T B L —

1 Connected Device(s) R TEXAs INSTRUMENTS
Figure 10. Connecting to TI launchpads on SmartRF Studio 7.

Figure 10 shows a list of connected devices in the bottom command window. It is
recommended not to plug in both TI launchpads to the computer at first since they might
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be hard to tell apart. Instead, plugging the boards in one by one would let the user decide
which board will be the transmitter and which one will be the receiver (marking them
might help). By double-clicking on the device from the list of connected devices, the device
control panel could be opened. The transmitter should use the packet TX mode. The
transmitter should be set up as shown in the following screenshot. See Figure 11. The
receiver should use the packet RX mode. It would be useful to have two separate windows
open so both the RX and TX screens can be viewed at the same time. Make sure the sync
words are the same for both the RX and the TX. Suitable settings for the RX receiver can be
seen in the screenshot, see Figure 11 below.

m XDS-L20000A9 - CC1310 - Device Control Panel
File Settings View Evaluation Board Help

Packet TX - P Start W swop [ command View [/] RF Parameters

& XDS-L20000A9 - CC1310 - Device Control Panel - o X
File Settings View Evaluation Board Help

Packet RX v P Start W siop [ command View [] RF Parameters.

Target Configuration
RF Design Based On: | LAUNCHXL-CC1310

Typical Settings
Category Setting Name
< Settings for 779 - 930 MHz band

50 kbps, 2-GFSK, 25 kiz deviation 50 kbps, 2-GFSK, 25 kHz deviation

50 kbps, 2-GFSK, 25 kHz deviation, EEE 802.15.4g MR-FSK PHY mode 50 kbps, 2-GFSK, 25 kiz deviation, [EEE 802.15.4g MR-FSK PHY mode
1.2 Kbps, 2-GFSK, 5.1 kiz deviation
2.4 kbps, 2-GFSK, 5.1 kHz deviation
200 khns_2-GESK 70 kiz deviat

Target Configuration
[ pemc Enable [ cap-array Tuning @ Customize. RF Design Based On: | LAUNCHXL-CC1310 - @ [ pc/oc Enable [ cap-array Tuning @ Customize...
Typical Settings

Category Setting Name
< Settings for 779 - 930 MHz band

1.2 kbps, 2-GFSK, 5.1 kHz deviation
2.4 kbps, 2-GFSK, 5.1 kHz deviation
200 khns_2.GFSK 70 kHz deviat:

RF Parameters @

RF Parameters @

91500000 | mHz  [50.00000 25.000 | 915.00000 MHz  [50.00000 KBaud  [25.000 Kz
No whitening % v | Kz 14 v d8m No whitening -
Continuous TX | Continuous RX | Packet TX | Packet RX
Packet Count: 100 Infinite Expected Packet Count: | 100 | [4] Infinite
Length Config: | Variable v Viewing Format Text - p
Length Config: Variable -
Preamble Sync word [L::g:" Packet Data CRC i
93][0b][51][de]|[[ 20 ] [|[ob¢a e 4a 7916 11 fo ac aa42c7 76 14743937 bb 85 15 JIE=] Sactr 0x930b51de ST ED © v
RX
No address check v | [0xaa | or [ 0x88
Preamble Count: |4 Bytes ~ | Sync Word Length: |32Bits v | [] Address
[ Seq. Number included in Payload
Preamble lode: | Send 0 as the first preamble bit -
[J Add Seq. Number p
© Random | gp a 4e 4a 79 16 11 fe ae aa 42 7 7e 14 74 3d 37 bb 86 15 Aversge RSSt
O Text f Received OK: 0
&4 Received Not OK: 0
O Hex ™
Sent Packets: 502 Packet Error Rate: -
Frequency: 915.00000 MHz FEEEE
Output Power: 14 dBm
[ Advanced Start Stop Dump Data to Fike: - Start Stop
F CC1310, Rev. B (2.1), XDS-L20000A9 XDS110 Radio State: N.A. CC1310, Rev. B (2.1), XDS-L20000A9 XDS110 Radio State: N.A.

Figure 11. (a) Configuring the PacketTX in SmartRF Studio 7. (b) Configuring the PacketRX in
SmartRF Studio 7.

Both the transmitter and receiver have a start button at the top of the screen that needs
to be pressed. The receiver will wait for the code word. So, it is necessary to start the receiver
before the transmitter if one wants to obtain all the packets. This interface allows us to check
the transmitting speeds, range, and power. As we expected, the launchpads sent signals
well at nine-hundred and fifteen megahertz. The highest power was around fourteen
decibels, compared to twenty-five milliwatts of transmitting power. The transmission
distance was about 400 m.

3.2. Switching to a Code-Based RTOS Structure

Code Composer Studio (CCS), a Texas Instruments coding platform that uses C++,
was used to program the TI launchpads.

Writing RF code without an operating system (OS) or scheduler was not feasible
because it depends on a sequential order of code execution. It would have been impossible
to give tasks the appropriate priority. For instance, if you had two tasks, stabilize and
transmit, you would need to stabilize first before transmitting. Without an OS or scheduler,
you would have to place one task above the other in the code sequence. But if these
tasks run at different times, sharing resources becomes complex. Therefore, an OS, or
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scheduler, is needed. The OS, or scheduler, assigns a priority to each task and schedules
them accordingly. A common type of OS or scheduler is the real-time OS, or RTOS. In CCS,
the RTOS is called TI-RTOS. The TI-RTOS scheduler has four main levels of priority. If
a higher-priority operation is scheduled during any operation, the OS or scheduler will
pause the current operation and switch to the higher-priority one. The highest level of
priority is the hardware interrupts (hwis). The priority among the hardware interrupts is
determined by the semiconductor used. When a hwi finishes executing, the scheduler will
resume the next highest hwi.

If there are no more hwis, the scheduler will move to the next level: software interrupts
(swis). The swis execute in a similar way. However, the priority is set in the software. There
are 32 different levels of priority available.

If there are no hwis and swis, the scheduler moves to the task thread. The task thread
is where the normal tasks are performed. Normal tasks would include acquiring GPS data,
IMU data, or RF tasks. There are also 32 levels of priority in the task thread.

The lowest level is the idle mode. The idle mode only happens when there are no
interruptions or tasks. In this mode, there is no priority level, and low-level background
computation is performed. The idle mode is used to keep track of time, run low-priority
background programs, and check for hwis, swis, or tasks. Mainly, the idle mode is used to
save energy. Figure 12 below shows a summary of the scheduler priority levels.

Priority Thread

SWi
Task

Lowest |d|e

Figure 12. TI-RTOS kernel priority levels. Image Credit: TT [34].

The task mode also has its own scheduler. The internal scheduler lets programs run at
the same time but limits resources or time-sets for data collection. A semaphore is used
to manage tasks properly. The semaphore keeps track of how many tasks are performed
using a resource, controls the use of the resource, and keeps a queue. There are two types
of semaphores: a binary semaphore and a counting semaphore. The binary semaphore
only lets one task run at once. When the binary semaphore is equal to 1, the resource is free.
After a task takes the resource, a semaphore pend is posted. The pend subtracts one from
the semaphore, making it zero, and blocks the channel. When the task finishes using the
resource, a semaphore post is posted. The post restores the semaphore count, making the
resource available again. The ChipSat uses a counting semaphore. The counting semaphore
works like the binary semaphore, but it allows for n different tasks to access a resource at
once. The semaphore is initialized at n. Tasks can post and pend to the semaphore in the
same way as in a binary semaphore, but when the semaphore is less than 1, the resource is
blocked. See the flowchart below in Figure 13. The counting semaphore allows for a task to
time out. A message is then sent to timeout bypass to skip the next task in the queue. The
timeout bypass is shown by the dotted line in Figure 13.

The following APIs are for posting and pending to a semaphore in the TI-RTOS kernel.
See Figure 14 below.
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[New task is set to run

F

If timeout

Timeout Bypass en

Figure 13. Semaphore process flow.

Task blocked

Sem pend else; sem=sem-’

Task times | !
out

Task

completes

Sem
post

Sem=sem+1

Semaphore pend() - if semaphore <1; Block; semaphore=semaphore;
if semaphore >1; Run; semaphore=semaphore-1;
Semaphore post() - task finished semaphore = semaphore +1

Figure 14. TI-RTOS semaphore APIs.

The RTOS structure enables smooth transitions between sensors and actuators on the
ChipSat.

3.3. Implementing RF Communications on TI Launchpad Using CCS

The next goal was to achieve communication between two ChipSats using radio
frequency (RF). Code Composer Studio (CCS) was the tool used to program the RF tasks.
The Alpha mission only required transmissions, but both transmissions and receptions
were performed on the ChipSats. A TI-RTOS program had already been developed by
Dr. Hunter Adams [14] for his “Monarch” PCB boards as part of his thesis work. The
program included the use of an IMU, a GPS, an analog-to-digital converter (ADC), and
radio communication (RF). However, for RF development, only RF tasks were needed.
Dr. Hunter Adams’ [15] code was the basis for the new test code. The code had a main
script that ran two task scripts: receiving and transmitting. However, the new code needed
to change the way the semaphores were posted and pended. The previous code had the
semaphores posted and pended in different places in the different tasks depending on
the expected execution order. Having only two tasks resulted in a semaphore imbalance.
After one transmission, the channel was locked forever. The problem was fixed, and the
semaphores were reorganized to append at the beginning of the task and post after finishing
the task.

The code worked well for both transmission and reception between each of the two
TI launchpads. However, the transmissions were set up to send the raw modulated data
without any error correction or filtering. The next section will explain the theory behind
the modulation used. The modulation was coded using the EasyLink APIs available in
Code Composer Studio. Non-blocking calls were selected so that the packets would be sent
without waiting for a confirmation from the receiver. Also, a clear channel checker was
added to make sure that the transmitter would only send if the chosen channel was free
(not occupied). The following basic sequence is used to send a packet from the launchpad:

EasyLink_setRfPower(14);
EasyLink_setFrequency(915000000);
EasyLink_transmitCcaAsync(&txPacket, IbtDoneCb);

Here, the packet name is txPacket, and the TX done function pointer is IbtDoneCb.
The power of the transmission is 14 dBm at 915 MHz. These packets can then be received
in the RX tasks with the following APIL:
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EasyLink_receiveAsync(rxDoneCb, 0);

Async was also used on the receiver to make sure the function was also non-blocking.
The zero represents the relative start time of the receiver. The APIs used above were able to
be programed, with help from the EasyLink API guide [35].

RF Signal Modulation with Gaussian Frequency Shift Keying (GFSK)

The modulation technique used on the ChipSats is frequency shift keying (FSK). The
FSK technique was determined by requirement 3.0 (see Table 4). In frequency shift keying,
data are sent through a discrete change in the carrier signal frequency, with no effect on the
signal power. ChipSats, therefore, use the maximum power available to them to transmit
data. The data sent by the ChipSats are coded in binary. With binary frequency shift
keying, the carrier signal oscillates between a high and low frequency. The high frequency
represents a 1, and the low represents a 0. Figure 15 is an example of an 8-bit carrier signal.

001 101 00 10

Figure 15. Binary frequency shift keying (BFSK).

BFSK is an effective method for the ChipSats because this frequency modulation
produces a good signal-to-noise ratio in this instantiation, it has a smaller risk of interference,
and the signal power radiates less (it is relatively unidirectional). However, frequency
modulation can be expensive. Having to shift frequency (theoretically) instantaneously is
straining on the transmitter. It requires costly, powerful, bulky electronic equipment, all of
which are unaffordable for a ChipSat. To resolve this issue, the ChipSats use a transmitter
that implements Gaussian frequency shift keying (GFSK). The receiver measures the period
of change in the incoming signal. In approximately the middle of each of these periods, it
reads the frequency of the transmission and translates it into a binary 1 or 0. GFSK allows
for gradual frequency changes, lowering the cost of the equipment and decreasing the RF
leakage. There are several levels of GFSK. At the base case, a 2GFSK will oscillate between a
higher and lower frequency. 2GFSK is what is implemented in the ChipSat modulator. See
Figure 16. The transmitter records the frequency changes at each period, as noted below by
the gray circles. 2GFSK gives the transmitter the ability to gradually change its frequency.

f
—— o 0 1 1 0 1

]
A [ 0 rime

Figure 16. Dual Gaussian frequency shift keying (2DFSK). Note that the y axis in this instance displays
frequency. Image Credit: “802.11 Wireless Networks: The Definitive Guide” [36].

(enter
frequency

One way to make the transmission faster is to use a 4GFSK. The 4GFSK divides the
input signal into sequences of 2 bits. In binary, there are four possible sequences like this:
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00, 01, 11, and 10. Each one of these cases has its own carrier frequency. Figure 17 below
shows the different separate frequencies.

Amp:imde Amplitude
A

10: | O rime 01 mumvm * & time

Ampjimde Amplitude
A

n: | & rime 00: /\U/_\U " rime

Figure 17. 4 GFSKs. Four different frequencies corresponding to the four different possible 2-bit
sequences. Image Credit: “802.11 Wireless Networks: The Definitive Guide” [36].

4GFSK can send and receive data at double the speed of 2GFSK because it can switch
between two bits for every frequency change. The next improvement would be to use
8GFSK. Figure 18 below shows an example of an 8-bit carrier signal.

Frequency, g 00 n 01
(enter . m F
frequency ) 'é Time

Figure 18. Four-channel Gaussian frequency shift keying (GFSK). Image Credit: “802.11 Wireless
Networks: The Definitive Guide” [36].

8GFSK is another way to send three bits. But sending three bits only makes the
transmission speed 50% faster than 4GFSK. With eight separate frequencies, it is harder,
more costly, and more likely to make mistakes because of the many different frequencies
to demodulate. For Alpha, neither 4GFSK nor 8GFSK were used on the ChipSats because
they made the signal less reliable over long distances. Dual GFSK was used.

3.4. Packet Formulation

This section explains how the packets from the ChipSat RF transmitter are formed. The
data use forward error correction (FEC) and matched filtering (MF) to increase reliability.
These methods were suggested by Dr. Zac Manchester because they are often used in
satellite communication. They are not common for small sat communications. But both FEC
and MF improve the signal-to-noise ratio, which is needed for long-range transmissions.
Matched filtering also helps separate the signal from the noise floor. Since the power
budget is low, another way to make the signal more reliable is to add extra bits to the
signal. Padding also works like a gain-of-sorts. By repeating the original binary sequence
when coding it, if the signal faces interference, the original data can be recovered from
the repetition. Also, these techniques make the transmitted data more secure since the
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sequences used for MF and FEC encoding would have to be known to decode the signal
(more detail in the relevant sections).

3.4.1. Raw Data

ChipSats transmit data synchronously in packets that include data from each sensor on
board. This meets requirement 2.0, which is to periodically record IMU data (see Table 4).
Also, packet transmission enables the sample data to have a single timestamp and a
complete dataset for each transmission. A benefit of using a single timestamp is that it
allows for consistent parsing of the data from each transmission. Since ChipSats do not
have unique identifiers for each sensor, knowing the chronological order of the datasets
can help recognize each component. The data can be identified based on the expected
transmission order. Figure 19 below shows how the packet is made from the IMU values
on the ChipSat.

Gyro X

Gyro Y

GyroZ | Accel X | AccelY | AccelZ | MagX Mag Y Mag Z

Figure 19. Data packet formulation.

The packets were initially made to only send the IMU data for simplicity. The packets
begin by sending three gyroscope values for each direction, and then the accelerometer
and magnetometer values (see requirement 2.2 in Table 4). There are nine values that
would be transmitted in total. Later, we will add data from the GPS and a temperature
sensor. For each of the nine transmitted values, we wanted 16-bit resolution, as per
requirement 2.1 (see Table 4). Since the RTOS was written to send the packet in 8-bit pieces,
each of the values was divided into two halves. So, 18 8-bit data transmissions are sent
in total.

3.4.2. S/N Ratio

One way to improve the signal-to-noise ratio (S/N) ratio when sending signals is to
increase the signal’s amplitude with a gain. This needs more power and makes the signal
stronger so that the noise around it does not affect it as much. But, because the ChipSat
mission has very little power available, other ways had to be used to make up for the S/N
ratio. The two ways used were forward error correction (FEC) and matched filtering. These
methods add extra bits that repeat the data. If a bit changes from one to zero or zero to one
(a bitflip), the original data can be recovered from the repeated data that were sent.

3.4.3. Error Correction

The Alpha mission’s ChipSats employ forward error correction (FEC) techniques
(nonlinearly related to SNR) [37] in their transmission to meet requirement 4.0 (see Table 4).
FEC is a usual method in radio transmissions that adds extra bits to the signal to enhance
robustness. FEC helps reinforce the signal so that it does not need to be retransmitted, and
thus makes communication more dependable. For ChipSats, each 8-bit transmission is
first encoded using a generator matrix. The generator matrix is a matrix of size 8 by 16
that multiplies the 8-bit signal to generate an encoded 16-bit output. The equation below
shows the relationship, where m is the original signal, G is the generator matrix, and c is
the resulting 16-bit output.

c=mG (1)

The generator matrix was constructed by joining an 8 by 8 cross-correlation matrix, P,
with an 8 by 8 identity matrix, I. Matrix G thus keeps a copy of the original data and a cross-
correlated version. Equation (2) shows the equation that appends the generator matrix.

G=[P|I] (2)
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Equation (3) below shows the generator matrix that Alpha uses. Dr. Zac Manchester
created this matrix (Manchester 13).

r1001111010000000 7
0100111001000000
11700110100100000
0110011100010000 3)
0011001100001000
11711001000000100
0111100000000010
11101011100000001 |

The data have a hamming distance of five after applying FEC. It can tolerate dive lost
receptions or up to two-bit errors without affecting data integrity. Each 8-bit data block
from the packet is multiplied by the generator matrix at the start of the TX task. To speed
up the computation, only the left half of the generator matrix was used, because the right
half just adds the original matrix (although the right half of G is an identity). Binary matrix
operations were used instead of regular matrix multiplication for coding FEC into the flight
code because the data is in binary.

Binary matrix multiplication follows the same procedure as regular matrix multiplica-
tion. Each of the values in the columns of G is multiplied by the corresponding value in
the data vector, and the values are summed to produce a scalar value in the output vector.
Binary multiplication uses the “binary and” operator, which is “&” in C. It only produces
a binary 1 when both factors are 1, so only the entries in G with a 1 are relevant. For the
first column, those are entries 7, 5, 2, and 0. Like matrix multiplication, the resulting values
are added to produce a scalar value. The values are first shifted right to the same position,
using the double greater-than symbol in C, followed by the number of shifts (e.g., “>>4"
means right four positions). The values are put in the zero-index position, so they are in the
same column. Then, a “binary or” is used to sum them. In C, the “binary or” operator is the
“*”. Finally, the value is shifted left to move it from the zero position back to the original
position. The left-bit shift also uses two carrots but points left (double less-than symbol).
See Figure 20 below for the binary multiplication code.

p |= ((data&BITT)>>7)((data&BITS)>>5)((datadBIT2)>>2) (data&BITO) j<<7;
p |= (({data&BITE)==>6)*{(data&BIT5)=>5)*{(data&BIT4 =>4 *{(data&BIT2)>>2*{(data&BIT1 )=>1*{data&BIT0))<<6;
p |= (((data&BIT4)>>4)*(data&BIT3)>>3)"((data&BIT2)>>2 ) {(data&BIT1)>>1))<<5;

p |= (((data&BIT7)>>T)*{(data&BIT3)>>3)"((data&BIT2)>>2)"{(data&BIT1)>>1)*(data&BITO))<<4;

p |= (((data&BIT7>>T7)*(data&BITE)>>6)((datalBITS>>5 ) {(data&BIT1j>>1))<<3;

p |= (((data&BITT7 ==7T{(data&BIT6)>=>6)*{(data&BITS)>>5)"{(data&BIT4 )>>4 " (data&BITO) =<2;

p I= (((data&BITT)==T)*(data&BITE)>=6)"(data8BIT4)>>4 *((data8BIT3)>>3){(data8BIT2)>>2)*data8&BIT0))<<1;
p |= (((data&BIT5)>=>5)*(data&BIT4 )>>4)*{(data&BIT3)>>3 " (data&BITO));

Figure 20. Binary matrix multiplication of the LHS G matrix with the data.

The left half of the FEC-encoded data is obtained by performing these operations. The
code used to calculate the “p” vector is shown in Figure 20. The right half of the FEC encode
is the same as the original data, so the left half and right half are joined to make the final

16-bit vector. See Figure 21.

LHS 8-bit cross correlated data RHS 8-bit original data

Figure 21. Appended FEC.

After adding the data, the FEC-encoded message can also add preamble identifiers.
The message length increased by two times, so the signal-to-noise ratio also went up by
two with FEC. The packet length now is two times bigger, from 18 8-bit sequences to
36 8-bit sequences.
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3.4.4. Pre- and Post-Amble

To help with demodulating the signal, the data can have identifiers added to the packet
after FEC. The packet usually has an identifier at the start and the end to distinguish where
the packet begins and ends. A preamble is an identifier that comes before the packet, and
a post-amble is one that comes after the packet. For the Alpha mission, only a preamble
was used. This fulfilled requirement 5.0 (see Table 4). The preamble helps the demodulator
identify the signal and find where each packet starts. This way, the signal can be captured
and demodulated. For Alpha, the preamble consisted of four 8-bit Barker codes (following
requirement 5.1 in Table 4). After the Barker codes, the FEC-encoded data came. See
Figure 22 below.

8-bit Barker | 8-bit Barker | 8-bit Barker | 8-bit Barker
code code code code

18 byte Data

Figure 22. Addition of a preamble.

If the transmitter and receiver agree on the same Barker codes, they can use any value
they want. These four 8-bit Barker codes make sure that the data sequence is distinct
and recognizable. In other words, a preamble of this size prevents the signal from being
confused with a random noise. The packet length became 40 8-bit transmissions by adding
4 8-bit identifiers.

3.4.5. Filtering

The ChipSats used matched filtering as the filtering technique, as required by require-
ment 6.0 (see Table 4). Matched filtering not only boosts the S/N ratio and adds signal
rigidity like FEC, but it also allows for greater theoretical gain. It does this using a 64-byte
sequence for each binary bit, which are called PRN codes. Specifically, the codes used for
alpha are gold codes. Each ChipSat has two PRN codes: one for sending a binary 1 and
the other for sending a binary 0. Matched filtering also has the unique feature of enabling
multiple devices to use the same communication channel. This is known as code division
multiple access (CDMA), and it works by assigning different pairs of PRN codes that are as
orthogonal as possible to each device. The receiver then adjusts to detect the set of PRN
codes that are being sent. See Figure 23 for a graphical explanation.

1010

CDMA Map
1 from chipsat 1: 0101

Binary 1 from chipsat 2: 0011
Binary 0 from chipsat 2:1100

Figure 23. CDMA allows the receiver to recognize which device is transmitting.

The number of devices that are using the CDMA determines how the PRN codes
are selected. The PRN codes are created to maximize the orthogonality between codes.
Orthogonality is essential to optimize the allowable hamming distance. For example,
with only one device, one could choose to send a binary zero 511 times and a binary one
511 times. But with multiple devices, to distinguish which device is transmitting the data,
the PRN codes cannot be exactly opposite. So, the more devices in a system, the more likely
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there is cross-correlation. Fortunately, in Alpha, only two ChipSats are used, so there are
four PRN sequences. With only four PRNs, a hamming distance of 127 or 63 possible bit
flips is achieved. In the ChipSat flight code, bits for future matched filtering are added after
FEC. The respective PRN sequences are defined at the start of the TX task. A set of “for”
loops runs through the preambles and each of the FEC-encoded bits. An “if” statement
assigns them either PRN [0] or PRN [1] based on the respective binary value. The final
transmitted parcel is built in order by appending each of the 16 PRN sequences (from the
16-bit FEC-encoded data). The final transmitted parcel length is 1024 bytes. Since there are
22 parcels, that makes each packet length a total of 22,528 bytes.

3.5. Ground Station

To complete a successful RF transmission as required by 7.0 (see Table 4), a ground
station had to be set up to receive the signal. Two ways of setting up a ground station were
attempted, and both will be used for Alpha. The first way was to use software-defined
radio (SDR). This would let Alpha team members and other enthusiasts try to pick up the
signal. The second way was to use a receiver network. This could allow a larger network
to track the signal and report back any data gathered.

3.5.1. Software-Defined Radio RTL-SDR

An SDR was the device we used for the Alpha ground station. We picked the SDR
because it can do many different things with radio signals. Usually, radio receivers have
hardware parts that are made for a certain kind of signal. With an SDR, the software does
all the work on the signal. Things like mixers, filters, amplifiers, modulators/demodulators,
and detectors are all performed by the software, not the hardware. For Alpha, we used a
Realtek RTL2832U SDR (RTL-SDR) [38,39]. The RTL-SDR is a cheap SDR that uses DVB-T
TV tuners to adjust the signal and has an RTL2832U chip. It talks to a COMs channel
through a USB port.

3.5.2. Verifying Transmitting Using SDR Sharp

To confirm that the RTL-SDR worked, it was tested to see if it could detect the transmis-
sions sent by the TI launchpad. SDRSharp, which is SDR software v1.0.0.1784 developed
by AIRSPY, was used for the test. AIRSPY connects to the RTL-SDR through the COM
port and records signals within a specified range. SDRSharp can be downloaded from the
AIRSPY website and configured with the RTL-SDR [38,39]. After setting up SDRSharp with
the RTL-SDR, the TI launchpad can be plugged in. The RTL should be able to receive the
packages if they are transmitting. The packages can be seen as a visual representation at
the top of the screen. Figure 24 shows how the AIRSPY dashboard looks when it receives
the ChipSat transmissions at 915 MHz.

AIRSPY SDR# Studio v1.0.0.1784 - RTL-SDR USB (Original)
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Figure 24. AIRSPY dashboard identifies ChipSat transmissions at 915 MHz.
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3.5.3. Receive FEC Signal on Raspberry Pi

The final step to finish the SDR ground station was to receive a signal sent from the
TI launchpad using the RTL-SDR and conduct both the matched filtering and the forward
error correction. A script that could demodulate an unencoded raw signal had already
been written by Dr. Hunter Adams [15]. The script was made to demodulate a signal
with no encoding. The script by Dr. Hunter Adams was meant to run on a Raspberry Pi
connected to the RTL-SDR. The script would look for the four 8-bit Barker codes before
demodulating. The script was run on the Raspberry Pi 4 Model B. Unencoded GFSK data
were successfully received by the Pi, demodulated, and saved in a .txt file. This satisfies
requirement 7.1 (see Table 4). Additionally, FEC was added to the demodulating code.
Every two 8-bit transmissions were repeated again to recreate the 16-bit FEC vector. The
16-bit vector was then multiplied by the parity check matrix, H, to obtain the original data
back. The parity check matrix can be made by adding the identity matrix, I, to the negative
transposed cross-correlation matrix, P. See Equation (4) below:

H= [IK ’—PT} (4)

The parity check matrix will mathematically fix errors within the allowable hamming
distance of the received transmission. The code for demodulating included the parity
check demodulator. A transmission with FEC encoding was sent from the TI launchpads
to test the code. The signal was decoded correctly and successfully. The following step
was to figure out how the ground station script could achieve matched filtering. Reversing
matched filtering was hard because the search algorithm in the demodulating script could
not recognize the preamble anymore since each Barker code was filtered. The answer to
the problem is not covered in this manuscript. However, a different method for demodula-
tion was discovered, and complete demodulation of a FEC and match-filtered signal can
be performed.

3.5.4. Tiny GS Satellite Balloon Launch

If the ChipSat transmission could not be detected by our SDR, another alternative
was to use a receiver network. The receiver network, however, depends on the microchip
having LoRa (long-range capability). The CC1310 does not have this feature, but the next-
generation ChipSat will be improved to include it. The receiver network was tried several
times, one of them during a balloon launch on 10 October 2021. The aim was to attempt
and set up a connection with the LoRa on the ChipSat during the mission using an Adafruit
feather receiver. The balloon launch was performed to test the operation of the satellite and
to capture footage of our satellite to raise awareness of our mission. See Figure 25 below
for a picture taken by the satellite from the balloon.

To communicate with the LoRa transceiver, a TinyGS ground station (consisting of an
Adafruit feather and antennae) was selected. The TinyGS system enables anyone around the
world to receive signals from LoRa satellites or any other flying device that uses low-power
communication techniques. The TinyGS module uses an ESP32 board. It can communicate
with the sx126x and sx127x LoRa transceivers. TinyGS has online instructions to help
with the setup. In brief, the TinyGS software (version 21021701) is installed to connect to
the TinyGS system. After the setup is completed, the TinyGS board can be plugged into
the computer.

The software will recognize it, and an IP address will show up on the LCD screen on
the board. At this point, the operator will connect their laptop WiFi to the TinyGS SSID.
Once connected, the IP address shown on the LCD screen can be entered in the web browser.
The connected device will show a dashboard that will allow the user to set the parameters
of the ground station. After that, the user can listen to the ChipSat LoRa through the TinyGS
system. The received packets will show on the dashboard of the network. Figure 26 below
shows an example of the dashboard.
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Figure 25. Photo from a balloon launch.
Groundstation Status Modem Configuration Last Packet Received

Name amigo 4
Versior 21021701
MQTT Server CONNECTED
WiFi CONNE

Radio REAL

Test Mode DISABLED

3 Attempting MOTT coanection.
1 If th taking more than expected, connect te the config panel an the ip: 192.168.1.145 to review the MOTT conr

Figure 26. Example TinyGS dashboard.

When the CubeSat balloon launch happened, packets were not yet ready to be sent.
However, the test was performed to prove that we could successfully receive signals
from the ChipSat LoRa transmitter. Although the transmissions could not be decoded, a
timestamp was shown when the TinyGS ground station connected to the ChipSat (inside of
the balloon payload). Each time the signal was detected, the timestamp and current height
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of the satellite were recorded. The current height was measured using GPS onboard the
balloon payload. Figure 27 below shows the time of the transmissions we received and the
respective height of the CubeSat.

i 10* Transmittions recived by the Tiny GS groundstation
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Figure 27. Satellite height as a function of TinyGS transmission timestamps.

The experiment showed that the CubeSat could still send a signal when it was close
to 100 k ft. In summary, a basic validation of the TinyGS system as a possible receiver for

Alpha was performed.

4. Attitude Control System (ACS) Development

One of the key functions of a satellite is to manage angular momentum. The subsystem
that handles this function is called the attitude control system (ACS). For Alpha, the
ACS system must be able to stop tumbling, stabilize spinning, and orient the satellite.

See Table 5 below.

Table 5. Requirement table for the CubeSat ACS subsystem.

ID Requirement ID Requirement
1.0 The system SHALL detumble to 10% of the 50 The Teensy flight computer SHALL be able to
' initial angular velocity in the x and y direction ' handle the ACS computations
20 The z angular velocity SHALL spin stabilize 6.0 The system SHALL calibrate the IMU against
’ within 10% of omega_final = [0 0 1] rad/s ’ hard iron offsets caused by internal electronics
21 The system SHALL spin stabilize within 8 hours 6.1 The §ystem SHALL calibrate the IMU against
soft iron offsets caused by actuators
The system SHALL point its z axis tangent to the The system SHALL calibrate the IMU against
3.0 / - ) 6.2
Earth’s surface a majority of the time temperature offset effects
40 The controller SHALL not use more than 0.9

watts (0.2 amps at 4.2-3.7 volts)

4.1. Duties of the CubeSat ACS

The CubeSat deployer does not provide stable ejection when it releases the CubeSat
from the International Space Station (ISS). The CubeSat’s initial spin is unknown. However,
the CubeSat deployer ensures that the CubeSat’s angular speed will not exceed five degrees
per second. It is crucial to reduce any remaining momentum, as it would make connecting
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with the CubeSat difficult. Requirement 1.0 in Table 5 specifies that the leftover momentum
shall be reduced by 10% of the leftover angular speed in the x and y directions. Figure 28
illustrates the CubeSat’s ejection.

|

w

Figure 28. CubeSat detumble after deployer ejection. The blue, red, and green arrows symbolizes the
initial spin of the satellite along its three respective axes. Image Credit: Josh Umansky-Castro.

At the same time, the CubeSat is made stable by spinning. When the CubeSat rotates
around its largest axis of inertia, it can resist any kind of disturbance. Also, it ensures
that the light sail will have the same stability after it comes out. A common example of
spin stabilization is how a frisbee keeps its balance by spinning when it is thrown. The
frisbee can stay stable around its largest axis even if there is wind or other interference.
Requirement 2.0 states that the final spin should be 1 rad /s around the z axis, with a margin
of 10%. Having this spin condition for both the CubeSat and the light sail will ensure
stability. As a result, stability improves the reliability of the communication between the
transceivers on the ground station and the satellite. Another advantage is that the steady
rotation will provide active cooling for the CubeSat. Spin helps prevent any one side from
being exposed to the sun for too long. Figure 29 shows how spin stabilization will be
achieved for both the CubeSat and the light sail.

(a) (b)

Figure 29. (a) CubeSat and light sail spin stabilization; (b) CubeSat achieves pointing. Image Credit:
Josh Umansky-Castro.
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The last essential part of the ACS is to orient the satellite. Table 5’s requirement 3.0
aims to make it more likely that the z axis will point to space. A space-pointing z-axis
ensures good radio signal strength to the ground and would also assist with the light sail
deployment. Both the positive and negative Z sides of the CubeSat must be kept at right
angles to Earth’s surface. Figure 29 above shows the desired pointing of the CubeSat.

4.2. CubeSat ACS Actuators

The most common ACS systems for modern satellites use ion propulsion, reaction
wheels, or thrusters. Even though satellites may have magnetic torque coils, they also
choose another propulsion method with a higher specific impulse. Our CubeSat is different
because it only uses magnetic torque coils. But, since our CubeSat is small and light and
has stabilization requirements, magnetic torque coils could be enough. The benefit of using
magnetic torque coils is that they are small, cheap, very easy to control, and relatively low
in energy.

Magnetic torque coils are basically electromagnets. We made the torque coils for the
CubeSat ourselves. A thin copper wire is coiled five hundred times around a mu metal
ferromagnetic core. The core is an inch long and three millimeters wide. It works as a
booster. When the electromagnet is on, the polarized dipoles of the ferromagnetic electrons
line up. Unlike a permanent magnet, because the core is made from a softer metal, it does
not keep its magnetization and almost quickly loses its alignment after the coil is off. The
core adds a kind of gain to the magnetic torque coil. The magnetic field strength becomes
about 15 times bigger with the mu metal ferromagnetic core. Please see Figure 30 below:

e

Figure 30. Torque coils made in-house.

The ACS controller decides how much the torque coils are magnetized. The controller
works on the Teensy 3.5 flight computer. The flight computer uses an IMU to measure the
actual rotational velocity. Based on the rotational velocity input, the controller gives a pulse
width modulation (PWM) value to the coil. Since the flight computer has low power, an H
bridge is required. The H bridge powers the torque coils in proportion to the PWM value
from the flight computer. The PWM level controls the strength of the magnetic torque coils.

Besides the coils themselves, all the other components are cheap, commercial off-the-
shelf (COTS) parts that can be easily bought online. They are not space-rated but rather
hobbyist microcontrollers, electronics, and sensors. However, similar products have been
used in space with very dependable results. The system, including the flight computer, can
be built for less than USD 100. Compared to the cost of other ACS systems on comparable
missions, our system was very cost-effective.

4.3. Attitude Control

The design of the CubeSat ACS system involved both passive and active methods.
The satellite’s shape and the controller gains were adjusted to try to reduce power use. The
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(a)

tradeoffs were between satellite stability and controller robustness. These three factors
were fine-tuned so that the ACS system satisfied the system-level requirements.

4.3.1. Passive Techniques

The CubeSat had limited power, so it used passive methods to control its attitude. The
CubeSat’s passive ACS worked by adjusting the mass distribution. Mass distribution had
two benefits: it kept the CubeSat balanced on each axis to prevent tilting or shaking, and it
made the z axis the most dominant principal axis (requirement 2.0 in Table 5). Lead weights
were arranged in a square shape in the XY plane. They were in the light sail compartment
opposite the electronics. The lead was placed there to make the CubeSat weight even along
the z axis. Steel weights were also added, pointing along the z axis direction. They went
around the edge of the CubeSat, up and down the inside of each of the side-facing panels.
Having both the lead and steel weights on the outside of the CubeSat made the principal
moment of the inertia axis line up with the geometric z axis. Figure 31 shows how the mass
was placed.

d
]

I
(b) (c)

Figure 31. Passive ACS techniques used in Alpha: (a) lead weights to increase the moment rotational
moment of inertia; (b) steel weights to balance the center of mass toward the middle of the CubeSat; (c) the
rotational z axis and the geometric z axis within 5 deg for stability. Image Credit: Josh Umansky-Castro.

4.3.2. Active Techniques

The CubeSat has a controller algorithm that is an active way to improve the ACS
system. The controller algorithm uses two controllers for different purposes: one for
spin stabilization and one for axis alignment. This controller was initially developed by
Armin [18].

Kane Damper

The ACS system uses a Kane damper as its first controller. The Kane damper is a
controller that imitates a rigid body with a frictional damper acting on it. The algorithm
simulates a situation where the spacecraft has a spherical inner chamber. There is a sphere-
shaped mass inside this chamber that is slightly smaller, and a thick liquid around it.
The CubeSat is slowed down by the imaginary difference in angular speeds between the
spacecraft and damper. Figure 32 explains this better.

The simulated situation has two adjustable coefficients: the moment of inertia of
the inner sphere, Id, and the damping constant of the viscous fluid, c. The inner mass is
simulated as a sphere, so the moment of inertia can be simplified as a coefficient times the
identity matrix. Changing the Kane damper can therefore be performed by changing two
scalar values. A surface plot can be made, performed by Davide, to pick a set of values that
best improve the stability and convergence of the controller (Carabellese) [19].
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Figure 32. Kane damper model.

PD Controller

Pointing is the second component of the ACS system. It is activated by a toggle switch
in Simulink. It uses a proportional derivative (PD) controller to achieve pointing. A PD
controller is a feedback controller that changes its system outputs based on the error, which
is the difference between the desired value and the real time value. The PD controller
does this by (1) a proportional relation to the error and (2) a derivative relation to the error
history. Figure 32 below illustrates the feedback process.

The proportional control is calculated with each feedback loop iteration. The reference
value is marked as “ybar” in Figure 33 below. The current value is marked by “y”. The
error, “e”, is the difference between the reference and feedback values. The proportional
control is adjusted by the gain constant “Kp”. The output can be proportionally scaled to
the size of the error.

L 3

Kp e(t)

ybar(t}{_;e(t) 2 u(t) Plant ,

K, d/dt (e(t)) J

Figure 33. PD feedback block model.

The derivative control is based on the slope of the line that touches the last two or more
feedback loop iterations. The line’s direction is considered to avoid going over the reference
value. It can also help counter some disturbances. The derivative control is changed by
the gain constant “Kd”. Proportional Integral Derivative (PID) controllers are common
and widely used in many industries. Adding the integral component helps counter more
disturbances and makes sure there is no steady-state error. However, it also makes the
controller more expensive and slower to run. The communication requirement allows for a
small steady-state error that the PD controller may have. The requirement for our settling
time is to reach a steady state in 8 h. Simulations suggested that settling time would not be
a problem. Therefore, making sure of the system’s robustness was more important. This
meant keeping the computational load on our flight computer low to reduce risk. Since
the flight computer controls the whole satellite, it was decided to keep computation low to
lower risk.
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Validating PD Control Method

We wanted to make sure that the PD controller was the best controller for meeting
our requirements, so we compared our system to the common controllers in the industry.
The comparison included the P + V controller, the P + V Double Integrator Controller, the
Double Integrator Gain Tuning Controller, the 2DOF Feed Forward Controller, the P + V
Control Law Inversion Controller, the Open Loop Guidance Controller, and the Real-Time
Optimal Controller. These are the standard controllers in the field. For the final control
report, we tested and compared six other controllers based on controller quadratic cost,
computation time, rise time, and stiffness. We measured these values based on how well the
controller could move from rest to a position of one without any units. We then compared
the results to those of a PD controller. Table 6 below shows the results.

Table 6. Characteristics of optimized industry standard controllers.

Quadratic Cost 0 End Point Error 6 Standard Deviation Rise Time
PD controller 1.309573 9.28393 x 102 4.857353 x 102 857 x 1071
P + V Controller 55.709082 8.239661 x 1073 1.061509 x 102 3.90 x 1071

P + V Double Integrator 2.544054 1.216665 x 101 1.044603 x 102 N/A*
Double Integrator gain tuning 6.579885 1.087292 x 10~! 1.085613 x 1072 7.80 x 1071
2 DOF feed forward 6.147382 2911532 x 1072 1.115621 x 102 8.00 x 1071
P + V Control Law Inversion 6.127791 2.929454 x 102 1.106685 x 102 8.00 x 1071
Open loop guidance (DQC) 6.181200 5.775071 x 1073 5.761962 x 102 8.00 x 107!
Real-Time Optimal Controller 6.169038 1.865604 x 10~° 2.710996 x 103 8.10 x 1071

* does not have a formal rise time.

The different controllers have trade-offs, so to establish optimality the results depend
on the specific system and its needs. For the CubeSat, low quadratic cost was the opti-
mization criterion. Quadratic cost is a measure of acceleration over a time interval, which
relates to power usage. Requirement 4.0 in Table 5 states that the power must be below
0.9 watts. This requirement was the most restrictive for the control system since the rise
time requirement (requirement 3.0 was easily satisfied by all the controllers). As shown in
Table 6, the PD controller has the lowest quadratic cost. To further verify the robustness of
the PD controller, the rise time was measured as a function of the timestep. A low sensitivity
would fulfill requirement 5.0. Since the Teensy microcontroller runs both the ACS and the
flight code, the sensitivity of the rise time was tested to reduce the computational load for
the ACS and integrate the controller with the rest of the flight software. It was found that
the timestep had very little impact on the rise time. The flight computer could therefore
run at a larger timestep if needed. See Table 7 below.

Table 7. Robustness of the controller to varying sample rates.

Sample Rates (Seconds) Rise Time (Seconds)

0.1 8.67 x 101
0.01 8.29 x 101
0.001 8.20 x 101

The PD controller was confirmed as the best choice for our ACS system because of the
minimal quadratic cost and the stability of the rise time for different timesteps.

4.3.3. The Controller Software

The ACS software for Alpha is built in Simulink with the parameters set in a MATLAB®
script. The Simulink model has a controller that can switch between the Kane damper
and the PD controller when needed. A plant was added to simulate the system dynamics.
The final goal was to put the controller that was tuned in the end into the Arduino flight
code as a C++ library file. Davide Carabellese created the original code for his master’s
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thesis [19]. However, traceability was needed to meet the system requirements for the
CubeSat ACS. Traceability began with naming each flow with the correct variable. Also,
at every point where something interacted, the equation that was used was referenced.
Referencing each calculation made it possible for outside experts to easily check the control
algorithm. Each step could be linked back to a basic equation, ensuring the algorithm was
accurate. After traceability was performed, the controller was checked for functionality.
A Verification Cross Reference Matrix (VCRM) was used to check for functionality. The
VCRM showed the changes that were needed in the code. Some of the values that were
changed were the starting spin conditions, expected orbital inclination, orbital height, the
mass of the CubeSat, the number of loops in each coil of the magnetorquer, and the area
of the magnetic torquer. These variables were redefined in the MATLAB® script. The
controller was checked by running a simulation with a plant model of the dynamics. When
the simulation ran, it was clear that a certain parameter made the controller achieve stable
steady-state values too quickly. See Figure 34 below for the first results of the simulation.

Steady State Convergence: wye =[0.06 -0.05 0.07], wgs =[0 0 1]
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Figure 34. Unrealistic convergence of Kane controller.

The CubeSat ACS parameters were tested for validation after seeing the simulation
outcomes. The first try was to revise the principal moment of inertias. Experimental
moments of inertia values were needed because the values estimated by SOLIDWORKS
lacked many of the smaller components, making their evaluation artificially low.

Experimentally Calculating the Moment of Inertia of the ChipSat

The angular acceleration is found using Newton’s second law of rotation and acquiring
Alpha from the net torque that the magnetic torque coils apply and the CubeSat’s moment
of inertia. So, to make the CubeSat stable dynamically, the moment of inertia needs to be
known well. See Equation (5) below.

Ixc%Jx + (I — L) wyw; = My
Iygy + (Ix — L)wyw, = My, (5)
Lw; + (Iy — Iy)wywy, = M;

The SOLIDWORKS model was used to initially estimate the moment of inertia, but
it did not account for many of the wires and other components that were hard to draw.
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To check the values obtained and assess their precision, a more accurate calculation was
required. The moment of inertia was then calculated experimentally by measuring the
pendulum motion of the CubeSat spinning around its axes. The experiment involved
setting up a bifilar pendulum. The pendulum was made by hanging the CubeSat from two
fishing lines at a height, h, from the hang point to the pivot point. The two fishing lines
were spaced diagonally across the CubeSat at a distance, D. Distance D was kept constant
(the fishing lines were vertical). Figure 35 below shows the experiment setup.

(a) (b)

Figure 35. Moment of inertia testing setup [40]. (a) Diagram of setup; (b) Live picture of setup

as tested.

The setup in Figure 35 was used to give the CubeSat a small initial rotational displace-
ment. The oscillations’ period was computed. To reduce human error, the period of three
successive oscillations was measured and then corrected (divided by 3). For more accuracy,
the harmonic evaluation was repeated five times and averaged again. A final period was
obtained. The CubeSat was spun around the other two axes, and the experiment was
performed again. The periods were calculated around the other two axes. Equation (6)
below shows the equation for the period of a bifilar pendulum. Note that Equation (6) is
based on a small displacement angle.

4w | hl
=5 g ©
Deriving for the moment of inertia, Equation (7) is solved for the following:
_m ¢D?T?
"= 6 @

Using the known values of the CubeSat’s mass, the separation distance, and the
bifilar pendulum’s length, the periods recorded allowed for the calculation of the moment
of inertia in each of the principal directions. The inertia matrix was determined using
the principal moments of inertia that were found. Since the alignment of the maximum
principal axis of inertia was within 5 deg of the z axis, the off-diagonal elements were
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negligible and made zero. Equation (8) below shows the resulting inertia matrix. The units
of the inertias are grams per squared millimeter.

2,109,759.45 0 0
0 1,983,906.17 0 (8)
0 0 2,308,281.50

The CAD estimated values are shown below. Refer to the values in Equation (9).

2,050, 068.12 —1682.74 —1901.26
—1682.74 1,652,976.53 81,119.53 )
—1901.26 81,119.53 2,193,395.14

The calculated values are very close to the SOLIDWORKS predictions. The principal
axis moments are the main factors that affect the CubeSat’s behavior and have similar sizes.
All the off-diagonal entries are much smaller in size by a factor of 20-100 times. Therefore,
it can be reasonable to ignore them. The calculated principal moment values are all higher
in proportion than the SOLIDWORKS ones. The difference is explained by the wires and
other features that the SOLIDWORKS model does not include. The values derived from
the experiment were always larger. Although the experimental values were 5-20% bigger,
the difference was not big enough to be the only reason for the fast rise time shown in
Figure 36. Therefore, the next verification was performed to check the magnification factor
of the mu metal rod in the magnetic torque coils.

Steady State Convergence: wye =[0.06 -0.05 0.07], wgs =[0 0 1]
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Figure 36. True convergence of Kane controller.

Calculating the Amplification Factor of the Mu-Metal Core

To measure the magnetic strength of the torque coils precisely, we needed to know
how much the mu metal rod amplified it. We had used an estimated amplification factor
before based on values from material charts, but we had never tested it experimentally
for our system. To achieve the amplification factor of the torque coils on the CubeSat, we
had to find the magnetic dipole. We used the IMU magnetometer to measure the dipole.
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Dr. Lee derived the equation we used to calculate the magnetic dipole of the coil [41]. See
Equation (10).

-1
Ry 1 Ry 1
_ 4 L2 _ T3 (10)
Ho 2 232 2 2)%/2
(R - RiL+5) (R~ ReL+ )

Ry is the distance between the coil and the magnetometer, and L is the coil’s length.
The units for the magnetic field, B, are Teslas. By knowing the magnetic dipole of the
magnetorquer, the amplification factor could be calculated from the current that was
applied (1), the coils that were used (N), and the area of the cross-section (A). Refer to
Equation (11):
Mdipole

NIA

An Arduino program was created to switch the magnet coils on and off. The coil’s
radius and length were measured. The coil’s distance from the IMU was also recorded.
The magnetic field was found to be 55 uT. This was derived to be a magnetic dipole of
0.0619 amps~m2. The amplification factor was calculated using Equation (11) to be ~13.5 to
14. The experimental result for the amplification factor was much lower than the theoretical
one. The amplification factor was about 10% of what was expected before.

AF = (11)

ACS Verification Conclusion

The controller code was checked and confirmed, and the results are shown below.
The x, y, and z axes were given initial tumble angular speeds of 0.06, —0.05, and 0.07,
respectively. Refer to Figure 36.

Euler’s coupled equations of motion were used to mathematically verify the model.
The rotational motion along the x and y axes is not relevant for the z axis rotational
motion since they are both zero. The simplified equation yields an asymptotic exponential
increase function. The velocities along the x and y axes, on the other hand, are very
interrelated. The general solution to these coupled equations shows sinusoidal behavior.
This matches the prediction, as seen in Figure 36. The convergence time is more acceptable.
The controller is expected to take 25-35 min to stabilize the CubeSat. The oscillations
can also be theoretically explained by the damping of the system. Looking at Figure 36,
the system appears to be nearly critically damped. A critically damped solution satisfies
requirements 1.0 and 2.0 since the system is successfully detumbled and spin stabilized.
The TRL of the control system increased from a three to a five due to the measures discussed
above. The improvements in TRL were achieved through adding traceability of the model to
the respective requirements, verifying the constants, and conducting a rigorous validation
of the parameters. Further technological development could be performed by testing
the controller experimentally in an air-bearing environment and ultimately launching a
CubeSat into low-earth orbit (LEO) to test the rotational kinematics.

4.3.4. The Hardware

After the software simulation stage was completed by the ACS code, the hardware
ACS could be tested. Software was first used to confirm that the ACS actuation matched
the controller’s outputs for different scenarios and to check that the plant model behaved
in reality as expected by theory.

4.3.5. Tested Software on Teensy Flight Computer

All the hardware components in the ACS system were checked by verification testing.
The microcontroller was the first component to be tested. It is a Teensy 3.5 microcontroller,
and it is used for Alpha. The CubeSat’s flight software is run by the Teensy 3.5 controller.
The testing of the microcontroller’s hardware was to make sure it met requirement 5.0 in
Table 5.
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The ACS controller algorithm was added as a library [13] to the flight software of the
Teensy and then tested. The script was run using the plant model in the code of the Teensy.
Controller runtime, computational speed, and accuracy were measured and plotted. These
plots were compared with the MATLAB® /Simulink simulations. No major differences
were seen. Different timesteps were tested. A refresh rate of 0.01 s was chosen for using
the Teensy. This timestep is a safe estimate because the Teensy was also running the plant
simulation, which it will not do when it is deployed. A test was performed where the
Teensy would keep running until the plant had steady values. The test was repeated three
times consecutively. The Teensy was verified to be able to run the ACS control algorithm.

4.3.6. Magnetic Torque Coil Endurance Tests

The magnet coils were the next parts that were tested. There were two aspects of testing
the endurance of the magnet coil: checking that the hardware could handle quick and
frequent changes in PWM and checking that the system could stay on for long durations.
The Teensy was connected to the H bridge which was connected to one torque coil for
each of these tests. The IMU was not used and the PWM values were chosen randomly or
periodically instead. The electrical diagram of the setup is shown in Figure 37.
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Figure 37. Circuit setup (a) Wire diagram of the ACS endurance testing; (b) Live picture of setup
as tested.
Longevity Test

The system’s ability to run for a long time was tested in the longevity test. When the
CubeSat leaves the ISS, the ACS system might need to run nonstop for several hours to stop
tumbling and achieve its spin target. To check the reliability of the ACS subcomponents,
especially the H bridge and the coil, a longevity test was conducted for two days. In this
test, the PWM values were gradually increased from 0 to 255 for both polarities of the coil.
Each PWM value for each current direction lasted for ten microseconds. The coil would
change its polarity roughly every 2.5 s. A mechanical gyroscopic compass and timer were
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used to perform verification. Figure 38 below shows the verification of the functioning coil
using the gyroscopic magnet.

Figure 38. The gyrocompass measuring the magnetic field of the torque coil.

The loop ran nonstop for two days. During that time, the magnetic field was measured
using the gyroscopic magnet. The system remained active and precise for the whole period.

Fluctuation Test

The ACS system was tested to see how accurately it could respond to large and
fast changes in the PWM value. This is because the controller might need to change the
power drastically while detumbling due to the oscillating torque values from the Kane
damper. It was observed that the flight computer had a typical reaction time of about
3 ms. So, a program was written to randomly pick a PWM value and current direction
every 3 milliseconds. The magnetic field was then checked with the gyroscopic magnet. It
seemed to change at an interval of a few milliseconds as a preliminary test. More testing
was performed later using the IMU.

Also, longevity was tested again. Longevity tests were performed to see if the fluctua-
tion over time would damage any of the hardware. The magnetic fields were measured
every few hours. There was no noticeable change in the magnetic field strength, and the
system worked similarly after two days.

4.3.7. Kane Damper Tuning

The ACS performance was improved by adjusting the Kane damper. A rough trial-
and-error estimate was used to find the approximate convergence range of the CubeSat
system. These initial values were also the starting point for the search algorithm discussed
later. After choosing stable Id and c values, the controller was tested for robustness by
changing the initial kinematic conditions. The controller showed robustness at different
initial conditions. Lastly, a MATLAB® algorithm was written to fine-tune the Kane damper.

The Kane damper was tuned with nested loops. The loops changed the scalar moment
of inertia, Id, and the damping constant, ¢, of the damper. Since both values are directly
proportional to the angular velocity, it was assumed that the surface plot would be smooth
and continuous based on the plot made by Davide (Carabellese 39). The Kane tuner
optimized computational time using a very coarse search. Instead of finding a precise
array of damping constants and moments of inertia, the code would find a region with the
fastest convergence time. For example, the parameters could be set up to find 25 values by
increasing each variable (Id and c) by 5. A minimum rise time of the controller would be
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found for the coarse search. The nearby region would be zoomed in on and further searched.
This convergence region would avoid wasting computational time finding precise solutions
that are clearly not in the optimal region.

This confining search optimization technique is only possible because the surface plot
is known to be smooth and continuous based on linearity. The plot referenced can be seen
in Davide Carabellese’s thesis [19]. A visual representation of the first step of the confining
search optimization formula can be seen below in Figure 39.

<+— ¢ —mM8

Figure 39. Confining search algorithm. The red dot symbolizes optimal result, within resolution of
the search algorithm.

The 25 solutions are displayed as dots in Figure 39, with the best one in red. A zoom
can be used to search more finely in the chosen area. The region closest to the red dot (half
a deviation in each direction) becomes the new search region. The answer is bound to be in
this region since both Id and c are related to the angular velocity. This means that the max
and min are set to be half a deviation above or below the optimal solution. The updated
search region is displayed below in Figure 40.
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Figure 40. Zoomed-in search region. The red square symbolizes the region in which the optimal
solution lies.

The zoom goes on until the required level of accuracy is reached. But if the best
solution is on the edge of the search area, the problem becomes more complicated. Look at
Figure 41.
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Figure 41. Optimal solution found on the border. This is shown by the red dot.

In this situation, the answer might be right at the edge, or it might be outside of the
search area. The MATLAB® script will show a popup window for the operator to choose.
The program can either keep searching along the edge or it can independently enlarge its
search area. If independently enlarged, the search area will increase by the same interval
as originally set. But it will also keep a half unit inside the old area in case the operator is
mistaken and the answer is near the edge. See Figure 42.

— c —

Figure 42. Borderline search region with autonomous search region expansion. The red square
symbolizes a growth in the search region in order to search beyond the boarder.

Because the zoom did not succeed, the zoom factor will not increase by one.

The operator might pick the other option if they must enlarge the search region or if
they think that the best solution is inside the original definition. If they choose to keep the
original search parameters, they will maintain the same search area and keep zooming in
on the edge. See Figure 43.
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Figure 43. Borderline search region without expansion. The red square symbolizes a decision not to
expand the search region, but to confirm a boarder result by searching within the convergence field.

Figure 43 shows that the zoom will follow the border. The result was obtained
by finding the three indices where each of the three angular velocities X, Y, and Z met.
The index of the longest settling time of the X, Y, and Z angular velocities was noted.
The note was made because the ACS would be seen as converged when all the desired
angular velocities had been achieved. The index of total settling time was contrasted as
the algorithm increased Id and c. When a lower index was found, it would take over
the previous one and note the respective Id and c values. Figure 44 below presents a
pseudocode that illustrates the logic that was mentioned.

if max([index(1),index(2),index(3)])<num
num=max([index{1),index(2),index(3)]);
bestc=c;
bestld=Id;

end

Figure 44. Pseudocode to find optimal Id and c.

The tuner’s performance was measured by the time it took for the system to reach the
target conditions. The time of convergence was determined by finding the point where the
average of the previous “n” values was within a “m” percent range of the desired angular
speeds. Moreover, to ensure the stability of the solution, the final value was checked to see
if it stayed in the convergence range. For the tuner, 5 and 20 were selected as the values of
“n” and “m”. See Figure 45 below.

The MATLAB® code was executed at a zoom level of 3. The MATLAB® optimization
code produced the best values for Id and ¢, which are shown in Table 8 below. Using
these values, the controller achieved its convergence in 21 min. A 21 min convergence time
satisfies requirement 2.1.

Table 8. Final Id and c calculated to optimize the CubeSat Kane damper.

Id c
0.07 0.0025
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Figure 45. Convergence criteria. n number of points within an m% region of convergence, and the
endpoint must lie in the region of convergence. (n =5 and m = 10).

4.3.8. Tuning the IMU against Electronic Induced Offsets

The IMU measures the earth’s magnetic field, so it needs to avoid being affected by the
CubeSat’s own magnetic fields. To measure the earth’s magnetic field correctly, the IMU
needs to be calibrated to remove the impact of the CubeSat dipoles. The CubeSat produces
two types of magnetic offsets: hard iron offsets and soft iron offsets. The hard offsets are
the magnetic fields that come from the electronics onboard. The hard offsets are a constant
value that can just be subtracted from the IMU reading. The soft iron offsets, however, are
more complicated because they vary depending on the controller. The offsets come from
the magnetic fields created by the magnetic torquers.

To explain the effects of these better, the hard iron offsets are displacement vectors.
The offsets shift the three-dimensional readings linearly. The soft iron offsets, on the other
hand, are distorted by a transformation matrix that depends on the power of each magnetic
torque coil. See Figure 46 below.

Moreover, the CubeSat’s temperature had fairly big impacts on the readings from the
magnetometer. Our model would also need to consider these effects.
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Figure 46. Effects of hard iron and soft iron offsets. (a) Skew matrix, and (b) displacement vector.

Soft Iron Offsets

The magnetic torque coils produce soft iron offsets that will taint the IMU readings.
The soft iron offsets differ from hard iron in that they fluctuate as a function of the power
of the system. Each of the three torque coils will affect the magnetometer reading indepen-
dently based on the current through the coil and its relative position with respect to the
magnetometer. The controller constantly changes the current in each of the three coils, and
the magnetic fields of the torque coils cause offsets that need to therefore be continuously
re-evaluated. These values are then taken away from the IMU magnetometer reading in
real time. However, it turned out that current was not the only thing that influenced the
magnetic field through the coils. Experimentation and system verification showed that the
magnetic offsets vary as the battery drains because of the lowered voltage. So, a model was
created that would give soft iron offset values based on the current input to the X, Y, and Z
coils and the current battery voltage.

PWM Offsets

To achieve the pulse width modulation (PWM) offsets, data were gathered for how the
magnetometer’s magnetic field changed in the X, Y, and Z directions for each of the three
coils. Each coil creates a three-dimensional offset vector because there is a displacement
vector between the IMU reference frame and the coil’s reference frame. With three coils,
nine different offset values were obtained (three coils with three dimensions each). These
were added together, giving an overall three-dimensional offset vector. The data collection
script was sent to the CubeSat with an instruction to turn the magnet coils on for one second.
Magnetometer readings were taken every 0.0015 s. Every ten readings were averaged and
shown on the serial monitor. Using a serial monitor to .txt file converter called PuTTY, the
data were saved and later copied into an Excel sheet. A marker was also shown to clearly
indicate the interval when the coil was on. Once imported into Excel, these measurements
were then averaged again, before and after the markers. The averages while the coil is on
in the X, Y, and Z directions were compared to the same respective averages while the coil
is off. The resulting vector represents a three-dimensional offset for the coil tested.

During the experiment, one coil was turned on at a time, beginning with the X coil.
The PWM value was increased by increments of five, starting from 255 to 0 in the forward
and reverse direction. The offsets were measured as a three-dimensional vector, a function
of the input PWM level. After making a matrix with offsets over the PWM range, the raw
data were loaded into MATLAB®. A script was written to help an operator find the order
of the best-fit polynomial. The line of best fit was then plotted on top of the raw data. To
assess the goodness of fit, a root mean squared error (RMS) was calculated and displayed
in the legend. The second and third-degree polyfit models had the highest marginal return.
See Figure 47 for a three-degree polyfit below.
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Figure 47. X Coil 3-degree polyfit IMU offsets.

Similarly, the same method was applied to increase the PWM values in the Y and the
Z magnetic coils. Comparable graphs were created. See Figure 48.

Soft Iron Offsets Calibration Y Mag Coil With a 3 deg Polyfit
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Figure 48. Cont.
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Soft Iron Offsets Calibration Z Mag Coil With a 3 deg Polyfit
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Figure 48. (a) Y coil 3-degree polyfit IMU offsets. (b) Z coil 3-degree polyfit IMU offsets.

The above nine polyfits show how each of the three magnet coils affects each of the
three coordinate axes. By adding all three magnet coil effects, these equations could be
combined into just three: total X offset, total Y offset, and total Z offset. Each of these
three final equations would depend on all three PWM value inputs to each of the magnetic
torque coils. To adjust the curves above properly, the CubeSat battery voltage was measured.
Comparing it to the battery charge would give a reference for the voltage correction. The
CubeSat had a full battery (4.2 V) when the PWM tests were performed.

Battery Voltage Offset Correction

We noticed that the soft iron offsets decreased as the CubeSat’s battery voltage went
down. The battery voltage could vary from 4.2 to 3.7 volts over the charge cycle of the
battery. The ACS would automatically shut down to save power if the battery went below
3.7 V, so we did not consider lower voltages. The change in voltage from a full to an
empty battery did not affect the magnetic field much. The differences were 1-2.5 times the
resolution error of the IMU magnetometer. We first thought of a linear subtraction because
it was fast and easy. But we knew that the PWM and offset correlation was not linear, so
this method seemed too simple. We did not need the extra precision, but we calculated a
correction coefficient instead. We collected data by connecting the CubeSat to a variable
power supply and changing the voltage from 4.2 to 3.7 volts by 0.1 volts each time. We
did this for each of the three coils, and the changes in offsets were measured along all
three coordinate axes by the IMU. The PWM value of each coil was set to 255. We did nine
experiments in total. The average change in the offsets from 4.2 to 3.7 volts was recorded for
all nine cases. The value was then normalized. The normalization was performed to find the
fraction of change in the offsets compared to full battery conditions. Since the experiments
were performed at a PWM value of 255, normalizing against the 4.2 volt 255 PWM value
would give the percentage of change in the offsets at 3.7 volts. This value shows the
proportional difference in the magnetic offsets between a full battery and 3.7 volts. We
programmed a linear gradient that could use any input voltage and correct the change
in offsets accordingly. Subtracting the value from one would show the factor by which
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the polyfit would have to flatten, the correlation coefficient (Ccorreration )- See Equation (12)
below. Here of fset(PWM(255) , battVolts) represents an interpolated instantaneous offset
(based on battery voltage), and of fset(PWM(255) , battVolts)) represents the offset at full
battery (which is used to normalize).

c _q_ of fset(PWM(255), 42V ) —of fset(PWM(255) ,battVolts)
Correlation = of fset(PWM(255), 42V)

(12)

This equation uses the “offset” function to achieve the magnetic field offsets at the
conditions in the parenthesis. The variable battVolts is the current battery voltage. Using
Equation (12), all nine correlation coefficients were calculated. The resulting coefficients
were then multiplied by each of the corresponding nine polyfits based on the PWM values
(explained in the previous section). This method was accurate both experimentally and
theoretically. If the battery is full, the correlation coefficient is 1, and nothing changes.
As the battery drains, the coefficient is adjusted according to the difference in the offsets
measured experimentally. If the battery voltage was zero, each of the polyfits would be
zero, as expected. The polyfit approach is therefore much more reliable and robust than a
simple linear subtraction. To test the soft iron solution, offsets were predicted using the
model with random PWM inputs. The IMU offsets matched the predictions. Therefore, the
battery model satisfied requirement 6.1 in Table 5.

Hard iron offsets are the effects that the electronics on the CubeSat have on the
magnetometer readings. These are static magnetic fields that exist whenever the satellite
is on. To find the hard iron offsets, a procedure from Adafruit was followed (LeBlanc-
Williams, Adafruit, 1 June 2020). A detailed procedure can be found in the references. To
find the hard iron offsets, the IMU had to be on. The IMU was started using a sample
Arduino script from the Adafruit sensor library. Running the script turned on both the
gyroscope and the accelerometer. With both, the IMU could know how it was being
moved relative to the gravitational field. Also, the magnetometer was on to sense the
constant offsets surrounding the sensor. With these sensors active, the resulting values
could be read by other software. The software used was called “Motion Sensor Calibration
Tool”. Downloading this tool allowed for the hard iron offsets to be calibrated by rotating
the CubeSat around the IMU. Datapoints were collected as the CubeSat was rotated. A
trajectory path was drawn with each rotation. Once enough of the surface area had been
drawn, offset values were shown. Figure 48 below shows a snapshot of the process.

Figure 49 shows a clear contour that demonstrates the rotational field of the IMU.
The upper right-hand corner displays the hard iron magnetic offsets. The experiment was
repeated five times, and the values were averaged. Table 9 below shows the results of
each trial.

Table 9. Hard iron offsets recorded to calibrate the IMU of static EM radiation from onboard
electronics.

Trial X Offset Y Offset Z Offset
1 —14.80 35.81 7.13
2 —13.10 36.68 7.04
3 —13.50 36.80 6.30
4 —13.70 34.78 7.46
5 —13.15 36.22 6.71
avg —13.65 36.058 6.928

The motion sensor calibration tool gave very accurate and consistent measurements,
as shown in Table 9. These values met the requirement 6.0 in Table 5. The soft iron offsets
were added to these values to achieve the total iron offsets.
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Figure 49. Motion sensor calibration tool shows hard iron offsets.

4.3.9. Temperature Offset

The temperature of the CubeSat was another correction factor that was considered.
It was observed that the IMU's offset reading goes up as the CubeSat’s temperature goes
down. This correlation was expected to be due to lower resistance in the IMU. Experimental
data were gathered in a suitable temperature range that the CubeSat might encounter in
LEO. A case study showed that CubeSats in LEO often have temperatures ranging from
—5 degrees Fahrenheit in the Earth’s shadow to 130 degrees Fahrenheit when exposed to
the sun’s light (Dinh 11). Ambient conditions tend to vary a lot more. But, because of the
satellite’s spin, residual heat, and waste heat from the electronics, the temperature is more
stable. To test for hysteresis, the experiment was divided into two different parts. In the
first experiment, the CubeSat began at room temperature, 73 degrees Fahrenheit. It was
wrapped in an ESD-safe bag and moved into a cooler with dry ice to observe the effects
of cooling. The temperature and magnetic field were recorded. Just like the procedure
used when calculating soft iron offsets, the temperature and magnetometer values were
averaged over ten values. However, data was only printed to the serial monitor every ten
seconds. A bigger timestep was used to fit the longer characteristic time of the test and to
avoid too much data. The magnetic field strength was measured until a temperature of
—18 degrees Fahrenheit was reached. The next test was performed starting in the dry ice
and moving the CubeSat under heat lamps. These heat lamps were meant to imitate solar
radiation. The CubeSat was placed on an ESD bench and allowed to heat from —18 deg to
134 deg Fahrenheit. Again, the magnetic field was recorded throughout the test process.
A continuous dataset of magnetic fields from low to high temperatures was recorded. To
evaluate the offsets, the magnetic field at ambient temperature was subtracted from both
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Magnetic Field offset (uT)

datasets. The sets were compared to each other to check for hysteresis errors. Please see

Figure 50.
16 2r 2r
(¢ ¥ X Offset decreasing * Y Offset decreasing #  Z Offset decreasing
Fo 8 S
o - 1 Se @
ol o ® Bo*
C o0
D CQ?
of 2 B
Vo0 g%
ol @ D
;\ 2 fo) o0 %90 @
_— - o - A0 Eé
=3 = “F Y 09500°0° “:%/3‘(:
S 1 [} o) o 2 (’_v
- = o +EF
(7] Q 0o . & =
= 4 n | “ﬁi@, 10° J8o
o bl B F Frx
O © &% o F &
- o o *%. Yk
— - O oM Ay
' T | 83 * &A% .
iT 3F0° g WF % ¥
O P L - h‘“\gjﬁt #ar o+ %
40_)’ # 3 2 o a 7‘3*’3 »'H;
-— - r
C - ch L+ #”} .+ * +
% m [e)) <4 £ tﬁ *
S gt S | B!
+ = w o
5 -:&-#17-
- af
8@ L
¥ *
-10 & -
& 6+
o o
(e}
*
5 1 L L L 42 1 1 1 L ! 1 L 1 1
20 -0 0 0 20 20 -0 0 10 20 20 10 0 10 20
Temperature Temperature Temperature
(:C) ("C) (°C)
(a) (b) (c)

Figure 50. Negligible hysteresis error in temperature offset. (a) x axis magnetic field offsets as a
function of temperature increasing (blue) and decreasing (red); (b) y axis magnetic field offsets;
(c) z axis magnetic field offsets.

After examining the data, the error was determined to be insignificant compared to the
IMU'’s resolution. The dataset with increasing temperature was chosen because it covered
the whole range of interest from —18 deg Fahrenheit to 134 deg Fahrenheit. A polyfit was
applied to the dataset with an increasing temperature. The best degree of fit was found by
gradually increasing the fit order and looking at the small diminishing returns in terms of
the RMS error. A third-degree polynomial was the most effective. See Figure 51.

The temperature model was validated in a similar way to the soft iron model. The
experimental values matched the simulated ones closely. The resemblance indicated that
the temperature model satisfied requirement 6.2 in Table 5. The polyfit equations shown in
Figure 51 above could be combined with the soft and hard iron offsets to obtain the final
offsets of the IMU magnetometer.



Micromachines 2024, 15, 455

43 of 45

Magnetic Field (uT)

25

20

-20

Magnetic Flux Due to Changes in Temperature with a 3 Degree Polyfit

— X Offset Fit
X Raw Data
¥ Offset Fit

O Y RawData

Z Offset Fit

Z Raw Data

1 | 1 | 1 1 1| |

-30

-10 0 10 20 30 40 50 60
Temperature (*C)

Figure 51. Magnetic flux due to changes in temperature with a three-degree polyfit.

5. Conclusions

The work performed for the Alpha mission used a systems approach to improve
the TRL of the ChipSat RF system and the ACS system. The progress followed the stan-
dard “Vee” diagram format. Requirements were defined throughout the design lifecy-
cle, by breaking down the concept into subsystem and component solutions. Require-
ments were traced into experimental testing, where verification and validation confirmed
prototype functionality.

Using interface and network diagrams, the system was divided into the system and
component levels. At these levels, the traceability of resources and signals was examined,
and requirements between systems were established. The theory of the model was tested
by verifying that each subsystem met its intended use. Finally, full system validation could
be performed through mission testing.

During development, confidence tests were performed to continually verify the func-
tionality of the solution. The RF system was already validated for Alpha by Dr. Manch-
ester [42] and Dr. Adams [15]. Building on their work, validation of an RTOS-based ChipSat
code with a signal ready for matched filtering and FEC was achieved. RF transmission from
a CC1310 microcontroller was tested during a balloon launch. Moreover, ground station
connections could be established during balloon testing. Signals could be received using
both a software-defined radio (RTL-SDR) and a receiver network (TinyGS). In addition,
these signals could be FEC post-demodulation. For the ACS system, both validation and
verification of the system were performed.

Discussion of the Results

The PD controller method was proven valid by comparing the solution computation-
ally to other industry-standard controllers. Tested control algorithms included the P+V
controller, the P + V Double Integrator Controller, the Double Integrator Gain Tuning Con-
troller, the 2DOF Feed Forward Controller, the P + V Control Law Inversion Controller, the
Open Loop Guidance Controller, and the Real-Time Optimal Controller. The PD controller
had the lowest quadratic cost while maintaining a robust rise time (w.r.t. the computational
timestep). Validation of the controller was performed through experimentation, including
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moment of inertia testing, amplification factor testing, and endurance tests of the hardware.
These tests showed the functionality of the respective subsystems. Once testing was per-
formed, an optimization code was written, and the optimized result showed the fastest
convergence within a defined search region. The optimal Kane Damper moment of inertia
and damping constant were 0.07 and 0.0025, respectively. Finally, tuning was performed
for the IMU. A model was created to adjust for hard iron offsets, soft ion offsets, changing
battery voltage, and temperature changes. Each regression was superimposed into one
model. The resulting code was tested at arbitrary values. By keeping a systems perspective
throughout the satellite lifecycle, the requirements for the developed systems were met.
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