Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (316)

Search Parameters:
Keywords = single molecule localization

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
23 pages, 2197 KiB  
Article
Development of AGT-7: An Innovative 99mTc-Labeled Theranostic Platform for Glioblastoma Imaging and Therapy
by Stavroula G. Kyrkou, Vasileios-Panagiotis Bistas, Evangelia-Alexandra Salvanou, Timothy Crook, Maria Giannakopoulou, Vasiliki Zoi, Maximos Leonardos, Andreas Fotopoulos, Chrissa Sioka, Ioannis Leonardos, George A. Alexiou, Penelope Bouziotis and Andreas G. Tzakos
Pharmaceuticals 2025, 18(8), 1175; https://doi.org/10.3390/ph18081175 - 8 Aug 2025
Viewed by 262
Abstract
Background: Glioblastoma, the most common malignant primary brain tumor in adults, continues to present a major therapeutic challenge, with a median survival of only 12–15 months and a 5-year survival rate below 2%. Despite aggressive treatment—including maximal surgical excision, radiation, and temozolomide [...] Read more.
Background: Glioblastoma, the most common malignant primary brain tumor in adults, continues to present a major therapeutic challenge, with a median survival of only 12–15 months and a 5-year survival rate below 2%. Despite aggressive treatment—including maximal surgical excision, radiation, and temozolomide (TMZ) chemotherapy—recurrent disease is nearly universal due to the tumor’s infiltrative nature. Objectives: To address the critical need for improved diagnostic and therapeutic strategies for glioblastoma multiforme (GBM), we have developed an innovative theranostic molecule, [99mTc]Tc-AGT-7. Methods: AGT-7 integrates diagnostic and therapeutic modalities comprising [99mTc]Tc-TF (a nuclear medicine imaging agent) and TMZ. The diagnostic component has been tailored to selectively accumulate in glioma mitochondria. A chelating moiety enables radiolabeling with technetium-99m (99mTc) for precise Single-Photon Emission Computed Tomography (SPECT) imaging. The therapeutic arm includes the tethering of a TMZ moiety for localized cytotoxicity. Conclusions: In vitro studies illustrated that AGT-7 has potent cytotoxic effects in GBM cell lines (T98 and U87), with greater efficacy than TMZ, and toxicity assays in zebrafish embryos indicated a favorable safety profile. Biodistribution studies in CFW mice demonstrated that [99mTc]Tc-AGT-7 exhibited a ~10-fold lower heart uptake compared to [99mTc]Tc-TF, implying reduced off-target cardiac localization. This significantly lowers the risk of cardiotoxicity and enhances AGT-7’s potential as a glioma-targeted theranostic agent. Full article
(This article belongs to the Special Issue Development of Novel Radiopharmaceuticals for SPECT and PET Imaging)
Show Figures

Graphical abstract

13 pages, 1269 KiB  
Article
Contrast-Enhancing Spatial–Frequency Deconvolution-Aided Interferometric Scattering Microscopy (iSCAT)
by Xiang Zhang and Hao He
Photonics 2025, 12(8), 795; https://doi.org/10.3390/photonics12080795 - 7 Aug 2025
Viewed by 406
Abstract
Interferometric scattering microscopy (iSCAT) is widely used for label-free tracking of nanoparticles and single molecules. However, its ability to identify small molecules is limited by low imaging contrast blurred with noise. Frame-averaging methods are widely used for reducing background noise but require hundreds [...] Read more.
Interferometric scattering microscopy (iSCAT) is widely used for label-free tracking of nanoparticles and single molecules. However, its ability to identify small molecules is limited by low imaging contrast blurred with noise. Frame-averaging methods are widely used for reducing background noise but require hundreds of frames to produce a single frame as a trade-off. To address this, we applied a spatial–frequency domain deconvolution algorithm to suppress background noise and amplify the signal for each frame, achieving an improvement of ∼ 3-fold without hardware modification. This enhancement is achieved by compensating for missing information within the optical transfer function (OTF) boundary, while high-frequency components (noise) beyond this boundary are filtered. The resulting deconvolution process provides linear signal amplification, making it ideal for quantitative analysis in mass photometry. Additionally, the localization error is reduced by 20%. Comparisons with traditional denoising algorithms revealed that these methods often extract the side lobes. In contrast, our deconvolution approach preserves signal integrity while enhancing sensitivity. This work highlights the potential of image processing techniques to significantly improve the detection sensitivity of iSCAT for small molecule analysis. Full article
(This article belongs to the Special Issue Research, Development and Application of Raman Scattering Technology)
Show Figures

Figure 1

17 pages, 1571 KiB  
Review
Super-Resolution Microscopy in the Structural Analysis and Assembly Dynamics of HIV
by Aiden Jurcenko, Olesia Gololobova and Kenneth W. Witwer
Appl. Nano 2025, 6(3), 13; https://doi.org/10.3390/applnano6030013 - 31 Jul 2025
Viewed by 413
Abstract
Super-resolution microscopy (SRM) has revolutionized our understanding of subcellular structures, including cell organelles and viruses. For human immunodeficiency virus (HIV), SRM has significantly advanced knowledge of viral structural biology and assembly dynamics. This review analyzes how SRM techniques (particularly PALM, STORM, STED, and [...] Read more.
Super-resolution microscopy (SRM) has revolutionized our understanding of subcellular structures, including cell organelles and viruses. For human immunodeficiency virus (HIV), SRM has significantly advanced knowledge of viral structural biology and assembly dynamics. This review analyzes how SRM techniques (particularly PALM, STORM, STED, and SIM) have been applied over the past decade to study HIV structural components and assembly. By categorizing and comparing studies based on SRM methods, HIV components, and labeling strategies, we assess the strengths and limitations of each approach. Our analysis shows that PALM is most commonly used for live-cell imaging of HIV Gag, while STED is primarily used to study the viral envelope (Env). STORM and SIM have been applied to visualize various components, including Env, capsid, and matrix. Antibody labeling is prevalent in PALM and STORM studies, targeting Env and capsid, whereas fluorescent protein labeling is mainly associated with PALM and focused on Gag. A recent emphasis on Gag and Env points to deeper investigation into HIV assembly and viral membrane dynamics. Insights from SRM studies of HIV not only enhance virological understanding but also inform future research in therapeutic strategies and delivery systems, including extracellular vesicles. Full article
(This article belongs to the Collection Review Papers for Applied Nano Science and Technology)
Show Figures

Figure 1

17 pages, 645 KiB  
Review
Regulation of Subcellular Protein Synthesis for Restoring Neural Connectivity
by Jeffery L. Twiss and Courtney N. Buchanan
Int. J. Mol. Sci. 2025, 26(15), 7283; https://doi.org/10.3390/ijms26157283 - 28 Jul 2025
Viewed by 397
Abstract
Neuronal proteins synthesized locally in axons and dendrites contribute to growth, plasticity, survival, and retrograde signaling underlying these cellular processes. Advances in molecular tools to profile localized mRNAs, along with single-molecule detection approaches for RNAs and proteins, have significantly expanded our understanding of [...] Read more.
Neuronal proteins synthesized locally in axons and dendrites contribute to growth, plasticity, survival, and retrograde signaling underlying these cellular processes. Advances in molecular tools to profile localized mRNAs, along with single-molecule detection approaches for RNAs and proteins, have significantly expanded our understanding of the diverse proteins produced in subcellular compartments. These investigations have also uncovered key molecular mechanisms that regulate mRNA transport, storage, stability, and translation within neurons. The long distances that axons extend render their processes vulnerable, especially when injury necessitates regeneration to restore connectivity. Localized mRNA translation in axons helps initiate and sustain axon regeneration in the peripheral nervous system and promotes axon growth in the central nervous system. Recent and ongoing studies suggest that axonal RNA transport, storage, and stability mechanisms represent promising targets for enhancing regenerative capacity. Here, we summarize critical post-transcriptional regulatory mechanisms, emphasizing translation in the axonal compartment and highlighting potential strategies for the development of new regeneration-promoting therapeutics. Full article
(This article belongs to the Special Issue Plasticity of the Nervous System after Injury: 2nd Edition)
Show Figures

Figure 1

24 pages, 5811 KiB  
Article
Thermodynamics of Molecular Transport Through a Nanochannel: Evidence of Energy–Entropy Compensation
by Changsun Eun
Int. J. Mol. Sci. 2025, 26(15), 7277; https://doi.org/10.3390/ijms26157277 - 28 Jul 2025
Viewed by 253
Abstract
In this work, the thermodynamics of molecular transport between two compartments connected by a nanochannel is investigated through an analysis of internal energy and entropy changes, with a focus on how these changes depend on intermolecular interaction strength. When interactions are weak, resembling [...] Read more.
In this work, the thermodynamics of molecular transport between two compartments connected by a nanochannel is investigated through an analysis of internal energy and entropy changes, with a focus on how these changes depend on intermolecular interaction strength. When interactions are weak, resembling gas-like behavior, entropy dominates and favors configurations in which molecules are evenly distributed between the two compartments, despite an increase in internal energy. In contrast, strong interactions, characteristic of liquid-like behavior, lead to dominant energetic contributions that favor configurations with molecules localized in a single compartment, despite entropy loss. Intermediate interaction strengths yield comparable entropic and energetic contributions that cancel each other out, resulting in oscillatory behavior between evenly distributed and localized configurations, as observed in previous work. This thermodynamic analysis reveals energy–entropy compensation, in which entropic and energetic contributions offset each other across different interaction strengths; notably, this compensatory relationship exhibits a linear trend. These findings provide insight into the thermodynamic origins of molecular transport behavior and highlight fundamental parallels between molecular transport and molecular binding, the latter being particularly relevant to molecular recognition and drug design. Full article
(This article belongs to the Special Issue Research on Molecular Dynamics: 2nd Edition)
Show Figures

Figure 1

18 pages, 2051 KiB  
Article
Chemotherapy (Etoposide)-Induced Intermingling of Heterochromatin and Euchromatin Compartments in Senescent PA-1 Embryonal Carcinoma Cells
by Marc Bayer, Jaroslava Zajakina, Myriam Schäfer, Kristine Salmina, Felikss Rumnieks, Juris Jansons, Felix Bestvater, Reet Kurg, Jekaterina Erenpreisa and Michael Hausmann
Cancers 2025, 17(15), 2480; https://doi.org/10.3390/cancers17152480 - 26 Jul 2025
Viewed by 506
Abstract
Background: Often, neoadjuvant therapy, which relies on the induction of double-strand breaks (DSBs), is used prior to surgery to shrink tumors by inducing cancer cell apoptosis. However, recent studies have suggested that this treatment may also induce a fluctuating state between senescence [...] Read more.
Background: Often, neoadjuvant therapy, which relies on the induction of double-strand breaks (DSBs), is used prior to surgery to shrink tumors by inducing cancer cell apoptosis. However, recent studies have suggested that this treatment may also induce a fluctuating state between senescence and stemness in PA-1 embryonal carcinoma cells, potentially affecting therapeutic outcomes. Thus, the respective epigenetic pathways are up or downregulated over a time period of days. These fluctuations go hand in hand with changes in spatial DNA organization. Methods: By means of Single-Molecule Localization Microscopy in combination with mathematical evaluation tools for pointillist data sets, we investigated the organization of euchromatin and heterochromatin at the nanoscale on the third and fifth day after etoposide treatment. Results: Using fluorescently labeled antibodies against H3K9me3 (heterochromatin tri-methylation sites) and H3K4me3 (euchromatin tri-methylation sites), we found that the induction of DSBs led to the de-condensation of heterochromatin and compaction of euchromatin, with a peak effect on day 3 after the treatment. On day 3, we also observed the co-localization of euchromatin and heterochromatin, which have marks that usually occur in exclusive low-overlapping network-like compartments. The evaluation of the SMLM data using topological tools (persistent homology and persistent imaging) and principal component analysis, as well as the confocal microscopy analysis of H3K9me3- and H3K4me3-stained PA-1 cells, supported the findings that distinct shifts in euchromatin and heterochromatin organization took place in a subpopulation of these cells during the days after the treatment. Furthermore, by means of flow cytometry, it was shown that the rearrangements in chromatin organization coincided with the simultaneous upregulation of the stemness promotors OCT4A and SOX2 and senescence promotors p21Cip1 and p27. Conclusions: Our findings suggest potential applications to improve cancer therapy by inhibiting chromatin remodeling and preventing therapy-induced senescence. Full article
(This article belongs to the Special Issue Insights from the Editorial Board Member)
Show Figures

Figure 1

23 pages, 9118 KiB  
Article
Scattering Characteristics of a Circularly Polarized Bessel Pincer Light-Sheet Beam Interacting with a Chiral Sphere of Arbitrary Size
by Shu Zhang, Shiguo Chen, Qun Wei, Renxian Li, Bing Wei and Ningning Song
Micromachines 2025, 16(8), 845; https://doi.org/10.3390/mi16080845 - 24 Jul 2025
Viewed by 248
Abstract
The scattering interaction between a circularly polarized Bessel pincer light-sheet beam and a chiral particle is investigated within the framework of generalized Lorenz–Mie theory (GLMT). The incident electric field distribution is rigorously derived via the vector angular spectrum decomposition method (VASDM), with subsequent [...] Read more.
The scattering interaction between a circularly polarized Bessel pincer light-sheet beam and a chiral particle is investigated within the framework of generalized Lorenz–Mie theory (GLMT). The incident electric field distribution is rigorously derived via the vector angular spectrum decomposition method (VASDM), with subsequent determination of the beam-shape coefficients (BSCs) pmnu and qmnu through multipole expansion in the basis of vector spherical wave functions (VSWFs). The expansion coefficients for the scattered field (AmnsBmns) and interior field (AmnBmn) are derived by imposing boundary conditions. Simulations highlight notable variations in the scattering field, near-surface field distribution, and far-field intensity, strongly influenced by the dimensionless size parameter ka, chirality κ, and beam parameters (beam order l and beam scaling parameter α0). These findings provide insights into the role of chirality in modulating scattering asymmetry and localization effects. The results are particularly relevant for applications in optical manipulation and super-resolution imaging in single-molecule microbiology. Full article
Show Figures

Figure 1

12 pages, 4096 KiB  
Article
Chiral Pseudo-D6h Dy(III) Single-Molecule Magnet Based on a Hexaaza Macrocycle
by Jia-Hui Liu, Yi-Shu Jin, Jinkui Tang, Cai-Ming Liu, Yi-Quan Zhang and Hui-Zhong Kou
Molecules 2025, 30(9), 2043; https://doi.org/10.3390/molecules30092043 - 3 May 2025
Viewed by 599
Abstract
A mononuclear complex [Dy(phenN6)(HL′)2]PF6·CH2Cl2 (H2L′ = R/S-1,1′-binaphthyl-2,2′-diphenol) with local D6h symmetry was synthesized. Structural determination shows that Dy3+ was encapsulated within the coordination cavity of the neutral [...] Read more.
A mononuclear complex [Dy(phenN6)(HL′)2]PF6·CH2Cl2 (H2L′ = R/S-1,1′-binaphthyl-2,2′-diphenol) with local D6h symmetry was synthesized. Structural determination shows that Dy3+ was encapsulated within the coordination cavity of the neutral hexaaza macrocyclic ligand phenN6, forming a non-planar coordination environment. The axial positions are occupied by two phenoxy groups of binaphthol in the trans form. The local geometry of Dy3+ closely resembles a regular hexagonal bipyramid D6h configuration. The axial Dy-Ophenoxy distances are 2.189(5) and 2.145(5) Å, respectively, while the Dy-N bond lengths in the equatorial plane are in the range of 2.524(7)–2.717(5) Å. The axial Ophthalmoxy-Dy-Ophthalmoxy bond angle is 162.91(17)°, which deviates from the ideal linearity. Under the excitation at 320 nm, the complex exhibits a characteristic emission peak at 360 nm, corresponding to the naphthalene ring. The AC susceptibility measurements under an applied DC field of 1800 Oe show distinct temperature-dependent and frequency-dependent AC magnetic susceptibility, typical of single-molecule magnetic behavior. The Cole–Cole plot in the temperature range of 6.0–28.0 K was fitted using a model incorporating Orbach and Raman relaxation mechanisms, giving an effective energy barrier of Ueff = 300.2 K. Theoretical calculations on complex 1 reveal that the magnetization relaxation proceeds through the first excited Kramers doublets with a calculated magnetization blocking barrier of 404.1 cm−1 (581.4 K). Full article
(This article belongs to the Special Issue Inorganic Chemistry in Asia)
Show Figures

Graphical abstract

6 pages, 385 KiB  
Commentary
A Novel Approach to Relocate Misplaced Proteins in Cells
by Grace Hohman, Ava Watson and Mohamed A. Eldeeb
Biology 2025, 14(4), 420; https://doi.org/10.3390/biology14040420 - 14 Apr 2025
Cited by 1 | Viewed by 550
Abstract
Proper cellular function hinges on appropriate subcellular protein localization. When cellular proteins become mislocalized, they can accumulate, cause cellular damage, and disrupt many biochemical and cellular processes. Notably, mislocalized protein accumulation and the resulting cytotoxic effects are salient features of neurodegenerative diseases including [...] Read more.
Proper cellular function hinges on appropriate subcellular protein localization. When cellular proteins become mislocalized, they can accumulate, cause cellular damage, and disrupt many biochemical and cellular processes. Notably, mislocalized protein accumulation and the resulting cytotoxic effects are salient features of neurodegenerative diseases including Alzheimer’s, Parkinson’s disease, and ALS. The detrimental cellular consequences of mislocalized proteins accumulation make it crucial to develop techniques and approaches that counteract this malfunction. Remarkably, a recent study by Ng et al. introduced targeted relocalization-activating molecules (TRAMs) as a novel molecular tool for relocalizing endogenous target proteins to counteract disease-associated mislocalized proteins. The authors developed a quantitative single-cell analysis to evaluate the strength and relocalization capability of TRAMs by coupling a target protein and a shuttle protein. Herein, we briefly highlight and discuss the potential molecular implications for targeted protein relocalization as an effective approach for correcting mislocalized proteins. Full article
(This article belongs to the Section Biochemistry and Molecular Biology)
Show Figures

Figure 1

13 pages, 375 KiB  
Article
Electron Scattering from Sevoflurane
by Savinder Kaur, Ajay Kumar Arora, Kasturi Lal Baluja and Anand Bharadvaja
Atoms 2025, 13(4), 29; https://doi.org/10.3390/atoms13040029 - 1 Apr 2025
Viewed by 579
Abstract
Various electron impact scattering cross sections of Sevoflurane are reported up to 5 keV. The elastic cross sections (differential and integral) are computed using the single-centre-expansion formalism within a molecular framework. The ground state target wavefunction is determined at the Hartree–Fock (HF) level. [...] Read more.
Various electron impact scattering cross sections of Sevoflurane are reported up to 5 keV. The elastic cross sections (differential and integral) are computed using the single-centre-expansion formalism within a molecular framework. The ground state target wavefunction is determined at the Hartree–Fock (HF) level. Post-HF corrections are incorporated to make a scattering realistic model. The total interacting potential is defined as the sum of static, correlation–polarization and exchange potentials. These potentials are numerically computed using their local forms. The long-range effects affecting the scattering due to the polar nature of the molecule are incorporated using the Born Top-up approach. The ionization cross sections are obtained from the semi-empirical binary-encounter-Bethe model. The total cross sections are estimated from the incoherent sum of Born-corrected elastic integral and ionization cross sections. The computed results show fairly good agreement with the experimental reported cross sections. Full article
Show Figures

Figure 1

21 pages, 4311 KiB  
Article
Localization and Single Molecule Dynamics of Bacillus subtilis Penicillin-Binding Proteins Depend on Substrate Availability and Are Affected by Stress Conditions
by Lisa Stuckenschneider and Peter L. Graumann
Cells 2025, 14(6), 429; https://doi.org/10.3390/cells14060429 - 13 Mar 2025
Viewed by 887
Abstract
We have used single molecule tracking to investigate dynamics of four penicillin-binding proteins (PBPs) in Bacillus subtilis to shed light on their possible modes of action. We show that Pbp2a, Pbp3, Pbp4, and Pbp4a, when expressed at very low levels, show at least [...] Read more.
We have used single molecule tracking to investigate dynamics of four penicillin-binding proteins (PBPs) in Bacillus subtilis to shed light on their possible modes of action. We show that Pbp2a, Pbp3, Pbp4, and Pbp4a, when expressed at very low levels, show at least two distinct states of mobility: a state of slow motion, likely representing molecules involved in cell wall synthesis, and a mode of fast motion, likely representing freely diffusing molecules. Except for Pbp4, all other PBPs showed about 50% molecules in the slow mobility state, suggesting that roughly half of all molecules are engaged in a substrate-bound mode. We observed similar coefficients for the slow mobility state for Pbp4 and Pbp4a on the one hand, and for Pbp2a and Pbp3 on the other hand, indicating possible joint activities, respectively. Upon induction of osmotic stress, Pbp2a and Pbp4a changed from a pattern of localization mostly at the lateral cell membrane to also include localization at the septum, revealing that sites of preferred positioning for these two PBPs can be modified during stress conditions. While Pbp3 became more dynamic after induction of osmotic stress, Pbp4 became more static, showing that PBPs reacted markedly differently to envelope stress conditions. The data suggest that PBPs could take over functions in cell wall synthesis during different stress conditions, increasing the resilience of cell wall homeostasis in different environmental conditions. All PBPs lost their respective localization pattern after the addition of vancomycin or penicillin G, indicating that patterns largely depend on substrate availability. Our findings show that PBPs rapidly alter between non-targeted motion through the cell membrane and capture at sites of active cell wall synthesis, most likely guided by complex formation with other cell wall synthesis enzymes. Full article
Show Figures

Figure 1

12 pages, 1852 KiB  
Article
High-Efficiency SERS of 4-Mercaptobenzoic Acid and Biphenyl-4,4′-Dithiol via Nanoparticle-on-Mirror Plasmonic Nanocavities
by Wangze Li, Yifan Zhu, Jinze Li, Lei Guo, Xilin Zhou, Xin Xie, Zhengkun Fu, Huan Chen and Hairong Zheng
Nanomaterials 2025, 15(6), 421; https://doi.org/10.3390/nano15060421 - 9 Mar 2025
Viewed by 1287
Abstract
Surface-enhanced Raman scattering (SERS) technology has important applications in many fields, such as biomedicine, environmental monitoring, and food safety. Plasmonic nanocavities have the ability to superdiffract localized light and enhance light-matter interactions. As a key SERS active substrate, research on plasmonic nanocavities has [...] Read more.
Surface-enhanced Raman scattering (SERS) technology has important applications in many fields, such as biomedicine, environmental monitoring, and food safety. Plasmonic nanocavities have the ability to superdiffract localized light and enhance light-matter interactions. As a key SERS active substrate, research on plasmonic nanocavities has made significant progress regarding the enhancement mechanism, the utilization of hotspots for the detection of specific molecular groups, and practical applications. However, challenges related to improving the enhancement factor of nanocavity SERS, enhancing the stability and reproducibility of hotspots, and enabling the detection of single-molecule layers remain. In this study, we adopt a bottom-up approach to construct a silver microplate–molecule–multi-sized silver nanosphere nanoparticle-on-mirror (NPoM) nanocavity and achieve the efficient stable enhancement of Raman scattering from 4-mercaptobenzoic acid and biphenyl-4,4′-dithiol molecules via the electromagnetic mechanism. By characterizing the fabricated nanocavity using dark-field scattering and micro-confocal Raman scattering, we observed that the Raman scattering intensity in the NPoM nanocavity was enhanced by a factor of 103 compared to that of individual silver nanospheres. Furthermore, we achieved the efficient stabilization of SERS by precisely tuning the size of the silver nanospheres to match their resonance frequency with the Raman shift of the target molecules. This approach offers a valuable reference for the detection of various single-molecule layers and demonstrates significant potential for applications in biosensing and chemical analysis. Full article
Show Figures

Figure 1

18 pages, 5927 KiB  
Article
Design and Optimization of a Gold and Silver Nanoparticle-Based SERS Biosensing Platform
by Soumyadeep Saha, Manoj Sachdev and Sushanta K. Mitra
Sensors 2025, 25(4), 1165; https://doi.org/10.3390/s25041165 - 14 Feb 2025
Cited by 1 | Viewed by 1401
Abstract
This study investigates the design and optimization of a nanoparticle-based surface-enhanced Raman scattering (SERS) biosensing platform using COMSOL Multiphysics simulations. The primary goal is to enhance the sensitivity and specificity of SERS biosensors, which are crucial for the precise detection and quantification of [...] Read more.
This study investigates the design and optimization of a nanoparticle-based surface-enhanced Raman scattering (SERS) biosensing platform using COMSOL Multiphysics simulations. The primary goal is to enhance the sensitivity and specificity of SERS biosensors, which are crucial for the precise detection and quantification of biomolecules. The simulation study explores the use of gold and silver nanoparticles in various arrangements, including single, multiple, and periodic nanospheres. The effects of polarization and the phenomenon of local hotspot switching in trimer and tetramer nanosphere systems are analyzed. To validate the simulation results, a SERS biosensing platform is fabricated by self-assembling gold nanoparticles on a silicon substrate, with methylene blue used as the Raman probe molecule. The findings demonstrate the feasibility of optimizing SERS biochips through simulation, which can be extended to various nanostructures. This work contributes to the advancement of highly sensitive and specific SERS biosensors for diagnostic and analytical applications. Full article
(This article belongs to the Section Biosensors)
Show Figures

Figure 1

13 pages, 1954 KiB  
Brief Report
The Deubiquitinating Enzyme AMSH1 Contributes to Plant Immunity Through Regulating the Stability of BDA1
by Yiran Wang, Weijie Huang, Xin Li and Yuelin Zhang
Plants 2025, 14(3), 429; https://doi.org/10.3390/plants14030429 - 1 Feb 2025
Cited by 1 | Viewed by 1008
Abstract
Plants utilize plasma membrane localized receptors like kinases (RLKs) or receptor-like proteins (RLPs) to recognize pathogens and activate pattern-triggered immunity (PTI) responses. A gain-of-function mutation in the Arabidopsis RLP SNC2 (SUPPRESSOR OF NPR1-1, CONSTITUTIVE 2) leads to constitutive activation of defense responses in [...] Read more.
Plants utilize plasma membrane localized receptors like kinases (RLKs) or receptor-like proteins (RLPs) to recognize pathogens and activate pattern-triggered immunity (PTI) responses. A gain-of-function mutation in the Arabidopsis RLP SNC2 (SUPPRESSOR OF NPR1-1, CONSTITUTIVE 2) leads to constitutive activation of defense responses in snc2-1D mutant plants. Transcription factors, SYSTEMIC ACQUIRED RESISTANCE DEFICIENT 1 (SARD1) and CALMODULIN-BINDING PROTEIN 60g (CBP60g), define two parallel pathways downstream of SNC2. The autoimmunity of snc2-1D was partially affected by single mutations in SARD1 or CBP60g but completely suppressed by the sard1 cbp60g double mutant. From a suppressor screen using sard1-1 snc2-1D, we identified a deubiquitinating enzyme ASSOCIATED MOLECULE WITH THE SH3 DOMAIN OF STAM 1 (AMSH1) as a key component in SNC2-mediated plant immunity. A loss-of-function mutation in AMSH1 can suppress the autoimmune responses of sard1-1 snc2-1D. In eukaryotes, selective protein degradation often occurs through the ubiquitination/deubiquitination system. The deubiquitinating enzymes that remove ubiquitin from target proteins play essential roles in controlling the level of target protein ubiquitination and degradation. As loss of AMSH1 results in decreased BDA1 abundance and BDA1 is a transmembrane protein required for SNC2-mediated immunity, AMSH1 likely contributes to immunity regulation through controlling BDA1 stability. Full article
(This article belongs to the Collection Feature Papers in Plant Protection)
Show Figures

Figure 1

18 pages, 3538 KiB  
Article
Localized and Excimer Triplet Electronic States of Naphthalene Dimers: A Computational Study
by Lara Martínez-Fernández and Roberto Improta
Molecules 2025, 30(2), 298; https://doi.org/10.3390/molecules30020298 - 13 Jan 2025
Cited by 1 | Viewed by 1361
Abstract
We perform DFT calculations with different hybrid (ωB97X-D and M05-2X) and double hybrid (B2PLYP-D3 and ωB2PLYP) functionals to characterize the lowest energy triplet excited states of naphthalene monomer and dimers in different stacking arrangements and to simulate their absorption spectra. We show that [...] Read more.
We perform DFT calculations with different hybrid (ωB97X-D and M05-2X) and double hybrid (B2PLYP-D3 and ωB2PLYP) functionals to characterize the lowest energy triplet excited states of naphthalene monomer and dimers in different stacking arrangements and to simulate their absorption spectra. We show that both excimer and localized triplet minima exist. In the former, the spin density is delocalized over the two monomers, adopting a face-to-face arrangement with a short inter-molecular distance. In the latter, the spin density is localized on a single naphthalene molecule, and different minima or pseudo-minima are possible, the most stable one corresponding to a slipped parallel arrangement. According to B2PLYP-D3 calculations, excimer minima are the most stable, in line with the indications of ADC(2) studies. However, the relative stability of the minima is reverted when including thermal and vibrational effects. Excimer minima exhibit a very intense absorption spectrum, peaking above 500 nm. The computed absorption spectra of localized minima significantly depend on the stacking geometry and do not coincide with that of isolated naphthalene. Hybrid functionals provide very accurate vibronic absorption spectra for naphthalene monomer, both in the singlet and in the triplet state, but underestimate the stability of the excimer triplet. Full article
(This article belongs to the Section Physical Chemistry)
Show Figures

Figure 1

Back to TopTop