Retrieval and Comparison of Multi-Satellite Polar Ozone Data from the EMI Series Instruments
Abstract
1. Introduction
2. Data
3. Methods
3.1. Deriving the Ozone Slant Column Density
3.2. AMF Calculation
4. Results and Discussions
4.1. Comparison between Multi-Satellite Total Ozone Columns
4.2. Ozone TOCs Diurnal Variations Analysis
4.3. Validation with Ground-Based TOCs
4.4. Weighted Fusion Correction
5. Conclusions and Future Work
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Appendix A
References
- Lippmann, M. Health effects of tropospheric ozone. Environ. Sci. Technol. 1991, 25, 1954–1962. [Google Scholar] [CrossRef]
- Solomon, S. Stratospheric ozone depletion: A review of concepts and history. Rev. Geophys. 1999, 37, 275–316. [Google Scholar] [CrossRef]
- Manney, G.L.; Santee, M.L.; Rex, M.; Livesey, N.J.; Pitts, M.C.; Veefkind, P.; Nash, E.R.; Wohltmann, I.; Lehmann, R.; Froidevaux, L.; et al. Unprecedented Arctic ozone loss in 2011. Nature 2011, 478, 469–475. [Google Scholar] [CrossRef]
- McKenzie, R.L.; Aucamp, P.J.; Bais, A.F.; Björn, L.O.; Ilyas, M.; Madronich, S. Ozone depletion and climate change: Impacts on UV radiation. Photochem. Photobiol. Sci. 2011, 10, 182–198. [Google Scholar] [CrossRef] [PubMed]
- Seinfeld, J.; Pandis, S. From air pollution to climate change. Atmos. Chem. Phys. 2006, 51, 88–90. [Google Scholar] [CrossRef]
- Akimoto, H. Atmospheric Reaction Chemistry; Springer Atmospheric Sciences; Springer: Tokyo, Japan, 2016. [Google Scholar]
- Farman, J.C.; Gardiner, B.G.; Shanklin, J.D. Large losses of total ozone in Antarctica reveal seasonal CIOx/NOx interaction. Nature 1985, 315, 207–210. [Google Scholar] [CrossRef]
- Stolarski, R.S.; Krueger, A.J.; Schoeberl, M.R.; McPeters, R.D.; Newman, P.A.; Alpert, J.C. Nimbus 7 satellite measurements of the springtime Antarctic ozone decrease. Nature 1986, 322, 808–811. [Google Scholar] [CrossRef]
- Prather, M.; Jaffe, A.H. Global impact of the Antarctic ozone hole: Chemical propagation. J. Geophys. Res. Atmos. 1990, 95, 3473–3492. [Google Scholar] [CrossRef]
- Grooβ, J.U.; Brautzsch, K.; Pommrich, R.; Solomon, S.; Müller, R. Stratospheric ozone chemistry in the Antarctic: What determines the lowest ozone values reached and their recovery? Atmos. Chem. Phys. 2011, 11, 12217–12226. [Google Scholar] [CrossRef]
- Wohltmann, I.; Lehmann, R.; Rex, M. A quantitative analysis of the reactions involved in stratospheric ozone depletion in the polar vortex core. Atmos. Chem. Phys. 2017, 17, 10535–10563. [Google Scholar] [CrossRef]
- Velders, G.J.M.; Ravishankara, A.R.; Miller, M.K.; Molina, M.J.; Alcamo, J.; Daniel, J.S.; Fahey, D.W.; Montzka, S.A.; Reimann, S. Preserving Montreal Protocol climate benefits by limiting HFCs. Science 2012, 335, 922–923. [Google Scholar] [CrossRef] [PubMed]
- Chipperfield, M.P.; Dhomse, S.S.; Feng, W.; McKenzie, R.; Velders, G.J.; Pyle, J.A. Quantifying the ozone and ultraviolet benefits already achieved by the Montreal Protocol. Nat. Commun. 2015, 6, 7233. [Google Scholar] [CrossRef]
- Goyal, R.; England, M.H.; Gupta, A.S.; Jucker, M. Reduction in surface climate change achieved by the 1987 Montreal Protocol. Environ. Res. Lett. 2019, 14, 124021. [Google Scholar] [CrossRef]
- Banerjee, A.; Fyfe, J.C.; Polvani, L.M.; Waugh, D.; Chang, K.L. A pause in southern hemisphere circulation trends due to the Montreal Protocol. Nature 2020, 579, 544–548. [Google Scholar] [CrossRef]
- Kerr, R.A. First detection of ozone hole recovery claimed. Science 2011, 332, 160. [Google Scholar] [CrossRef] [PubMed]
- Solomon, S.; Lvy, D.J.; Kinnison, D.; Mills, M.J.; Neel, R.R.; Schmidt, A. Emergence of healing in the Antarctic ozone layer. Science 2016, 353, 269–274. [Google Scholar] [CrossRef]
- Heath, D.F.; Krueger, A.J.; Roeder, H.A.; Henderson, B.D. The solar backscatter ultraviolet and total ozone mapping spectrometer (SBUV/TOMS) for Nimbus G. Opt. Eng. 1975, 14, 323–331. [Google Scholar] [CrossRef]
- Bhartia, P.K.; McPeters, R.D.; Flynn, L.E.; Taylor, S.; Kramarova, N.A.; Frith, S.; Fisher, B.; DeLand, M. Solar Backscatter UV (SBUV) total ozone and profile algorithm. Atmos. Meas. Tech. 2013, 6, 2533–2548. [Google Scholar] [CrossRef]
- Kuttippurath, J.; Nair, P.J. The signs of Antarctic ozone hole recovery. Sci. Rep. 2017, 7, 585. [Google Scholar] [CrossRef]
- Weber, M.; Arosio, C.; Feng, W.H.; Dhomse, S.S.; Chipperfield, M.P.; Meier, A.; Burrows, J.P.; Eichmann, K.U.; Richter, A.; Rozanov, A. The unusual stratospheric Arctic winter 2019/20: Chemical ozone loss from satellite observations and TOMCAT chemical transport model. J. Geophys. Res. 2021, 126, e2020JD034386. [Google Scholar] [CrossRef]
- Verstraeten, W.W.; Neu, J.L.; Williams, J.E.; Bowman, K.W.; Worden, J.R.; Boersma, K.F. Rapid increases in tropospheric ozone production and export from China. Nat. Geosci. 2015, 8, 690–695. [Google Scholar] [CrossRef]
- Kuttippurath, J.; Godin-Beekmann, S.; Lefèvre, F.; Nikulin, G.; Santee, M.L.; Froidevaux, L. Record-breaking ozone loss in the Arctic winter 2010/2011: Comparison with 1996/1997. Atmos. Chem. Phys. 2012, 12, 7073–7085. [Google Scholar] [CrossRef]
- Solomon, S.; Kinnison, D.; Bandoro, J.; Garcia, R. Simulation of polar ozone depletion: An update. J. Geophys. Res. Atnos. 2015, 120, 7958–7974. [Google Scholar] [CrossRef]
- Grooß, J.U.; Müller, R. Simulation of record Arctic stratospheric ozone depletion in 2020. J. Geophys. Res. Atmos. 2021, 126, e2020JD033339. [Google Scholar] [CrossRef]
- Loyola, D.G.; Coldewey-Egbers, R.M.; Dameris, M.; Garny, H.; Stenke, A.; van Roozendael, M.; Lerot, C.; Balis, D.; Koukouli, M. Global long-term monitoring of the ozone layer—A prerequisite for predictions. Int. J. Remote Sens. 2009, 30, 4295–4318. [Google Scholar] [CrossRef]
- Hilsenrath, E.; Bhartia, P.K.; Cebula, R.P.; Wellemeyer, C.G. Calibration and intercalibration of backscatter ultraviolet (BUV) satellite ozone data. Adv. Space Res. 1997, 19, 1345–1353. [Google Scholar] [CrossRef]
- Massie, S.T.; Torres, O.; Smith, S.J. Total Ozone Mapping Spectrometer (TOMS) observations of increases in Asian aerosol in winter from 1979 to 2000. J. Geophys. Res. 2004, 109, D22202. [Google Scholar] [CrossRef]
- Burrows, J.P.; Weber, M.; Buchwitz, M.; Rozanov, V.; Ladstätter-Weißenmayer, A.; Richter, A.; DeBeek, R.; Hoogen, R.; Bramstedt, K.; Eichmann, K.U.; et al. The global ozone monitoring experiment (GOME): Mission concept and first scientific results. J. Atmos. Sci. 1999, 56, 151–175. [Google Scholar] [CrossRef]
- Thomas, W.; Hegels, E.; Slijkhuis, S.; Spurr, R.; Chance, K. Detection of biomass burning combustion products in Southeast Asia from backscatter data taken by the GOME spectrometer. Geophys. Res. Lett. 1998, 25, 1317–1320. [Google Scholar] [CrossRef]
- Loyola, D.G.; Koukouli, M.E.; Valks, P.; Bails, D.S.; Hao, N.; Van Roozendael, M.; Spurr, R.J.D.; Zimmer, W.; Kiemle, S.; Lerot, C.; et al. The GOME-2 total column ozone product: Retrieval algorithm and ground-based validation. J. Geophys. Res. 2011, 116, D07302. [Google Scholar] [CrossRef]
- Hao, N.; Koukouli, M.; Inness, A.; Valks, P.; Loyola, D.; Zimmer, W.; Balis, D.; Zyrichidou, I.; Van Roozendael, M.; Lerot, C. GOME-2 total ozone columns from MetOp-A/MetOp-B and assimilation in the MACC system. Atmos. Meas. Tech. 2014, 7, 2937–2951. [Google Scholar] [CrossRef]
- Veefkind, J.P.; Aben, I.; McMullan, K.; Förster, H.; de Vries, J.; Otter, G.; Claas, J.; Eskes, H.J.; de Haan, J.F.; Kleipool, Q.; et al. TROPOMI on the ESA Sentinel-5 Precursor: A GMES mission for global observations of the atmospheric composition for climate, air quality and ozone layer applications. Remote Sens. Environ. 2012, 120, 70–83. [Google Scholar] [CrossRef]
- Garane, K.; Koukouli, M.E.; Verhoelst, T.; Lerot, C.; Heue, K.P.; Fioletov, V.; Balis, D.; Bais, A.; Bazureau, A.; Dehn, A.; et al. TROPOMI/S5P total ozone column data: Global ground-based validation and consistency with other satellite missions. Atmos. Meas. Tech. 2019, 12, 5263–5287. [Google Scholar] [CrossRef]
- Cheng, L.X.; Tao, J.H.; Valks, P.; Yu, C.; Liu, S.; Wang, Y.P.; Xiong, X.Z.; Wang, Z.F.; Chen, L.F. NO2 retrieval from the environmental trace gases monitoring instrument (EMI): Preliminary results and intercomparison with OMI and TROPOMI. Remote Sens. 2019; 11, 3017. [Google Scholar] [CrossRef]
- Zhang, C.X.; Liu, C.; Chan, K.L.; Hu, Q.H.; Liu, H.R.; Li, B.; Xing, C.Z.; Tan, W.; Zhou, H.J.; Si, F.Q.; et al. First observation of tropospheric nitrogen dioxide from the environmental trace gases monitoring instrument onboard the Gaofen-5 satellite. Light Sci. Appl. 2020, 9, 66. [Google Scholar] [CrossRef]
- Zhao, M.J.; Si, F.Q.; Wang, Y.; Zhou, H.J.; Wang, S.M.; Jiang, Y.; Liu, W.Q. First year on-orbit calibration of the Chineses environmental trace gases monitoring instrument onboard the gaofen-5. IEEE. Trans. Geosci. Remote Sens. 2020, 58, 8531–8540. [Google Scholar] [CrossRef]
- Qian, Y.Y.; Luo, Y.H.; Si, F.Q.; Zhou, H.J.; Yang, T.P.; Yang, D.S.; Xi, L. Total ozone columns from the environmental trace gases monitoring instrument (EMI) using the DOAS method. Remote Sens. 2021, 13, 2098. [Google Scholar] [CrossRef]
- Puķīte, J.; Wagner, T. Quantification and parametrization of non-linearity effects by higher-order sensitivity terms in scattered light differential optical absorption spectroscopy. Atmos. Meas. Tech. 2016, 9, 2147–2177. [Google Scholar] [CrossRef]
- Zhao, M.J.; Si, F.Q.; Zhou, H.J.; Jiang, Y.; Ji, C.Y.; Wang, S.M.; Zhan, K.; Liu, W.Q. Pre-launch radiometric characterization of EMI-2 on the gaofen-5 series of satellites. Remote Sens. 2021, 13, 2843. [Google Scholar] [CrossRef]
- Platt, U.; Stutz, J. Differential Optical Absorption Spectroscopy: Principles and Applications; Springer: Berlin/Heidelberg, Germany, 2008. [Google Scholar]
- Lerot, C.; Hendrick, F.; Van Roozendael, M.; Alvarado, L.M.; Richter, A.; De Smedt, I.; Theys, N.; Vlietinck, J.; Yu, Y.; Van Gent, J.; et al. Glyoxal tropospheric column retrievals from TROPOMI–multi-satellite intercomparison and ground-based validation. Atmos. Meas. Tech. 2021, 14, 7775–7807. [Google Scholar] [CrossRef]
- Danckaert, T.; Fayt, C.; van Roozendael, M.; Smedt, I.D.; Letocart, V.; Merlaud, A.; Pinardi, G. QDOAS Software User Manual. Available online: https://uv-vis.aeronomie.be/software/QDOAS/QDOAS_manual.pdf (accessed on 20 October 2020).
- Bogumil, K.; Orphal, J.; Homann, T.; Voigt, S.; Spietz, P.; Fleischmann, O.C.; Vogel, A.; Hartmann, M.; Kromming, H.; Bovensman, H.; et al. Measurements of molecular absorption spectra with the SCIAMACHY preflight model: Instrument characterization and reference data for atmospheric remote-sensing in the 230–2380 nm region. J. Photochem. Photobiol. A-Chem. 2003, 157, 167–184. [Google Scholar] [CrossRef]
- Vandaele, A.C.; Hermans, C.; Simon, P.C.; Roozendael, M.V.; Guilmot, J.M.; Carleer, M.; Colin, R. Fourier transform measurement of NO2 absorption cross-section in the visible range at room temperature. J. Atmos. Chem. 1996, 25, 289–305. [Google Scholar] [CrossRef]
- Vandaele, A.C.; Hermans, C.; Fally, S. Fourier transform measurements of SO2 absorption cross sections: II.: Temperature dependence in the 29,000–44,000 cm−1 (227–345 nm) region. J. Quant. Spectrosc. Ra. 2009, 110, 2115–2126. [Google Scholar] [CrossRef]
- Fleischmann, O.C.; Hartmann, M. New ultraviolet absorption cross-sections of BrO at atmospheric temperatures measured by time-windowing Fourier transform spectroscopy. J. Photochem. Photobiol. A Chem. 2004, 168, 117–132. [Google Scholar] [CrossRef]
- Meller, R.; Moortgat, G.K. Temperature dependence of the absorption cross sections of formaldehyde between 223 and 323 K in the wavelength range 225–375 nm. J. Geophys. Res. 2000, 105, 7089–7101. [Google Scholar] [CrossRef]
- Rozanov, V.V.; Rozanov, A.V.; Kokhanovsky, A.A.; Burrows, J.P. Radiative transfer through terrestrial atmosphere and ocean: Software package SCIATRAN. J. Quant. Spectrosc. Radiat. Transf. 2014, 133, 13–71. [Google Scholar] [CrossRef]
- Wellemeyer, C.G.; Bhartia, P.K.; Taylor, S.L.; Qin, W.; Ahn, C. Version 8 total ozone mapping spectrometer (TOMS) algorithm. Quadrenn. Ozone Symp. 2004, 1, 635–636. [Google Scholar]
- Vardhan, H.; Wielicki, B.A.; Ginger, K.M. The interpretation of remotely sensed cloud properties from a model parameterization perspective. J. Clim. 1994, 7, 1987–1998. [Google Scholar] [CrossRef]
- Kleipool, Q.L.; Dobber, M.R.; de Haan, J.F.; Levelt, P.E. Earth surface reflectance climatology from 3 years of OMI data. J. Geophys. Res. Atmos. 2008, 113, D18308. [Google Scholar] [CrossRef]
Parameters | EMI-GF5(01A) | EMI-GF5(02) | EMI-DQ01 |
---|---|---|---|
Spectral range (nm) | UV1: 240–290 | UV1: 240–290 | UV1: 240–290 |
UV2: 290–380 | UV2: 290–380 | UV2: 290–380 | |
VIS1: 390–530 | VIS1: 390–530 | VIS1: 390–530 | |
VIS2: 550–710 | VIS2: 550–710 | VIS2: 550–710 | |
Spectral resolution | 0.3–0.6 nm | 0.3–0.6 nm | 0.3–0.6 nm |
Spatial resolution | 13 × 24 km2 | 13 × 24 km2 | 13 × 24 km2 |
Field of view | 114° | 114° | 114° |
Reference spectrum | Monthly averaged solar spectrum | Monthly averaged solar spectrum | Monthly averaged solar spectrum |
Overpass time | 13:30 p.m. | 10:30 a.m. | 13:30 p.m. |
Parameters | Source | EMI-GF5 (01A) | EMI-GF5 (02) | EMI-DQ01 |
---|---|---|---|---|
Fitting interval | 320–340 nm | 326–334 nm | 325–335 nm | |
Polynomial order | Order 4 | Order 5 | Order 5 | |
223 K, 243 K (orthogonality) [44] | √ | √ | √ | |
298 K [45] | √ | √ | √ | |
298 K [46] | √ | √ | √ | |
BrO | 223 K [47] | √ | √ | √ |
HCHO | 297 K [48] | √ | √ | √ |
Ring | Calculated using QDOAS | √ | √ | √ |
Parameters | Node | Values |
---|---|---|
Month | 12 | 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12 |
Albedo | 9 | 0, 0.05, 0.1, 0.20, 0.30, 0.40, 0.60, 0.80, 1.0 |
RAA (°) | 5 | 0, 45, 90, 135, 180 |
Latitude (°) | 18 | −85, −75, −65, −55, −45, −35, −25, −15, −5, 5, 15, 25, 35, 45, 55, 65, 75, 85 |
SZA (°) | 18 | 0, 10, 20, 30, 35, 40, 45, 50, 55, 60, 65, 70, 72, 74, 76, 78, 80, 82 |
VZA (°) | 15 | 0, 5, 10, 15, 20, 25, 30, 35, 40, 45, 50, 55, 60, 65, 70 |
Cloud pressure (hPa) | 9 | 1013, 795, 701, 616, 472, 356, 264, 164, 96 |
VCD (DU) for AMF correction | 10 | 125, 175, 225, 275, 325, 375, 425, 475, 525, 575 |
Stations | Latitude, Longitude | Method | EMI-GF5 (02) Averaged Difference | EMI-GF5 (01A) Averaged Difference | EMI-DQ01 Averaged Difference |
---|---|---|---|---|---|
Reunion | 20.9°S, 55.5°E | SAOZ | −1.21% | −1.05% | −1.49% |
Rio Gallegos | 51.6°S, 69.3°W | Dobson | −1.53% | −2.87% | −1.98% |
Mini Saoz Paris | 48.9°N, 2.3°E | SAOZ | −4.12% | −3.25% | −3.39% |
Kerguelen | 49.4°S, 70.3°E | Dobson | 2.39% | −1.79% | −1.68% |
Mini Saoz OHP | 43.9°N, 5.7°E | SAOZ | −1.87% | −1.98% | −1.26% |
TEH | 51.32°N, 35.73°E | Dobson | −5.41% | −4.41% | −5.27% |
Dumont | 66.7°S, 140.0°E | SAOZ | −3.16% | 2.71% | 2.75% |
Mini Saoz Seychelles | 4.68°S, 55.53°E | SAOZ | 2.19% | −2.99% | −4.54% |
Marambio | 64.23°S, 56.62°W | Dobson | 2.79% | 4.63% | 2.72% |
La Quiaca | 22.11°S, 65.43°W | Dobson | 0.93% | 3.97% | 1.55% |
Station | Emi-Gf5 (02) Averaged Std | EMI-GF5 (01A) Averaged Std | Emi-Dq01 Averaged Std |
---|---|---|---|
Reunion | 2.48% | 1.98% | 2.48% |
Rio Gallegos | 3.52% | 5.27% | 3.71% |
Mini Saoz Paris | 2.01% | 4.46% | 5.61% |
Kerguelen | 5.86% | 2.91% | 3.15% |
Mini Saoz OHP | 4.07% | 3.76% | 3.58% |
TEH | 1.66% | 4.91% | 4.28% |
Dumont | 5.96% | 7.45% | 6.32% |
Mini Saoz Seychelles | 3.99% | 2.65% | 2.99% |
Marambio | 7.34% | 5.04% | 5.13% |
La Quiaca | 4.15% | 2.39% | 2.15% |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wu, K.; Xu, Z.; Luo, Y.; Li, Q.; Yu, K.; Si, F. Retrieval and Comparison of Multi-Satellite Polar Ozone Data from the EMI Series Instruments. Remote Sens. 2024, 16, 3619. https://doi.org/10.3390/rs16193619
Wu K, Xu Z, Luo Y, Li Q, Yu K, Si F. Retrieval and Comparison of Multi-Satellite Polar Ozone Data from the EMI Series Instruments. Remote Sensing. 2024; 16(19):3619. https://doi.org/10.3390/rs16193619
Chicago/Turabian StyleWu, Kaili, Ziqiang Xu, Yuhan Luo, Qidi Li, Kai Yu, and Fuqi Si. 2024. "Retrieval and Comparison of Multi-Satellite Polar Ozone Data from the EMI Series Instruments" Remote Sensing 16, no. 19: 3619. https://doi.org/10.3390/rs16193619
APA StyleWu, K., Xu, Z., Luo, Y., Li, Q., Yu, K., & Si, F. (2024). Retrieval and Comparison of Multi-Satellite Polar Ozone Data from the EMI Series Instruments. Remote Sensing, 16(19), 3619. https://doi.org/10.3390/rs16193619