Development of Novel Radiopharmaceuticals for SPECT and PET Imaging

A special issue of Pharmaceuticals (ISSN 1424-8247). This special issue belongs to the section "Radiopharmaceutical Sciences".

Deadline for manuscript submissions: 24 July 2025 | Viewed by 2204

Special Issue Editor


E-Mail Website
Guest Editor
Department of Radiology, School of Medicine, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
Interests: cancer; infection; transplants; cell therapies; stem cells; leukocytes; antibodies; Tc-99m; Cu-64
Special Issues, Collections and Topics in MDPI journals

Special Issue Information

Dear Colleagues,

This Special Issue aims to explore the latest advancements in the development of novel radiopharmaceuticals for Single Photon Emission Computed Tomography (SPECT) and Positron Emission Tomography (PET) imaging. These imaging modalities are crucial for the non-invasive diagnosis and monitoring of various diseases, including cancer, cardiovascular diseases, and neurological disorders. The Issue seeks contributions that highlight innovative synthesis techniques, novel radiotracers, improved imaging agents, and their clinical applications. Researchers are encouraged to submit original research articles, reviews, and case studies that provide insights into the challenges and future directions in the field. Contributions should address the challenges and future directions, offering a comprehensive resource for enhancing SPECT and PET imaging technologies.

Dr. Bianca Gutfilen
Guest Editor

Manuscript Submission Information

Manuscripts should be submitted online at www.mdpi.com by registering and logging in to this website. Once you are registered, click here to go to the submission form. Manuscripts can be submitted until the deadline. All submissions that pass pre-check are peer-reviewed. Accepted papers will be published continuously in the journal (as soon as accepted) and will be listed together on the special issue website. Research articles, review articles as well as short communications are invited. For planned papers, a title and short abstract (about 100 words) can be sent to the Editorial Office for announcement on this website.

Submitted manuscripts should not have been published previously, nor be under consideration for publication elsewhere (except conference proceedings papers). All manuscripts are thoroughly refereed through a single-blind peer-review process. A guide for authors and other relevant information for submission of manuscripts is available on the Instructions for Authors page. Pharmaceuticals is an international peer-reviewed open access monthly journal published by MDPI.

Please visit the Instructions for Authors page before submitting a manuscript. The Article Processing Charge (APC) for publication in this open access journal is 2900 CHF (Swiss Francs). Submitted papers should be well formatted and use good English. Authors may use MDPI's English editing service prior to publication or during author revisions.

Keywords

  • oncology
  • theranostics
  • inflammation/infection diagnosis
  • autoimmune diseases
  • neurodegenerative diseases
  • cardiovascular diseases

Benefits of Publishing in a Special Issue

  • Ease of navigation: Grouping papers by topic helps scholars navigate broad scope journals more efficiently.
  • Greater discoverability: Special Issues support the reach and impact of scientific research. Articles in Special Issues are more discoverable and cited more frequently.
  • Expansion of research network: Special Issues facilitate connections among authors, fostering scientific collaborations.
  • External promotion: Articles in Special Issues are often promoted through the journal's social media, increasing their visibility.
  • e-Book format: Special Issues with more than 10 articles can be published as dedicated e-books, ensuring wide and rapid dissemination.

Further information on MDPI's Special Issue policies can be found here.

Published Papers (4 papers)

Order results
Result details
Select all
Export citation of selected articles as:

Research

Jump to: Review

12 pages, 3114 KiB  
Article
Fluorine-18-Labeled Positron Emission Tomography Probe Targeting Activated p38α: Design, Synthesis, and In Vivo Evaluation in Rodents
by Mikiya Futatsugi, Anna Miyazaki, Yasukazu Kanai, Naoya Kondo and Takashi Temma
Pharmaceuticals 2025, 18(4), 600; https://doi.org/10.3390/ph18040600 - 20 Apr 2025
Abstract
Background/Objectives: The kinase p38α, a member of the mitogen-activated protein kinase (MAPK) family, is activated by external stimuli and plays a crucial role in inflammation, tumor growth, and metabolic disorders. In particular, p38α is involved in thermogenesis and the metabolism of glucose in [...] Read more.
Background/Objectives: The kinase p38α, a member of the mitogen-activated protein kinase (MAPK) family, is activated by external stimuli and plays a crucial role in inflammation, tumor growth, and metabolic disorders. In particular, p38α is involved in thermogenesis and the metabolism of glucose in brown adipose tissue (BAT), and it contributes to the suppression of obesity and diabetes. The noninvasive imaging of activated p38α could help elucidate diverse pathological processes, including metabolic and inflammatory conditions. This study aimed to develop and evaluate a novel fluorine-18-labeled positron emission tomography (PET) probe for imaging activated p38α in vivo. Methods: We designed 6-(4-[18F]fluoro-2-fluorophenoxy)-8-methyl-2-(tetrahydro-2H-pyran-4-ylamino)-pyrido[2,3-d]pyrimidin-7(8H)-one ([18F]R1487) by replacing a fluorine atom in R1487, which is a highly selective p38α inhibitor, with 18F. A tributylstannyl precursor was reacted with [18F]KF in the presence of a copper catalyst to synthesize [18F]R1487. Biodistribution studies and PET/computed tomography (CT) were performed on normal mice to evaluate the in vivo potential of [18F]R1487. Results: [18F]R1487 was obtained with a decay-corrected radiochemical conversion of 30.6 ± 5.6% and a decay-corrected radiochemical yield of 6.9 ± 3.6% with a radiochemical purity of >99% after reversed-phase high-performance liquid chromatography purification. The biodistribution study demonstrated high and rapid radioactivity accumulation in BAT (16.3 ± 2.7 %ID/g at 5 min post-injection), with a consistently high BAT-to-blood ratio (>5 over 2 h post-injection). PET/CT imaging successfully visualized BAT with high contrast. Conclusions: These results suggest that [18F]R1487 is a promising PET probe for imaging activated p38α in vivo, which has potential applications for pathophysiological conditions such as inflammation, cancer, and metabolic disorders. Full article
(This article belongs to the Special Issue Development of Novel Radiopharmaceuticals for SPECT and PET Imaging)
Show Figures

Graphical abstract

15 pages, 1599 KiB  
Article
Radioiodinated Bicyclic RGD Peptide Derivatives for Enhanced Tumor Accumulation
by Naoya Kondo, Marika Kato, Aoi Oshima, Fuko Hirano, Anna Miyazaki and Takashi Temma
Pharmaceuticals 2025, 18(4), 549; https://doi.org/10.3390/ph18040549 - 8 Apr 2025
Viewed by 195
Abstract
Background/Objectives: Integrin αVβ3 plays a crucial role in tumor angiogenesis and cancer progression, making it a key target for radiolabeled probes used in imaging and therapy. A previously developed probe, [125I]bcRGD, exhibited high selectivity for αV [...] Read more.
Background/Objectives: Integrin αVβ3 plays a crucial role in tumor angiogenesis and cancer progression, making it a key target for radiolabeled probes used in imaging and therapy. A previously developed probe, [125I]bcRGD, exhibited high selectivity for αVβ3 but limited tumor accumulation due to rapid blood clearance. This study aimed to address this issue through two strategies: (1) conjugating albumin-binding molecules to enhance systemic circulation and (2) dimerizing RGD peptides to improve binding affinity via multivalency effects. Methods: Three [125I]bcRGD derivatives were synthesized: [125I]bcRGDpal (with palmitic acid), [125I]bcRGDiba (with 4-(p-iodophenyl)butyric acid), and [125I]bcRGDdimer (a dimeric bicyclic RGD peptide). Their physicochemical properties, αVβ3-selectivity, albumin-binding capacity, and biodistribution were assessed in vitro and in vivo using tumor-bearing mice. Tumor models included αVβ3-high U-87 MG and αVβ3-low A549 xenografts. Results: [125I]bcRGDpal and [125I]bcRGDiba exhibited prolonged blood retention (30-fold and 55-fold vs. [125I]bcRGD, respectively) and increased tumor accumulation (3.9% ID/g and 3.6% ID/g at 2 h, respectively). Despite improved systemic circulation, tumor-to-blood ratios remained low (<1), indicating limited tumor retention. [125I]bcRGDdimer achieved significantly greater tumor accumulation (4.2% ID/g at 2 h) and favorable tumor-to-blood (22) and tumor-to-muscle (14) ratios, with a 5.4-fold higher uptake in U-87 MG tumors compared to A549 tumors. Conclusions: Dimerization was more effective than albumin binding in enhancing bcRGD’s tumor-targeting potential. The dimeric probe demonstrated improved tumor accumulation, favorable pharmacokinetics, and preserved integrin selectivity. These findings provide a foundation for further structural optimization of bicyclic RGD peptides for integrin αVβ3-targeted imaging and therapy applications. Full article
(This article belongs to the Special Issue Development of Novel Radiopharmaceuticals for SPECT and PET Imaging)
Show Figures

Graphical abstract

18 pages, 5582 KiB  
Article
Comparison of Two Chelator Scaffolds as Basis for Cholecystokinin-2 Receptor Targeting Bimodal Imaging Probes
by Giacomo Gariglio, Katerina Bendova, Martin Hermann, Asta Olafsdottir, Jane K. Sosabowski, Milos Petrik, Elisabeth von Guggenberg and Clemens Decristoforo
Pharmaceuticals 2024, 17(12), 1569; https://doi.org/10.3390/ph17121569 - 22 Nov 2024
Viewed by 1156
Abstract
Background/Objectives: Dual-modality probes, combining positron emission tomography (PET) with fluorescence imaging (FI) capabilities in a single molecule, are of high relevance for the accurate staging and guided resection of tumours. We herein present a pair of candidates targeting the cholecystokinin-2 receptor (CCK2R), [...] Read more.
Background/Objectives: Dual-modality probes, combining positron emission tomography (PET) with fluorescence imaging (FI) capabilities in a single molecule, are of high relevance for the accurate staging and guided resection of tumours. We herein present a pair of candidates targeting the cholecystokinin-2 receptor (CCK2R), namely [68Ga]Ga-CyTMG and [68Ga]Ga-CyFMG. In these probes, the SulfoCy5.5 fluorophore and two units of a CCK2R-binding motif are coupled to the chelator acting as a core scaffold, triazacyclononane-phosphinic acid (TRAP), and Fusarinine C (FSC), respectively. Using this approach, we investigated the influence of these chelators on the final properties. Methods: The synthetic strategy to both precursors was based on the stoichiometric conjugation of the components via click chemistry. The characterization in vitro included the evaluation of the CCK2R affinity and internalization in A431-CCK2R cells. Ex vivo biodistribution as well as PET and FI studies were performed in xenografted mice. Results: 68Ga labelling was accomplished with high radiochemical yield and purity for both precursors. A CCK2R affinity in the subnanomolar range of the conjugates and a receptor-specific uptake of the radioligands in cells were observed. In A431-CCK2R/A431-mock xenografted mice, the investigated compounds showed specific accumulation in the tumours and reduced off-target uptake compared to a previously developed compound. Higher accumulation and prolonged retention in the kidneys were observed for [68Ga]Ga-CyTMG when compared to [68Ga]Ga-CyFMG. Conclusions: Despite the promising targeting properties observed, further probe optimization is required to achieve enhanced imaging contrast at early timepoints. Additionally, the results indicate a distinct influence of the chelators in terms of renal accumulation and retention. Full article
(This article belongs to the Special Issue Development of Novel Radiopharmaceuticals for SPECT and PET Imaging)
Show Figures

Figure 1

Review

Jump to: Research

34 pages, 11780 KiB  
Review
Hypoxia Imaging in Lung Cancer: A PET-Based Narrative Review for Clinicians and Researchers
by Ahmad Alenezi, Hamad Alhamad, Aishah Alenezi and Muhammad Umar Khan
Pharmaceuticals 2025, 18(4), 459; https://doi.org/10.3390/ph18040459 - 25 Mar 2025
Viewed by 426
Abstract
Background: Hypoxia plays a critical role in lung cancer progression and treatment resistance by contributing to aggressive tumor behavior and poor therapeutic response. Molecular imaging, particularly positron emission tomography (PET), has become an essential tool for noninvasive hypoxia detection, providing valuable insights into [...] Read more.
Background: Hypoxia plays a critical role in lung cancer progression and treatment resistance by contributing to aggressive tumor behavior and poor therapeutic response. Molecular imaging, particularly positron emission tomography (PET), has become an essential tool for noninvasive hypoxia detection, providing valuable insights into tumor biology and aiding in personalized treatment strategies. Objective: This narrative review explores recent advancements in PET imaging for detecting hypoxia in lung cancer, with a focus on the development, characteristics, and clinical applications of various radiotracers. Findings: Numerous PET-based hypoxia radiotracers have been investigated, each with distinct pharmacokinetics and imaging capabilities. Established tracers such as 18F-Fluoromisonidazole (18F-FMISO) remain widely used, while newer alternatives like 18F-Fluoroazomycin Arabinoside (18F-FAZA) and 18F-Flortanidazole (18F-HX4) demonstrate improved clearance and image contrast. Additionally, 64Cu-ATSM has gained attention for its rapid tumor uptake and hypoxia selectivity. The integration of PET with hybrid imaging modalities, such as PET/CT and PET/MRI, enhances the spatial resolution and functional interpretation, making hypoxia imaging a promising approach for guiding radiotherapy, chemotherapy, and targeted therapies. Conclusions: PET imaging of hypoxia offers significant potential in lung cancer diagnosis, treatment planning, and therapeutic response assessment. However, challenges remain, including tracer specificity, quantification variability, and standardization of imaging protocols. Future research should focus on developing next-generation radiotracers with enhanced specificity, optimizing imaging methodologies, and leveraging multimodal approaches to improve clinical utility and patient outcomes. Full article
(This article belongs to the Special Issue Development of Novel Radiopharmaceuticals for SPECT and PET Imaging)
Show Figures

Figure 1

Back to TopTop