Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (137)

Search Parameters:
Keywords = simulated gastrointestinal fluids

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
12 pages, 1394 KiB  
Article
Integrating Cartilage Explant Culture with Simulated Digestion and Hepatic Biotransformation Refines In Vitro Screening of Joint Care Nutraceuticals
by Michelina Crosbie, Kailey Vanderboom, Jamie Souccar-Young and Wendy Pearson
Methods Protoc. 2025, 8(4), 91; https://doi.org/10.3390/mps8040091 (registering DOI) - 6 Aug 2025
Abstract
In vitro cartilage explant culture has been used to assess nutraceuticals on cartilage responses to inflammatory stimuli. However, applying extracts of nutraceuticals directly to cartilage explants does not account for effects of digestion and hepatic biotransformation, or selective exclusion of product metabolites from [...] Read more.
In vitro cartilage explant culture has been used to assess nutraceuticals on cartilage responses to inflammatory stimuli. However, applying extracts of nutraceuticals directly to cartilage explants does not account for effects of digestion and hepatic biotransformation, or selective exclusion of product metabolites from joint fluid by the synovial membrane. The current study produced a simulated biological extract of a common nutraceutical (glucosamine; Gsim) by exposing it to a simulated upper gastrointestinal tract digestion, hepatic biotransformation by liver microsomes, and purification to a molecular weight cut-off of 50 kDa. This extract was then used to condition cartilage explants cultured for 120 h in the presence or absence of an inflammatory stimulus (lipopolysaccharide). Media samples were analyzed for prostaglandin E2 (PGE2), glycosaminoglycan (GAG), and nitric oxide (NO). Tissue was digested and analyzed for GAG content and stained for viability. Conditioning of explants with Gsim significantly reduced media GAG in stimulated and unstimulated explants and reduced nitric oxide production in unstimulated explants. These data provide evidence for the value of glucosamine in protecting cartilage from deterioration following an inflammatory challenge, and the model improves applicability of these in vitro data to the in vivo setting. Full article
(This article belongs to the Section Biomedical Sciences and Physiology)
Show Figures

Figure 1

16 pages, 666 KiB  
Article
Optimization of the Viability of Microencapsulated Lactobacillus reuteri in Gellan Gum-Based Composites Using a Box–Behnken Design
by Rafael González-Cuello, Joaquín Hernández-Fernández and Rodrigo Ortega-Toro
J. Compos. Sci. 2025, 9(8), 419; https://doi.org/10.3390/jcs9080419 - 5 Aug 2025
Abstract
The growing interest in probiotic bacteria within the food industry is driven by their recognized health benefits for consumers. However, preserving their therapeutic viability and stability during gastrointestinal transit remains a formidable challenge. Hence, this research aimed to enhance the viability of Lactobacillus [...] Read more.
The growing interest in probiotic bacteria within the food industry is driven by their recognized health benefits for consumers. However, preserving their therapeutic viability and stability during gastrointestinal transit remains a formidable challenge. Hence, this research aimed to enhance the viability of Lactobacillus reuteri through microencapsulation using a binary polysaccharide mixture composed of low acyl gellan gum (LAG), high acyl gellan gum (HAG), and calcium for the microencapsulation of L. reuteri. To achieve this, the Box–Behnken design was applied, targeting the optimization of L. reuteri microencapsulated to withstand simulated gastrointestinal conditions. The microcapsules were crafted using the internal ionic gelation method, and optimization was performed using response surface methodology (RSM) based on the Box–Behnken design. The model demonstrated robust predictive power, with R2 values exceeding 95% and a lack of fit greater than p > 0.05. Under optimized conditions—0.88% (w/v) LAG, 0.43% (w/v) HAG, and 24.44 mM Ca—L. reuteri reached a viability of 97.43% following the encapsulation process. After 4 h of exposure to simulated gastric fluid (SGF) and intestinal fluid (SIF), the encapsulated cells maintained a viable count of 8.02 log CFU/mL. These promising results underscore the potential of biopolymer-based microcapsules, such as those containing LAG and HAG, as an innovative approach for safeguarding probiotics during gastrointestinal passage, paving the way for new probiotic-enriched food products. Full article
Show Figures

Figure 1

13 pages, 3063 KiB  
Article
Gastric Acid-Protective and Intestinal Targeted Nanogels Enable Anti-Bacterial Activity of Cefquinome
by Xianqiang Li, Tianhui Wang, Shuo Han, Jinhuan Liu, Xiuping Zhang, Zhiqiang Zhou, Ali Sobhy Dawood and Wanhe Luo
Gels 2025, 11(7), 503; https://doi.org/10.3390/gels11070503 - 27 Jun 2025
Viewed by 304
Abstract
To enhance the antibacterial activity of cefquinome (CEF) against Escherichia coli, a Carboxymethylcellulose sodium (CMCNa)/D-Mannosamine hydrochloride (DMH)-based nanogels delivery system capable of protecting CEF from gastric acid degradation while enabling intestinal sustained release and targeted antibacterial enhancement was developed. Systematic research was [...] Read more.
To enhance the antibacterial activity of cefquinome (CEF) against Escherichia coli, a Carboxymethylcellulose sodium (CMCNa)/D-Mannosamine hydrochloride (DMH)-based nanogels delivery system capable of protecting CEF from gastric acid degradation while enabling intestinal sustained release and targeted antibacterial enhancement was developed. Systematic research was conducted on the best formulation, physicochemical characteristics, stability, gastrointestinal fluid-responsiveness, and antibacterial activity of the optimal formulation. The results showed that the optimized CEF nanogels demonstrated an enhanced loading capacity (13.0% ± 1.7%) and encapsulation efficiency (52.2% ± 1.0%). CEF nanogels appeared as uniform transparent spheres with a smooth surface under transmission electron microscopy and exhibited a three-dimensional porous network via scanning electron microscopy. More importantly, stability studies revealed that the CEF nanogels hold satisfactory stability. In addition, the formed CEF nanogels could effectively avoid the destruction of CEF by gastric acid in simulated gastric juice. In addition, they had the effect of slow and targeted release in the simulated intestinal tract. Compared to the free CEF, CEF nanogels have stronger antibacterial activity against Escherichia coli. In short, the prepared CEF nanogels had stronger antibacterial activity than CEF through sustained and targeted release. Full article
(This article belongs to the Special Issue Hydrogel for Sustained Delivery of Therapeutic Agents (2nd Edition))
Show Figures

Figure 1

11 pages, 3786 KiB  
Article
Survival and Morphological Changes of Clostridium butyricum Spores Co-Exposed to Antibiotics and Simulated Gastrointestinal Fluids: Implications for Antibiotic Stewardship
by Yi-Meng Yang, Meng-Yue Zhang, Ying-Ying Wu, Lu Zhang and Yi-Xuan Zhang
Microorganisms 2025, 13(6), 1347; https://doi.org/10.3390/microorganisms13061347 - 10 Jun 2025
Viewed by 621
Abstract
Probiotics are often advised to be taken separately from antibiotics due to their sensitivity to antibiotic activity and gastrointestinal (GI) stress. However, Clostridium butyricum spores, as next-generation probiotics, may withstand concurrent use with antibiotics due to their unique structural adaptations. This study systematically [...] Read more.
Probiotics are often advised to be taken separately from antibiotics due to their sensitivity to antibiotic activity and gastrointestinal (GI) stress. However, Clostridium butyricum spores, as next-generation probiotics, may withstand concurrent use with antibiotics due to their unique structural adaptations. This study systematically evaluated the survival rates and morphological changes of C. butyricum spores exposed to 10 clinically relevant antibiotics in simulated gastric/intestinal fluids, exploring their feasibility for co-administration with antibiotics. Survival rates of C. butyricum spores were tested against 10 antibiotics across four classes (β-lactams, macrolides, aminoglycosides, and tetracyclines) in simulated GI fluids. Time–kill curves analyzed spore survival over 0–4 h, while scanning electron microscopy (SEM) observed spore wall integrity and morphological changes under different conditions. The spore survival rates remained >89% in intestinal fluid and >60% in gastric fluid across all antibiotics. SEM revealed gastric acid and proteolysis increased spore wall fragmentation, reducing resistance, whereas the intestinal environment preserved spore integrity. This study was the first to demonstrate that C. butyricum spores can survive simultaneous exposure to antibiotics in the gastrointestinal tract, challenging traditional probiotic usage guidelines. The findings support their co-administration with antibiotics to simplify dosing regimens and improve medication adherence. Such an approach advances antimicrobial stewardship by optimizing therapeutic strategies for antibiotic–probiotic combinations. Full article
(This article belongs to the Section Antimicrobial Agents and Resistance)
Show Figures

Figure 1

19 pages, 10642 KiB  
Article
Rose Bengal–Chitosan Nanocomposites for Oral Administration
by Sara Demartis, Camila J. Picco, Octavio E. Fandiño, Eneko Larrañeta, Ryan F. Donnelly, Paolo Giunchedi, Giovanna Rassu and Elisabetta Gavini
Nanomaterials 2025, 15(10), 706; https://doi.org/10.3390/nano15100706 - 8 May 2025
Viewed by 493
Abstract
Rose Bengal (RB) holds promise for therapeutic applications in the gastrointestinal (GI) tract but faces significant limitations due to poor bioavailability and stability in the GI environment. This in vitro proof-of-concept study aimed to develop an oral drug delivery system using self-assembled RB–chitosan [...] Read more.
Rose Bengal (RB) holds promise for therapeutic applications in the gastrointestinal (GI) tract but faces significant limitations due to poor bioavailability and stability in the GI environment. This in vitro proof-of-concept study aimed to develop an oral drug delivery system using self-assembled RB–chitosan (RBCS) nanocomposites formed via electrostatic interactions. RBCS nanocomposites exhibited high drug loading efficiency (87%) and a uniform particle size (~443 nm), with physicochemical analyses confirming molecular interactions and structural stability. However, in vitro studies revealed poor and highly variable drug release in simulated gastric fluids (SGFs), underlining the need for further optimization. To address these limitations, RBCS nanocomposites were encapsulated within well-established alginate beads (AlgBs). Among the tested systems, RBCS20-AlgBs were selected as the optimal one, forming a gastroresistant platform. Encapsulation mitigated burst release, enhanced structural integrity, and enabled sustained RB release under intestinal conditions. Swelling studies demonstrated that RBCS20-AlgBs maintained controlled hydration, preventing premature disintegration. Mathematical modeling indicated a matrix relaxation-driven release mechanism, with RBCS20-AlgBs demonstrating improved reproducibility compared to RB-loaded AlgBs (RB-AlgBs). Future studies should focus on evaluating in vivo performance to confirm the system’s efficacy for oral administration. Full article
(This article belongs to the Section Nanocomposite Materials)
Show Figures

Figure 1

14 pages, 2573 KiB  
Article
In Vitro Evaluation of Drug–Drug Interaction Between Gliclazide and Antacids at the Absorption Level
by Slavica Lazarević, Srđan Kosijer, Maja Đanić, Dragana Zaklan, Bojan Stanimirov, Momir Mikov and Nebojša Pavlović
Pharmaceuticals 2025, 18(5), 684; https://doi.org/10.3390/ph18050684 - 5 May 2025
Cited by 1 | Viewed by 1228
Abstract
Background: The antidiabetic drug gliclazide is often taken with antacids due to its gastrointestinal side effects. However, patients rarely report antacid use, making drug–drug interactions a potential cause of therapy failure. Therefore, this study aimed to investigate the in vitro effects of [...] Read more.
Background: The antidiabetic drug gliclazide is often taken with antacids due to its gastrointestinal side effects. However, patients rarely report antacid use, making drug–drug interactions a potential cause of therapy failure. Therefore, this study aimed to investigate the in vitro effects of various antacids on gliclazide permeability and to explore the underlying mechanisms. Methods: The permeability of gliclazide alone and in the presence of antacids (sodium bicarbonate, calcium carbonate, aluminum hydroxide, hydrotalcite and calcium carbonate/magnesium carbonate) was investigated using the parallel artificial membrane permeability assay (PAMPA) in four media (buffers pH 1.2, pH 4.5, pH 6.8 and water). The permeability coefficients were calculated, and the effect of pH on gliclazide permeability was also evaluated. Results: At simulated fasting gastric conditions (pH 1.2), groups with calcium carbonate, hydrotalcite and the combination of calcium carbonate/magnesium carbonate showed significantly higher permeability of gliclazide than the control group. At fed-state gastric conditions (pH 4.5), only hydrotalcite did not significantly change the permeability of gliclazide. Sodium bicarbonate, aluminum hydroxide and hydrotalcite significantly reduced the gliclazide permeability in comparison to the control group at pH 6.8 as a representative of fasted-state intestinal fluid. Conclusions: Antacids significantly impact the permeability of gliclazide at different pH values, potentially influencing its bioavailability. Gliclazide permeability is mainly influenced by pH-dependent ionization, though complex or salt formation may also play a role. Since both gliclazide and antacids are taken with food, and gliclazide is primarily absorbed in the small intestine, calcium- and magnesium-based antacids can be considered the most suitable choice. Full article
Show Figures

Graphical abstract

22 pages, 12952 KiB  
Article
Ionotropic Gelation and Chemical Crosslinking as Tools to Obtain Gellan Gum-Based Beads with Mesalazine
by Piotr Gadziński, Agnieszka Skotnicka, Natalia Lisiak, Ewa Totoń, Błażej Rubiś, Ewa Florek, Dariusz T. Mlynarczyk, Mirosław Szybowicz, Ewelina Nowak and Tomasz Osmałek
Pharmaceutics 2025, 17(5), 569; https://doi.org/10.3390/pharmaceutics17050569 - 25 Apr 2025
Viewed by 756
Abstract
Introduction: Many orally administered drugs are either unstable in the acidic environment of the stomach or cause moderate to severe side effects in the upper gastrointestinal tract (GIT). These limitations can reduce therapeutic efficacy, discourage patient compliance, worsen the disease, and even contribute [...] Read more.
Introduction: Many orally administered drugs are either unstable in the acidic environment of the stomach or cause moderate to severe side effects in the upper gastrointestinal tract (GIT). These limitations can reduce therapeutic efficacy, discourage patient compliance, worsen the disease, and even contribute to the risk of cancer development. To overcome these issues, drug release often needs to be modified and targeted to the distal parts of the GIT. This is typically achieved through the use of pH-sensitive polymer coatings or incorporation into polymeric delivery systems. With this in mind, the aim of this project was to design, develop, and characterize gellan gum-based beads for colon-specific prolonged release of mesalazine, with potential application in the chemoprevention and treatment of bowel diseases. Materials and Methods: The dehydrated capsules were characterized using Raman spectroscopy and scanning electron microscopy. The crosslinked gellan gum was additionally evaluated for cytotoxicity. Key parameters such as pH-dependent swelling behavior, drug content, encapsulation efficiency, and drug release in simulated gastrointestinal fluids were also assessed. Furthermore, the behavior of the capsules in the gastrointestinal tract was studied in a rat model to evaluate their in vivo performance. Results: Significant differences in drug release profiles were observed between formulations crosslinked solely with calcium ions and those additionally crosslinked with glutaraldehyde (GA). The incorporation of GA effectively prolonged the release of mesalazine. These findings were further supported by in vivo studies conducted on Wistar rats, where the GA-crosslinked formulation demonstrated a markedly extended release compared to the formulation prepared using only ionotropic gelation. Conclusions: The combination of ionotropic gelation and glutaraldehyde crosslinking in gellan gum-based beads appears to be a promising strategy for achieving colon-specific prolonged release of mesalazine, facilitating targeted delivery to the distal regions of the gastrointestinal tract. Full article
Show Figures

Figure 1

14 pages, 760 KiB  
Article
In Vitro Assessment of Biological and Functional Properties of Potential Probiotic Strains Isolated from Commercial and Dairy Sources
by Elmira Kelidkazeran, Meriam Bouri Yildiz and Fikrettin Sahin
Microorganisms 2025, 13(5), 970; https://doi.org/10.3390/microorganisms13050970 - 24 Apr 2025
Viewed by 682
Abstract
Probiotic species have garnered significant attention for their health benefits extending beyond gastrointestinal health. This study investigated the biological and enzymatic functions of selected probiotic species, specifically Lacticaseibacillus rhamnosus (formerly Lactobacillus rhamnosus), Lactiplantibacillus plantarum (formerly Lactobacillus plantarum), Lactobacillus acidophilus, and [...] Read more.
Probiotic species have garnered significant attention for their health benefits extending beyond gastrointestinal health. This study investigated the biological and enzymatic functions of selected probiotic species, specifically Lacticaseibacillus rhamnosus (formerly Lactobacillus rhamnosus), Lactiplantibacillus plantarum (formerly Lactobacillus plantarum), Lactobacillus acidophilus, and Lactobacillus delbrueckii, among others, through in vitro experiments. Enzymatic activities, including hemolytic, lipase, esterase, and protease functions, were evaluated. Antioxidant capacity was assessed using DPPH radical scavenging assays, while antimicrobial efficacy was tested against common pathogenic bacteria. Antibiotic-resistance patterns were analyzed to ascertain their safety for human consumption. Furthermore, simulated digestive fluid tolerance experiments were conducted to evaluate survival in the gastrointestinal tract. The findings indicate that these probiotic strains exhibit diverse functionalities beyond intestinal health, with potential roles in digestion, oxidative stress reduction, and immune support. This study provides valuable insights into the functional diversity of probiotics, suggesting their broader applications in health and nutrition. Future research should focus on in vivo validation, mechanism elucidation, and clinical studies to determine optimal dosages and strain-specific benefits. Full article
(This article belongs to the Collection Feature Papers in Gut Microbiota Research)
Show Figures

Figure 1

22 pages, 15485 KiB  
Article
Probiotic Potential of Pediococcus pentosaceus M6 Isolated from Equines and Its Alleviating Effect on DSS-Induced Colitis in Mice
by Jialong Cao, Jianqiang Zhang, Hui Wu, Yanan Lin, Xinlan Fang, Siqin Yun, Ming Du, Shaofeng Su, Yuanyi Liu, Na Wang, Tugeqin Bao, Dongyi Bai and Yiping Zhao
Microorganisms 2025, 13(5), 957; https://doi.org/10.3390/microorganisms13050957 - 22 Apr 2025
Cited by 1 | Viewed by 726
Abstract
Colitis in equines has high morbidity and mortality rates, which severely affects the development of the equine-breeding industry. With the issuance of antibiotic bans, there is an urgent need for healthier and more effective alternatives. In recent years, probiotics have been widely used [...] Read more.
Colitis in equines has high morbidity and mortality rates, which severely affects the development of the equine-breeding industry. With the issuance of antibiotic bans, there is an urgent need for healthier and more effective alternatives. In recent years, probiotics have been widely used as microbial feed additives in animal husbandry, playing a crucial role in preventing and treating diarrhea and regulating host immune function. In this study, we isolated and screened a strain with rapid and stable acid production using bromocresol purple, litmus milk coloration tests, and acid production performance assessments. Based on morphological characteristics, physiological and biochemical properties, and 16S rDNA identification, the strain was identified as Pediococcus pentosaceus and named M6. The Pediococcus pentosaceus M6 exhibited stable growth and tolerance to high temperatures, acid and bile salt concentrations, and simulated gastrointestinal fluid environments. The M6 strain demonstrated good antibacterial effects against Escherichia coli, Staphylococcus aureus, and Salmonella. The M6 strain did not produce hemolysis zones on Columbia blood agar plates, indicating its high safety, and was found to be insensitive to 12 antibiotics, including cephalexin and neomycin. Additionally, intervention in mice with dextran sulfate sodium (DSS)-induced colitis alleviated weight loss and shortened colon length. To a certain extent, it regulated the expression of inflammatory cytokines and the gut microbiota within the body and reduced inflammatory cell infiltration and intestinal barrier damage. In summary, the isolated Pediococcus pentosaceus M6 strain exhibited excellent probiotic properties and could alleviate DSS-induced colitis in mice, suggesting its potential application value as a probiotic in animal husbandry. Full article
(This article belongs to the Section Veterinary Microbiology)
Show Figures

Figure 1

16 pages, 2487 KiB  
Article
Oral Delivery of Lactococcus lactis Expressing Full-Length S Protein via Alginate–Chitosan Capsules Induces Immune Protection Against PEDV Infection in Mice
by Miaoyan Yang, Denglong Xie, Wei Ji, Shu Jeffrey Zhu and Yongqi Zhou
Vaccines 2025, 13(4), 421; https://doi.org/10.3390/vaccines13040421 - 17 Apr 2025
Viewed by 961
Abstract
Background/Objectives: Porcine epidemic diarrhea (PED) is a highly contagious enteric infectious disease that causes severe morbidity and mortality in piglets, posing significant economic losses to the swine industry worldwide. Oral vaccines based on Lactococcus lactis offer a promising approach due to their [...] Read more.
Background/Objectives: Porcine epidemic diarrhea (PED) is a highly contagious enteric infectious disease that causes severe morbidity and mortality in piglets, posing significant economic losses to the swine industry worldwide. Oral vaccines based on Lactococcus lactis offer a promising approach due to their safety and genetic manipulability. This study aims to develop and evaluate an oral L. lactis-based vaccine expressing the full-length PEDV S protein. Methods: A recombinant L. lactis strain expressing the PEDV S protein was constructed and encapsulated in alginate–chitosan microcapsules. Vaccine stability was tested in simulated digestive fluids, and mice were orally immunized. Immune responses were evaluated by measuring specific antibodies, cytokines, and lymphocyte proliferation. Results: The recombinant L. lactis NZ3900/pNZ8149-S strain successfully expressed the full-length PEDV S protein and maintained stable plasmid inheritance. Oral immunization in mice induced detectable PEDV-specific immune responses. Both encapsulated and non-encapsulated vaccines stimulated the production of IgG and sIgA antibodies, as well as cytokines associated with Th1 and Th2 responses. Notably, encapsulation with alginate–chitosan significantly enhanced bacterial survival in digestive conditions and further amplified immune responses, including higher antibody titers, elevated levels of IFN-γ, IL-4, and IL-10, and greater lymphocyte proliferation, indicating improved immune memory. Conclusions: The oral L. lactis NZ3900/pNZ8149-S vaccine expressing the PEDV S protein effectively induced systemic and mucosal immunity in mice. Encapsulation with alginate–chitosan further enhanced its immunogenicity and stability in gastrointestinal conditions. These results suggest that both the engineered L. lactis strain and the encapsulation strategy contribute to the development of a promising oral vaccine platform for controlling PEDV in swine populations. Full article
Show Figures

Graphical abstract

17 pages, 3267 KiB  
Article
Evaluation of Different Polysaccharide–Iron Complex Preparations In Vitro and In Vivo
by Xin Yan, Qi Zhang, Tao Wang, Yu Luo and Xianyi Sha
Pharmaceutics 2025, 17(3), 292; https://doi.org/10.3390/pharmaceutics17030292 - 23 Feb 2025
Viewed by 1398
Abstract
Objectives: Iron-deficiency anemia is one of the most common nutritional deficiencies worldwide. Polysaccharide–iron complexes (PICs), as novel organic iron supplements, have garnered increasing attention due to their high bioavailability, minimal gastrointestinal irritation, and favorable tolerability. However, different formulations of PICs can show [...] Read more.
Objectives: Iron-deficiency anemia is one of the most common nutritional deficiencies worldwide. Polysaccharide–iron complexes (PICs), as novel organic iron supplements, have garnered increasing attention due to their high bioavailability, minimal gastrointestinal irritation, and favorable tolerability. However, different formulations of PICs can show significant variations in their physicochemical properties and bioavailability. These factors are crucial for clinical efficacy and safety. Methods: This study selected two formulations of polysaccharide–iron complexes: Formulation A (PIC-coated pellets) and Formulation B (PIC powders), with ferrous succinate tablets (Formulation C) used as a control. The focus was on evaluating the molecular weight of the polysaccharides, the levels of free iron, and the dissolution across various dissolution media. Physicochemical properties were compared through particle size analysis, dissolution rate testing, and free iron content determination. Additionally, the pharmacokinetic properties of the two PIC formulations were assessed in a beagle dog model of iron-deficiency anemia. Results: Significant differences were observed in particle appearance and content structure between the two PIC formulations. Formulation A, prepared using pellet technology, exhibited a uniform particle size distribution. Its dissolution rate in acidic environments was significantly lower than that of Formulation B. In simulated gastric fluid, the cumulative iron dissolution rate of Formulation A was less than 15% within two hours, while that of Formulation B exceeded 50%, with substantial batch-to-batch variability. In various dissolution media, Formulation A released 12% of its dissolved iron content in gastric fluid within two hours. In contrast, the absolute free iron content of Formulation B was 8.5 times higher than that of Formulation A in simulated gastric fluid. In the beagle dog model of iron-deficiency anemia, Formulation A showed significantly higher bioavailability, which suggests that the pellet preparation technology improves both the acid resistance and bioavailability of the PIC formulation. Conclusions: The study revealed that Formulation A, prepared using pellet technology, possesses unique quality characteristics. This technology significantly reduces the release of free iron from PICs due to gastric acid action, potentially minimizing gastrointestinal irritation. Moreover, the pellet preparation process improves the acid resistance and bioavailability of PIC formulations, offering a more effective therapeutic option for iron-deficiency anemia. Future research may further explore the potential applications of pellet technology in other iron supplement formulations. Full article
(This article belongs to the Section Physical Pharmacy and Formulation)
Show Figures

Graphical abstract

22 pages, 4498 KiB  
Article
Oral Delivery of miR146a Conjugated to Cerium Oxide Nanoparticles Improves an Established T Cell-Mediated Experimental Colitis in Mice
by Anisha Apte, Pujarini Dutta Dey, Srisaianirudh Reddy Julakanti, Monica Midura-Kiela, Stacy M. Skopp, Jimena Canchis, Tobias Fauser, James Bardill, Sudipta Seal, David M. Jackson, Fayez K. Ghishan, Pawel R. Kiela, Carlos Zgheib and Kenneth W. Liechty
Pharmaceutics 2024, 16(12), 1573; https://doi.org/10.3390/pharmaceutics16121573 - 9 Dec 2024
Cited by 1 | Viewed by 1583
Abstract
Background: Dysregulated inflammation and oxidative stress are strongly implicated in the pathogenesis of inflammatory bowel disease. We have developed a novel therapeutic that targets inflammation and oxidative stress. It is comprised of microRNA-146a (miR146a)-loaded cerium oxide nanoparticles (CNPs) (CNP-miR146a). We hypothesized that oral [...] Read more.
Background: Dysregulated inflammation and oxidative stress are strongly implicated in the pathogenesis of inflammatory bowel disease. We have developed a novel therapeutic that targets inflammation and oxidative stress. It is comprised of microRNA-146a (miR146a)-loaded cerium oxide nanoparticles (CNPs) (CNP-miR146a). We hypothesized that oral delivery of CNP-miR146a would reduce colonic inflammation in a mouse model of established, chronic, T cell-mediated colitis. Methods: The stability of CNP-miR146a and mucosal delivery was assessed in vitro with simulated gastrointestinal fluid and in vivo after oral gavage by quantitative real-time RT-PCR. The efficacy of orally administered CNP-miR146a was tested in mice with established colitis using the model of adoptive naïve T-cell transfer in recombinant activating gene 2 knockout (Rag2−/−) mice. Measured outcomes included histopathology; CD45+ immune cell infiltration; oxidative DNA damage (tissue 8-hydroxy-2′-deoxyguanosine; 8-OHdG); expression of IL-6 and TNF mRNA and protein, and flow cytometry analysis of lamina propria Th1 and Th17 cell populations. Results: miR146a expression remained stable in simulated gastric and intestinal conditions. miR146a expression increased in the intestines of mice six hours following oral gavage of CNP-miR146a. Oral delivery of CNP-miR146a in mice with colitis was associated with reduced inflammation and oxidative stress in the proximal and distal colons as evidenced by histopathology scoring, reduced immune cell infiltration, reduced IL-6 and TNF expression, and decreased populations of CD4+Tbet+IFNg+ Th1, CD4+RorgT+IL17+ Th17, as well as pathogenic double positive IFNg+IL17+ T cells. Conclusions: CNP-miR146a represents a novel orally available therapeutic with high potential to advance into clinical trials. Full article
(This article belongs to the Section Nanomedicine and Nanotechnology)
Show Figures

Graphical abstract

18 pages, 3605 KiB  
Article
Heterologous Expression of the Antiviral Lectin Griffithsin in Probiotic Saccharomyces boulardii and In Vitro Characterization of Its Properties
by Jie Tang, Ran Li, Tingyu Jiang, Jiachen Lv, Yuwei Jiang, Xingjian Zhou, Hong Chen, Meiliang Li, Aimin Wu, Bing Yu, Timo M. Takala, Per E. J. Saris, Shuhong Li and Zhengfeng Fang
Microorganisms 2024, 12(12), 2414; https://doi.org/10.3390/microorganisms12122414 - 25 Nov 2024
Viewed by 1428
Abstract
In this study, the probiotic yeast Saccharomyces boulardii was engineered to secrete the antiviral lectin griffithsin. Twelve genetic tools with the griffithsin gene were cloned into the vector pSF-TEF1-URA3 and introduced into S. boulardii. In the recombinant strains, a 16.9 kDa band [...] Read more.
In this study, the probiotic yeast Saccharomyces boulardii was engineered to secrete the antiviral lectin griffithsin. Twelve genetic tools with the griffithsin gene were cloned into the vector pSF-TEF1-URA3 and introduced into S. boulardii. In the recombinant strains, a 16.9 kDa band was detected using SDS-PAGE and further recognized by griffithsin antibody with Western blotting. S. boulardii strains FM, FT, HC, and HE with a high yield of griffithsin were acquired for property characterization in vitro. The four recombinant strains displayed a similar growth pattern to that of the control strains, while their morphological characteristics had changed according to scanning electron microscopy. In simulated gastrointestinal digestive fluids, the survival rates of S. boulardii FM, FT, and HC were significantly decreased (86.32 ± 1.49% to 95.36 ± 1.94%) compared with those of the control strains, with survival rates between 95.88 ± 0.00% and 98.74 ± 1.97%. The hydrophobicity of S. boulardii FM, the strain with the highest griffithsin production, was significantly increased to 21.89 ± 1.07%, and it exhibited a reduced auto-aggregation rate (57.64 ± 2.61%). Finally, Vero cells infected with porcine epidemic diarrhea virus (PEDV) were used to evaluate the strains’ antiviral activity, and the rate at which S. boulardii FM inhibited PEDV reached 131.36 ± 1.06%, which was significantly higher than that of the control group. Full article
(This article belongs to the Special Issue Beneficial Microorganisms and Antimicrobials: 2nd Edition)
Show Figures

Figure 1

17 pages, 6321 KiB  
Article
Sodium Alginate–Starch Capsules for Enhanced Stability of Metformin in Simulated Gastrointestinal Fluids
by Roxana Gheorghita, Ioan-Ovidiu Sirbu, Andrei Lobiuc and Mihai Covasa
Biomimetics 2024, 9(11), 716; https://doi.org/10.3390/biomimetics9110716 - 20 Nov 2024
Cited by 3 | Viewed by 2100
Abstract
The use of biopolymers in pharmaceuticals is well established, particularly for encapsulating biologically active compounds due to their beneficial properties. Alginate, widely recognized for its excellent encapsulation abilities, is the most commonly used biopolymer, while starch, typically known as insoluble dietary fiber, also [...] Read more.
The use of biopolymers in pharmaceuticals is well established, particularly for encapsulating biologically active compounds due to their beneficial properties. Alginate, widely recognized for its excellent encapsulation abilities, is the most commonly used biopolymer, while starch, typically known as insoluble dietary fiber, also serves as an effective agent for trapping and protecting compounds during processing, storage, and gastrointestinal transit. Sodium alginate–starch capsules with varying compositions were analyzed to develop metformin hydrochloride (MET) containing capsules with adequate physicochemical properties. In vitro testing with simulated gastrointestinal fluids showed that after 1 h, capsules with equal amounts of alginate and starch had a higher swelling ratio and better drug release behavior, despite lower MET entrapment efficiency compared to other formulations. Microstructural analysis revealed stability in simulated gastric fluids and solubility in simulated intestinal fluids, key factors in drug development. The results suggest that these biopolymeric compositions are highly resistant to gastric fluids and minimally soluble in the intestines, making them suitable for extended drug release. This research evaluates key technological parameters of a cost-effective encapsulation method for the controlled release of active substances, providing a versatile solution for pharmaceutical and biomedical applications. Full article
(This article belongs to the Special Issue Advances in Biomaterials, Biocomposites and Biopolymers 2024)
Show Figures

Figure 1

19 pages, 5687 KiB  
Article
Complexation with Alginate in Pumpkin Leaf Protein Solutions for the Encapsulation of Folic Acid: The Effect of Extraction Protocols
by Predrag Petrović, Bojana Balanč, Jelena Mijalković, Tamara Đukić, Stefan Bošković, Verica Đorđević, Branko Bugarski, Viktor Nedović and Zorica Knežević-Jugović
Foods 2024, 13(22), 3695; https://doi.org/10.3390/foods13223695 - 20 Nov 2024
Cited by 1 | Viewed by 1309
Abstract
This study aimed to assess pumpkin leaves as a protein source and determine the feasibility of these proteins to form complexes with alginate for the encapsulation of folic acid. Different isolation protocols, two based on isoelectric precipitation (one with thermal pretreatment and the [...] Read more.
This study aimed to assess pumpkin leaves as a protein source and determine the feasibility of these proteins to form complexes with alginate for the encapsulation of folic acid. Different isolation protocols, two based on isoelectric precipitation (one with thermal pretreatment and the other with alkali pre-extraction) and one based on stepwise precipitation with ammonium sulfate, were compared regarding the yield and structural properties of the obtained leaf protein concentrates (LPC). The highest purity of protein was achieved using the thermal-acid protocol and the salting-out protocol at 40% saturation. RuBisCO protein was detected by SDS-PAGE in all LPCs, except for the fractions obtained through salting-out at saturation level ≥ 60%. Complexation of the LPC solutions (1 mg/mL) and sodium alginate solution (10 mg/mL) was monitored as a function of LPC:alginate ratio (2:1, 5:1, and 10:1) and pH (2–8) by zeta-potential measurements and confirmed by FT-IR analysis. Based on the results, the strongest interaction between LPCs and alginate occurred at a pH between 2.20 and 2.80 and an LPC:alginate ratio of 10:1. Complexation resulted in particle yields of 42–71% and folic acid entrapment of 46–92%. The LPC-folic acid interactions elucidated by computational protein–ligand docking demonstrated the high potential of RuBisCO as a biocarrier material for folic acid. The in vitro release study in the simulated gastrointestinal fluids indicated that complexes would be stable in gastric conditions, while folic acid would be gradually released in the intestinal fluids. Full article
(This article belongs to the Section Food Engineering and Technology)
Show Figures

Graphical abstract

Back to TopTop