Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (217)

Search Parameters:
Keywords = single element antennas

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
16 pages, 3042 KiB  
Article
A Dual-Circularly Polarized Antenna Array for Space Surveillance: From Design to Experimental Validation
by Chiara Scarselli, Guido Nenna and Agostino Monorchio
Appl. Sci. 2025, 15(15), 8439; https://doi.org/10.3390/app15158439 - 30 Jul 2025
Viewed by 76
Abstract
This paper presents the design, simulation, and experimental validation of a dual-Circularly Polarized (CP) array antenna to be used as single element for a bistatic radar system, aimed at detecting and tracking objects in Low Earth Orbit (LEO). The antenna operates at 412 [...] Read more.
This paper presents the design, simulation, and experimental validation of a dual-Circularly Polarized (CP) array antenna to be used as single element for a bistatic radar system, aimed at detecting and tracking objects in Low Earth Orbit (LEO). The antenna operates at 412 MHz in reception mode and consists of an array of 19 slotted-patch radiating elements with a cavity-based metallic superstrate, designed to support dual circular polarization. These elements are arranged in a hexagonal configuration, enabling the array structure to achieve a maximum realized gain of 17 dBi and a Side Lobe Level (SLL) below −17 dB while maintaining high polarization purity. Two identical analog feeding networks enable the precise control of phase and amplitude, allowing the independent reception of Right-Hand and Left-Hand Circularly Polarized (RHCP and LHCP) signals. Full-wave simulations and experimental measurements confirm the high performance and robustness of the system, demonstrating its suitability for integration into large-scale Space Situational Awareness (SSA) sensor networks. Full article
(This article belongs to the Special Issue Antennas for Next-Generation Electromagnetic Applications)
Show Figures

Figure 1

22 pages, 4331 KiB  
Article
Simulation-Based Design of a Low-Cost Broadband Wide-Beamwidth Crossed-Dipole Antenna for Multi-Global Navigational Satellite System Positioning
by Songyuan Xu, Jiwon Heo, Won Seok Choi, Seong-Gon Choi and Bierng-Chearl Ahn
Sensors 2025, 25(15), 4665; https://doi.org/10.3390/s25154665 - 28 Jul 2025
Viewed by 142
Abstract
This paper presents the design of a wideband circularly polarized crossed-dipole antenna for multi-GNSS applications, covering the frequency range of 1.16–1.61 GHz. The proposed antenna employs orthogonally placed dipole elements fed by a three-branch quadrature hybrid coupler for broadband and wide gain/axial ratio [...] Read more.
This paper presents the design of a wideband circularly polarized crossed-dipole antenna for multi-GNSS applications, covering the frequency range of 1.16–1.61 GHz. The proposed antenna employs orthogonally placed dipole elements fed by a three-branch quadrature hybrid coupler for broadband and wide gain/axial ratio beamwidth. The design is carried out using CST Studio Suite for a single dipole antenna followed by a crossed-dipole antenna, a feed network, and the entire antenna structure. The designed multi-GNSS antenna shows, at 1.16–1.61 GHz, a reflection coefficient of less than −17 dB, a zenith gain of 3.9–5.8 dBic, a horizontal gain of −3.3 to −0.2 dBic, a zenith axial ratio of 0.6–1.0 dB, and horizontal axial ratio of 0.4–5.9 dB. The proposed antenna has a dimension of 0.48 × 0.48 × 0.25 λ at the center frequency of 1.39 GHz. The proposed antenna can also operate as an LHCP antenna for L-band satellite phone communication at 1.525–1.661 GHz. Full article
Show Figures

Figure 1

30 pages, 7092 KiB  
Article
Slotted Circular-Patch MIMO Antenna for 5G Applications at Sub-6 GHz
by Heba Ahmed, Allam M. Ameen, Ahmed Magdy, Ahmed Nasser and Mohammed Abo-Zahhad
Telecom 2025, 6(3), 53; https://doi.org/10.3390/telecom6030053 - 28 Jul 2025
Viewed by 155
Abstract
The swift advancement of fifth-generation (5G) wireless technology brings forth a range of enhancements to address the increasing demand for data, the proliferation of smart devices, and the growth of the Internet of Things (IoT). This highly interconnected communication environment necessitates using multiple-input [...] Read more.
The swift advancement of fifth-generation (5G) wireless technology brings forth a range of enhancements to address the increasing demand for data, the proliferation of smart devices, and the growth of the Internet of Things (IoT). This highly interconnected communication environment necessitates using multiple-input multiple-output (MIMO) systems to achieve adequate channel capacity. In this article, a 2-port MIMO system using two flipped parallel 1 × 2 arrays and a 2-port MIMO system using two opposite 1 × 4 arrays designed and fabricated antennas for 5G wireless communication in the sub-6 GHz band, are presented, overcoming the limitations of previous designs in gain, radiation efficiency and MIMO performance. The designed and fabricated single-element antenna features a circular microstrip patch design based on ROGER 5880 (RT5880) substrate, which has a thickness of 1.57 mm, a permittivity of 2.2, and a tangential loss of 0.0009. The 2-port MIMO of two 1 × 2 arrays and the 2-port MIMO of two 1 × 4 arrays have overall dimensions of 132 × 66 × 1.57 mm3 and 140 × 132 × 1.57 mm3, respectively. The MIMO of two 1 × 2 arrays and MIMO of two 1 × 4 arrays encompass maximum gains of 8.3 dBi and 10.9 dBi, respectively, with maximum radiation efficiency reaching 95% and 97.46%. High MIMO performance outcomes are observed for both the MIMO of two 1 × 2 arrays and the MIMO of two 1 × 4 arrays, with the channel capacity loss (CCL) ˂ 0.4 bit/s/Hz and ˂0.3 bit/s/Hz, respectively, an envelope correlation coefficient (ECC) ˂ 0.006 and ˂0.003, respectively, directivity gain (DG) about 10 dB, and a total active reflection coefficient (TARC) under −10 dB, ensuring impedance matching and effective mutual coupling among neighboring parameters, which confirms their effectiveness for 5G applications. The three fabricated antennas were experimentally tested and implemented using the MIMO Application Framework version 19.5 for 5G systems, demonstrating operational effectiveness in 5G applications. Full article
Show Figures

Figure 1

20 pages, 1811 KiB  
Article
Enhancing Direction-of-Arrival Estimation for Single-Channel Reconfigurable Intelligent Surface via Phase Coding Design
by Changcheng Hu, Ruoyu Zhang, Jingqi Wang, Boyu Sima, Yue Ma, Chen Miao and Wei Kang
Remote Sens. 2025, 17(14), 2394; https://doi.org/10.3390/rs17142394 - 11 Jul 2025
Viewed by 282
Abstract
Traditional antenna arrays for direction-of-arrival (DOA) estimation typically require numerous elements to achieve target performance, increasing system complexity and cost. Reconfigurable intelligent surfaces (RISs) offer a promising alternative, yet their performance critically depends on phase coding design. To address this, we propose a [...] Read more.
Traditional antenna arrays for direction-of-arrival (DOA) estimation typically require numerous elements to achieve target performance, increasing system complexity and cost. Reconfigurable intelligent surfaces (RISs) offer a promising alternative, yet their performance critically depends on phase coding design. To address this, we propose a phase coding design method for RIS-aided DOA estimation with a single receiving channel. First, we establish a system model where averaged received signals construct a power-based formulation. This transforms DOA estimation into a compressed sensing-based sparse recovery problem, with the RIS far-field power radiation pattern serving as the measurement matrix. Then, we derive the decoupled expression of the measurement matrix, which consists of the phase coding matrix, propagation phase shifts, and array steering matrix. The phase coding design is then formulated as a Frobenius norm minimization problem, approximating the Gram matrix of the equivalent measurement matrix to an identity matrix. Accordingly, the phase coding design problem is reformulated as a Frobenius norm minimization problem, where the Gram matrix of the equivalent measurement matrix is approximated to an identity matrix. The phase coding is deterministically constructed as the product of a unitary matrix and a partial Hadamard matrix. Simulations demonstrate that the proposed phase coding design outperforms random phase coding in terms of angular estimation accuracy, resolution probability, and the requirement of coding sequences. Full article
Show Figures

Figure 1

11 pages, 681 KiB  
Communication
Compact Four-Port MIMO Antenna Using Dual-Polarized Patch and Defected Ground Structure for IoT Devices
by Dat Tran-Huy, Cuong Do-Manh, Hung Pham-Duy, Nguyen Tran-Viet-Duc, Hung Tran, Dat Nguyen-Tien and Niamat Hussain
Sensors 2025, 25(14), 4254; https://doi.org/10.3390/s25144254 - 8 Jul 2025
Viewed by 320
Abstract
This paper presents a compact four-port multiple-input multiple-output (MIMO) antenna for Internet-of-Things (IoT) devices. As electronic IoT devices become smaller, MIMO antennas should also be compact for ease of integration and multi-port operation for a high channel capacity. Instead of using a single-polarized [...] Read more.
This paper presents a compact four-port multiple-input multiple-output (MIMO) antenna for Internet-of-Things (IoT) devices. As electronic IoT devices become smaller, MIMO antennas should also be compact for ease of integration and multi-port operation for a high channel capacity. Instead of using a single-polarized radiator, which increases the antenna size when scaling to a multi-port MIMO array, a dual-polarized radiator is utilized. This helps to achieve multi-port operation with compact size features. To reduce the mutual coupling between the MIMO elements, an I-shaped defected ground structure is inserted into the ground plane. The measured results indicate that the final four-port MIMO antenna with overall dimensions of 0.92 λ× 0.73 λ× 0.03 λ at 5.5 GHz can achieve an operating bandwidth of about 2.2% with isolation better than 20 dB and a gain higher than 6.0 dBi. Additionally, the proposed method is also applicable to a large-scale MIMO array. Full article
(This article belongs to the Section Communications)
Show Figures

Figure 1

9 pages, 1498 KiB  
Proceeding Paper
Sensitivity Analysis of an Edge-Fed Microstrip Patch Antenna Strain Sensor to Detect Surface Strains
by A. P. Praveen, Jeetu S. Babu, Sreedevi K. Menon and M. P. Hariprasad
Eng. Proc. 2025, 93(1), 8; https://doi.org/10.3390/engproc2025093008 - 1 Jul 2025
Viewed by 204
Abstract
Damage detection through strain sensing is inevitable in structural health monitoring (SHM) for implementing preventive measures against the failure of a mechanical component or a civil structure. Strain sensors based on patch antennas are gaining importance due to their simple geometry and ease [...] Read more.
Damage detection through strain sensing is inevitable in structural health monitoring (SHM) for implementing preventive measures against the failure of a mechanical component or a civil structure. Strain sensors based on patch antennas are gaining importance due to their simple geometry and ease of fabrication. This work presents the effect of longitudinal and transverse deformation on the patch antenna strain sensor characteristics. Structural and electromagnetic simulations are performed for various loads using a commercial FEM package. The variation in the reflection coefficient with resonant frequency is analyzed for different strain levels up to the elastic limit of the sensor. It is observed that the edge-fed patch antenna can be used in cases of higher strain levels. However, the patch antenna sensor is less sensitive at lower strain levels. The patch antenna sensor effectively decouples the directional strains, making it effective for bidirectional strain sensing using a single element. Full article
Show Figures

Figure 1

15 pages, 4432 KiB  
Article
Millimeter-Wave Miniaturized Substrate-Integrated Waveguide Multibeam Antenna Based on Multi-Layer E-Plane Butler Matrix
by Qing-Yuan Wu, Ling-Hui Wu, Cheng-Qin Ben and Ji-Wei Lian
Electronics 2025, 14(13), 2553; https://doi.org/10.3390/electronics14132553 - 24 Jun 2025
Viewed by 285
Abstract
A millimeter-wave multi-layer and miniaturized multibeam antenna fed by an E-plane Butler matrix (BM) in substrate integrated waveguide (SIW) technology is proposed. For the beam-forming network (BFN), a folded E-plane 4 × 4 BM is proposed, whose basic components are stacked up along [...] Read more.
A millimeter-wave multi-layer and miniaturized multibeam antenna fed by an E-plane Butler matrix (BM) in substrate integrated waveguide (SIW) technology is proposed. For the beam-forming network (BFN), a folded E-plane 4 × 4 BM is proposed, whose basic components are stacked up along the vertical direction aiming to reduce the horizontal size by more than 75% compared with a single-layer BM. For the radiation portion, an unconventional slot antenna array arranged in a ladder type is adopted. The slot antenna elements are distributed in separate layers, making them more compatible with the presented BM and are arranged in the longitudinal direction to suppress the mutual coupling effect. Furthermore, the BM has been adjusted to accommodate the slot antenna array and obtain further miniaturization. The overall dimension of the designed multibeam antenna, taking the BFN into account, is 12 mm × 45 mm × 2 mm (1.2 λ × 4.5 λ × 0.2 λ), which is preferable for future 6G smartphone applications. The impacts of the air gap in fabrication are also taken into consideration to alleviate the error between simulated model and fabricated prototype. Full article
Show Figures

Figure 1

17 pages, 9122 KiB  
Article
A Printed Hybrid-Mode Antenna for Dual-Band Circular Polarization with Flexible Frequency Ratio
by Takafumi Fujimoto and Chai-Eu Guan
Electronics 2025, 14(13), 2504; https://doi.org/10.3390/electronics14132504 - 20 Jun 2025
Cited by 1 | Viewed by 322
Abstract
In this paper, a printed hybrid-mode antenna for dual-band circular polarization (CP) is proposed. In the proposed antenna, one T-shaped element is fed by a coplanar waveguide and one L-shaped element is loaded to the ground plane. The relationship between the antenna’s geometric [...] Read more.
In this paper, a printed hybrid-mode antenna for dual-band circular polarization (CP) is proposed. In the proposed antenna, one T-shaped element is fed by a coplanar waveguide and one L-shaped element is loaded to the ground plane. The relationship between the antenna’s geometric parameters and the circular polarization characteristic (axial ratio) is examined through electric current distribution and radiation field components. In addition, the antenna’s resonant modes are investigated through characteristic mode analysis (CMA). Through parametric studies, the range of two frequency ratios is explored, revealing that the antenna operates as a dual-band single-sense CP antenna, even in ranges where the two frequency ratios (the ratio of high frequency to low frequency) are smaller compared to antennas in other studies. The proposed antenna has a frequency ratio of less than 1.5 between the two frequencies and can be flexibly designed. The proposed antenna is designed for the 2.5 GHz band and 3.5 GHz band. The measured bandwidths of 10 dB impedance with a 3 dB axial ratio are 2.35–2.52 GHz and 3.36–3.71 GHz, respectively. Full article
Show Figures

Figure 1

15 pages, 2006 KiB  
Article
A CMOS-Based Terahertz Reconfigurable Reflectarray with Amplitude Control: Design and Validation
by You Wu, Yongli Ren, Fan Yang, Shenheng Xu and Maokun Li
Appl. Sci. 2025, 15(12), 6638; https://doi.org/10.3390/app15126638 - 12 Jun 2025
Viewed by 442
Abstract
Terahertz reconfigurable reflectarray antennas (RRAs) hold significant promise for next-generation wireless communication systems by enabling dynamic beam control to mitigate severe path loss at high frequencies. This work presents a Complementary Metal-Oxide-Semiconductor (CMOS)-based RRA for terahertz amplitude control using tunable split-ring resonators. First, [...] Read more.
Terahertz reconfigurable reflectarray antennas (RRAs) hold significant promise for next-generation wireless communication systems by enabling dynamic beam control to mitigate severe path loss at high frequencies. This work presents a Complementary Metal-Oxide-Semiconductor (CMOS)-based RRA for terahertz amplitude control using tunable split-ring resonators. First, a terahertz switch in standard 65 nm CMOS process is designed, tested, and calibrated on the chip to extract the equivalent impedance, enabling precise RRA element design. Next, a reconfigurable element architecture is presented through the co-design of a split-ring radiator, control line, and a single switch. Experimental characterization demonstrates that the fabricated RRA achieves 3 dB amplitude variation at 0.290 THz with <8.5 dB element loss under 0.8 V gate bias. The measured results validate that the proposed single-switch topology effectively balances reconfigurability and loss performance in the terahertz regime. The demonstrated CMOS-compatible RRA provides a scalable solution for real-time beamforming in terahertz communication systems. Full article
(This article belongs to the Special Issue Recent Advances in Reflectarray and Transmitarray Antennas)
Show Figures

Figure 1

12 pages, 8325 KiB  
Article
Co-Design of Single-Layer RCS-Reducing Surface and Antenna Array Based on AMC Technique
by Rongyu Yang, Xiaoyi Liao, Yujie Wang, Xiangcheng Qian, Minxing Wang, Hongfei Zhang and Xiaoxing Fang
Electronics 2025, 14(12), 2392; https://doi.org/10.3390/electronics14122392 - 11 Jun 2025
Viewed by 339
Abstract
A co-design of radar cross section (RCS) reducing surface and array antenna on a single-layer printed board is presented in this paper. To achieve this goal, two kinds of artificial magnetic conductors (AMCs) are designed and optimized. The first kind of AMC shares [...] Read more.
A co-design of radar cross section (RCS) reducing surface and array antenna on a single-layer printed board is presented in this paper. To achieve this goal, two kinds of artificial magnetic conductors (AMCs) are designed and optimized. The first kind of AMC shares the same geometry with the array element and thus is simultaneously used as the array element. The other kind of AMC generates opposed-phased reflections for a normal incident wave, and when they are in a checkerboard configuration, the RCS is reduced via phase cancellation of opposed-phased reflections. In the range of 10 GHz to 16 GHz, the designed bi-functional surface achieves an 8 dB decline in monostatic RCS, while the array antenna obtains a gain of 15 dBi, a side-lobe less than −10 dB, and a cross-polarization less than −20 dB at 13.5 GHz. To validate the calculation results, a prototype is fabricated and measured. To feed the array antenna, a T-type power divider network is etched under the ground and the array is fed via coupling slots on the ground. The measured results agree with the simulation results. Full article
(This article belongs to the Special Issue Broadband High-Power Millimeter-Wave and Terahertz Devices)
Show Figures

Figure 1

22 pages, 14388 KiB  
Article
A Dual-Band Flexible MIMO Array Antenna for Sub-6 GHz 5G Communications
by Deepthi Mariam John, Tanweer Ali, Shweta Vincent, Sameena Pathan, Jaume Anguera, Bal Virdee, Rajiv Mohan David, Krishnamurthy Nayak and Sudheesh Puthenveettil Gopi
Sensors 2025, 25(11), 3557; https://doi.org/10.3390/s25113557 - 5 Jun 2025
Viewed by 710
Abstract
This paper presents a novel dual-band flexible antenna, uniquely designed and extended to array as well as MIMO configurations for the Sub-6 GHz band. The single-element monopole antenna features a modified rectangular radiator with two L-strips and a reduced ground plane, enabling a [...] Read more.
This paper presents a novel dual-band flexible antenna, uniquely designed and extended to array as well as MIMO configurations for the Sub-6 GHz band. The single-element monopole antenna features a modified rectangular radiator with two L-strips and a reduced ground plane, enabling a compact dual-band response. The proposed four-element, two-port MIMO configuration is extended from the 1 × 2 array antenna, achieving an overall dimension of 57 × 50 × 0.1 mm3, making it exceptionally compact and flexible compared to existing rigid and bulkier designs. Operating in the 3.6–3.8 GHz and 5.65–5.95 GHz bands, the antenna delivers a high gain of 5.2 dBi and 7.7 dBi, outperforming many designs in terms of gain while maintaining the superior isolation of >22 dB utilizing a defected ground structure (DGS). The design satisfies key MIMO diversity metrics (ECC < 0.05, DG > 9.99) and demonstrates low SAR values (0.0702/0.25 W/kg at 3.75 GHz and 0.175/0.507 W/kg at 5.9 GHz), making it highly suitable for wearable and on-body communication, unlike many rigid counterparts. Fabricated on a flexible polyimide substrate, the antenna addresses challenges such as size, bandwidth, isolation, and safety in MIMO antenna design. The performance, validated through fabrication and measurement, establishes the proposed antenna as a superior alternative to existing MIMO designs for compact, high-performance Sub-6 GHz 5G applications. Full article
(This article belongs to the Section Communications)
Show Figures

Figure 1

18 pages, 4955 KiB  
Article
Design of a High-Gain X-Band Electromagnetic Band Gap Microstrip Patch Antenna for CubeSat Applications
by Linh Phuong Ta, Daisuke Nakayama and Miyuki Hirose
Electronics 2025, 14(11), 2216; https://doi.org/10.3390/electronics14112216 - 29 May 2025
Viewed by 446
Abstract
Microstrip patch antennas (MPAs) are widely used in satellite communication due to their low profile, compact size, and ease of fabrication. This paper presents a design of an X-band microstrip patch antenna using an electromagnetic band gap (EBG) structure for CubeSat applications. The [...] Read more.
Microstrip patch antennas (MPAs) are widely used in satellite communication due to their low profile, compact size, and ease of fabrication. This paper presents a design of an X-band microstrip patch antenna using an electromagnetic band gap (EBG) structure for CubeSat applications. The X-band is preferred for CubeSat missions in high-speed communication, long distance or deep space because it allows communication at higher data rates, and the antenna is smaller than those used for lower frequency bands. In our study, the EBG elements are analyzed, modified and optimized so that the antenna can fit a 10 cm × 10 cm surface area of a standard 3U CubeSat structure while providing a significant high gain and circular polarization (CP). A noticeable point of this research is that the simplicity of the antenna and the EBG structure are being maintained by just using a simple single-probe feed to achieve a total antenna efficiency exceeding 90%, and the measured gain of around 11.7 dBi at the desired frequency of 8.483 GHz. Furthermore, the measured axial ratio (AR) is around 1.4 dB at 8.483 GHz, which satisfied the lower-than-3 dB requirement for CP antennas in general. The simulation, analysis and measured results are discussed in detail. Full article
(This article belongs to the Section Microwave and Wireless Communications)
Show Figures

Graphical abstract

24 pages, 5904 KiB  
Article
High-Gain Dual-Band Microstrip Antenna for 5G mmWave Applications: Design, Optimization, and Experimental Validation
by Bilal Okan Icmez and Cetin Kurnaz
Appl. Sci. 2025, 15(7), 3993; https://doi.org/10.3390/app15073993 - 4 Apr 2025
Cited by 1 | Viewed by 1102
Abstract
This study presents a novel dual-band microstrip antenna operating at 28/38 GHz, which is designed for fifth generation (5G) and next-generation communications. The objective was to create a high-gain, single-element solution that addresses millimeter-wave (mmWave) challenges, like attenuation and signal loss, offering a [...] Read more.
This study presents a novel dual-band microstrip antenna operating at 28/38 GHz, which is designed for fifth generation (5G) and next-generation communications. The objective was to create a high-gain, single-element solution that addresses millimeter-wave (mmWave) challenges, like attenuation and signal loss, offering a more efficient alternative to complex array antennas. The antenna was designed using Rogers RT/duroid 5880 as a substrate, and CST simulations were used to optimize the return loss, gain, and efficiency. Analytical methods and parametric analyses were used to further optimize the design. Additionally, an SMP connector was integrated into the simulated model using Antenna Magus software, followed by further refinement through additional parametric studies. The final compact antenna (33 × 27 × 1.6 mm3) demonstrates excellent performance with simplified fabrication. The antenna achieved bandwidths of 1.12 GHz at 28 GHz and 1.27 GHz at 38 GHz, with remarkably low return loss values of −53.04 dB and −83.65 dB, respectively. The gain values reached 7.82 dBi at 28 GHz and 8.98 dBi at 38 GHz—prototype measurements closely aligned with simulations, confirming reliability. This study introduces a high-performance, single-element antenna that is both simple and complex. The meticulous optimization process, including SMP connector variations, minimized the fabrication sensitivity and improved the overall performance, thereby marking a significant advancement in antenna design. Full article
Show Figures

Figure 1

16 pages, 6190 KiB  
Article
Compact Size 4-Port MIMO Antenna Formed with Two-Branches Strip-Monopoles with Bandwidth Enhancement Using a T-Stub Line-Load
by Jose Alfredo Tirado-Mendez, Hildeberto Jardon-Aguilar, Roberto Linares-Miranda, Erik Fritz-Andrade, Ruben Flores-Leal, Angel Perez-Miguel and Ricardo Gomez-Villanueva
Appl. Sci. 2025, 15(7), 3757; https://doi.org/10.3390/app15073757 - 29 Mar 2025
Viewed by 482
Abstract
This work presents a compact four-port MIMO antenna with each radiator consisting of a conventional two-monopole array fed at a single point by a coplanar line and reactively loaded with a stub. The incorporation of a T-stub-loaded tuning technique significantly improves the radiating [...] Read more.
This work presents a compact four-port MIMO antenna with each radiator consisting of a conventional two-monopole array fed at a single point by a coplanar line and reactively loaded with a stub. The incorporation of a T-stub-loaded tuning technique significantly improves the radiating element’s impedance, leading to deeper port coupling, a broader bandwidth, and an increased electrical length. Consequently, the operating frequency is substantially lower compared to a standalone radiator. By implementing this configuration with two monopoles of different lengths fed at the same end, an ultra-wideband effect is achieved. By placing four of these stub-loaded monopole arrays in an axial symmetric configuration, a MIMO antenna array is formed. The proposed MIMO array operates from 2.89 GHz to 12 GHz, exhibiting a TARC of less than −10 dB, an ECC of less than 0.002, an average diversity gain of 9.999, and port isolations are within a threshold from −18 dB to −50 dB over the entire bandwidth. The array’s footprint is 32 × 32 mm2, equivalent to 0.083λ02 at the lower cutoff frequency. Full article
Show Figures

Figure 1

22 pages, 3503 KiB  
Article
Beamspace Spatial Smoothing MUSIC DOA Estimation Method Using Dynamic Metasurface Antenna
by Lilong Hou, Liang Jin, Kaizhi Huang, Shuaifang Xiao, Yangming Lou and Yajun Chen
Entropy 2025, 27(4), 335; https://doi.org/10.3390/e27040335 - 24 Mar 2025
Cited by 2 | Viewed by 623
Abstract
The Direction-of-Arrival (DOA) estimation method using traditional array antennas cannot dynamically adjust the observation angle range based on the Region of Interest (ROI), which leads to limited estimation accuracy and high computational complexity. To address the above issue, this paper proposes a Beamspace [...] Read more.
The Direction-of-Arrival (DOA) estimation method using traditional array antennas cannot dynamically adjust the observation angle range based on the Region of Interest (ROI), which leads to limited estimation accuracy and high computational complexity. To address the above issue, this paper proposes a Beamspace Spatial Smoothing MUltiple SIgnal Classification (BSS-MUSIC) DOA estimation method using a Dynamic Metasurface Antenna (DMA). Specifically, we propose a new DMA model with a single RF chain and exploit its flexibility to design a time-division data reception scheme. Based on this scheme, we dynamically select the ROI and increase the beam density in the ROI with an appropriate number of beam patterns. Next, a BSS algorithm is proposed to decohere the multipath signals in beamspace without reverting to the element space. Subsequently, we convert the 2D DOA estimation into two 1D beamspace MUSIC DOA estimations. After pairing the elevation and azimuth angles, the complex gains of each path are derived. Simulation results show that the proposed method can achieve higher estimation accuracy with lower computational complexity. Full article
(This article belongs to the Special Issue Wireless Communications: Signal Processing Perspectives)
Show Figures

Figure 1

Back to TopTop