Survival and Morphological Changes of Clostridium butyricum Spores Co-Exposed to Antibiotics and Simulated Gastrointestinal Fluids: Implications for Antibiotic Stewardship
Abstract
1. Introduction
2. Materials and Methods
2.1. Bacterial Strain
2.2. Simulated Digestive Fluids
2.3. Medium and Antibiotic Preparation
2.4. Determination of Spore Survival Rate
2.5. Scanning Electron Microscopy (SEM)
2.6. Statistical Analysis
3. Results
3.1. Survival in Simulated Gastric Fluid (SGF)
- (1)
- β-Lactam antibiotics: C. butyricum spores exhibited moderate tolerance to the combined stress of SGF and β-lactam antibiotics. In cefalexin, cefuroxime, and amoxicillin, the spore survival rates declined steadily within the first 2–3 h before stabilizing, with final 4 h survival rates of 68.18 ± 8.68%, 83.14 ± 4.75%, and 60.33 ± 11.52%, respectively. In cephradine, spore survival rates remained unaffected within 2 h but decreased rapidly between 2 and 3 h, achieving a final 4 h survival rate of 73.48 ± 8.35%. Ampicillin had minimal impact on survival rates, with a 4 h survival rate of 92.99 ± 13.83%, indicating that C. butyricum RH2 spores showed higher tolerance to ampicillin than to amoxicillin. Scanning electron microscopy (SEM) revealed that spores exposed to ampicillin displayed no wrinkling or damage, whereas other β-lactam antibiotics induced structural defects in RH2 spores, such as folding, perforation, and spore wall rupture (Figure 1A–E).
- (2)
- Macrolide antibiotics: After 4 h of co-incubation with macrolide drugs in SGF, azithromycin had minimal impact on RH2 spore survival rates (93.28 ± 5.85%), whereas spore survival rates in roxithromycin decreased gradually, with a final 4 h survival rate of 67.68 ± 12.97%. SEM images showed that RH2 spores exposed to azithromycin remained relatively intact, despite minor cellular debris and sporadic perforations. In contrast, spore damage was more severe in roxithromycin, characterized by pronounced outer wall folding and extensive perforations (Figure 1F,G).
- (3)
- Aminoglycoside antibiotics: Following 4 h co-incubation with gentamicin in SGF, C. butyricum spore viability reached 95.98 ± 12.08%, indicating minimal impact. SEM confirmed spore integrity under these conditions, with only slight folding observed in a small subset of spores (Figure 1H).
- (4)
- Tetracycline antibiotics Co-incubation with tetracycline in SGF for 4 h resulted in a survival rate of 96.10 ± 13.74%, with negligible effect on spore viability. However, tolerance was moderately reduced in doxycycline, with viability declining gradually to a final 4 h survival rate of 73.57 ± 3.44%. SEM showed that tetracycline-exposed spores retained intact morphology with occasional minor folding, while doxycycline-exposed spores exhibited cell wall wrinkling, structural damage, and cytoplasmic leakage (Figure 1I,J).
3.2. Survival in Artificial Intestinal Fluid (SIF)
- (1)
- β-Lactam antibiotics: Compared to SGF, C. butyricum spores exhibited higher tolerance to penicillins in SIF, with survival rates of 90.91 ± 7.88% for ampicillin and 97.86 ± 3.27% for amoxicillin. Cephalosporin antibiotics such as cefalexin (89.51 ± 5.35%), cephradine (96.5 ± 10.64%), and cefuroxime (89.81 ± 9.4%) also showed high tolerance. SEM observations revealed that spores remained predominantly smooth and intact, with minimal cellular fragmentation in the background, despite occasional minor folding or perforations (Figure 2A–E).
- (2)
- Macrolide antibiotics: Co-incubation with azithromycin (92.42 ± 13.12%) and erythromycin (95.16 ± 6.44%) in SIF preserved spore integrity. SEM detected no significant structural damage, except for localized wrinkling in a subpopulation of azithromycin-treated spores (Figure 2F,G).
- (3)
- Aminoglycoside antibiotics: C. butyricum spores showed a high survival rate (97.81 ± 19.17%), with SEM confirming that most spores maintained smooth and intact morphology (Figure 2H).
- (4)
- Tetracycline antibiotics: Spore viability remained high in tetracycline (93.87 ± 9.53%) and doxycycline (91.36 ± 31.31%). SEM images showed that most spores had intact, smooth surfaces with minimal debris (Figure 2I,J).
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Gomaa, E.Z. Human Gut Microbiota/Microbiome in Health and Diseases: A Review. Antonie Leeuwenhoek 2020, 113, 2019–2040. [Google Scholar] [CrossRef] [PubMed]
- Ramirez, J.; Guarner, F.; Bustos Fernandez, L.; Maruy, A.; Sdepanian, V.L.; Cohen, H. Antibiotics as Major Disruptors of Gut Microbiota. Front. Cell. Infect. Microbiol. 2020, 10, 572912. [Google Scholar] [CrossRef] [PubMed]
- Palleja, A.; Mikkelsen, K.H.; Forslund, S.K.; Kashani, A.; Allin, K.H.; Nielsen, T.; Hansen, T.H.; Liang, S.; Feng, Q.; Zhang, C.; et al. Recovery of Gut Microbiota of Healthy Adults Following Antibiotic Exposure. Nat. Microbiol. 2018, 3, 1255–1265. [Google Scholar] [CrossRef]
- Tegegne, B.A.; Kebede, B. Probiotics, Their Prophylactic and Therapeutic Applications in Human Health Development: A Review of the Literature. Heliyon 2022, 8, e09725. [Google Scholar] [CrossRef] [PubMed]
- Yazid, A.M.; Ali, A.M.; Shuhaimi, M.; Kalaivaani, V.; Rokiah, M.Y.; Reezal, A. Antimicrobial Susceptibility of Bifidobacteria: Antimicrobial Susceptibility of Bifidobacteria. Lett. Appl. Microbiol. 2000, 31, 57–62. [Google Scholar] [CrossRef]
- Powers, J.H. Antimicrobial Stewardship. BMJ 2024, 385, q1170. [Google Scholar] [CrossRef]
- Asín-Prieto, E.; Rodríguez-Gascón, A.; Isla, A. Applications of the Pharmacokinetic/Pharmacodynamic (PK/PD) Analysis of Antimicrobial Agents. J. Infect. Chemother. 2015, 21, 319–329. [Google Scholar] [CrossRef]
- Cassir, N.; Benamar, S.; La Scola, B. Clostridium butyricum: From Beneficial to a New Emerging Pathogen. Clin. Microbiol. Infect. 2016, 22, 37–45. [Google Scholar] [CrossRef]
- Ariyoshi, T.; Hagihara, M.; Takahashi, M.; Mikamo, H. Effect of Clostridium Butyricum on Gastrointestinal Infections. Biomedicines 2022, 10, 483. [Google Scholar] [CrossRef]
- Stoeva, M.K.; Garcia-So, J.; Justice, N.; Myers, J.; Tyagi, S.; Nemchek, M.; McMurdie, P.J.; Kolterman, O.; Eid, J. Butyrate-Producing Human Gut Symbiont, Clostridium butyricum, and Its Role in Health and Disease. Gut Microbes 2021, 13, 1907272. [Google Scholar] [CrossRef]
- Liu, H.; Xu, X.; Liang, J.; Wang, J.; Li, Y. The Relationship between Clostridium Butyricum and Colorectal Cancer. J. Cancer Res. Ther. 2022, 18, 1855–1859. [Google Scholar] [CrossRef] [PubMed]
- Shin, Y.; Han, S.; Kwon, J.; Ju, S.; Choi, T.; Kang, I.; Kim, S. Roles of Short-Chain Fatty Acids in Inflammatory Bowel Disease. Nutrients 2023, 15, 4466. [Google Scholar] [CrossRef] [PubMed]
- Hayashi, A.; Sato, T.; Kamada, N.; Mikami, Y.; Matsuoka, K.; Hisamatsu, T.; Hibi, T.; Roers, A.; Yagita, H.; Ohteki, T.; et al. A Single Strain of Clostridium butyricum Induces Intestinal IL-10-Producing Macrophages to Suppress Acute Experimental Colitis in Mice. Cell Host Microbe 2013, 13, 711–722. [Google Scholar] [CrossRef]
- Kanai, T.; Mikami, Y.; Hayashi, A. A Breakthrough in Probiotics: Clostridium Butyricum Regulates Gut Homeostasis and Anti-Inflammatory Response in Inflammatory Bowel Disease. J. Gastroenterol. 2015, 50, 928–939. [Google Scholar] [CrossRef]
- Hayashi, A.; Nagao-Kitamoto, H.; Kitamoto, S.; Kim, C.H.; Kamada, N. The Butyrate-Producing Bacterium Clostridium Butyricum Suppresses Clostridioides difficile Infection via Neutrophil- and Antimicrobial Cytokine–Dependent but GPR43/109a-Independent Mechanisms. J. Immunol. 2021, 206, 1576–1585. [Google Scholar] [CrossRef]
- Hagihara, M.; Yamashita, M.; Ariyoshi, T.; Eguchi, S.; Minemura, A.; Miura, D.; Higashi, S.; Oka, K.; Nonogaki, T.; Mori, T.; et al. Clostridium butyricum-Induced ω-3 Fatty Acid 18-HEPE Elicits Anti-Influenza Virus Pneumonia Effects through Interferon-λ Upregulation. Cell Rep. 2022, 41, 111755. [Google Scholar] [CrossRef]
- Zheng, M.; Ye, H.; Yang, X.; Shen, L.; Dang, X.; Liu, X.; Gong, Y.; Wu, Q.; Wang, L.; Ge, X.; et al. Probiotic Clostridium butyricum Ameliorates Cognitive Impairment in Obesity via the Microbiota-Gut-Brain Axis. Brain Behav. Immun. 2024, 115, 565–587. [Google Scholar] [CrossRef]
- Mun, C.; Cai, J.; Hu, X.; Zhang, W.; Zhang, N.; Cao, Y. Clostridium butyricum and Its Culture Supernatant Alleviate the Escherichia Coli-Induced Endometritis in Mice. Animals 2022, 12, 2719. [Google Scholar] [CrossRef]
- Talukdar, P.K.; Olguín-Araneda, V.; Alnoman, M.; Paredes-Sabja, D.; Sarker, M.R. Updates on the Sporulation Process in Clostridium Species. Res. Microbiol. 2015, 166, 225–235. [Google Scholar] [CrossRef]
- Dürre, P. Physiology and Sporulation in Clostridium. Microbiol. Spectr. 2014, 2, TBS-0010-2012. [Google Scholar] [CrossRef]
- Hagihara, M.; Kuroki, Y.; Ariyoshi, T.; Higashi, S.; Fukuda, K.; Yamashita, R.; Matsumoto, A.; Mori, T.; Mimura, K.; Yamaguchi, N.; et al. Clostridium butyricum Modulates the Microbiome to Protect Intestinal Barrier Function in Mice with Antibiotic-Induced Dysbiosis. iScience 2020, 23, 100772. [Google Scholar] [CrossRef] [PubMed]
- Mitsuboshi, S.; Muto, K.; Okubo, K.; Fukuhara, M. Stability of Probiotics with Antibiotics via Gastric Tube by Simple Suspension Method: An in Vitro Study. J. Infect. Chemother. 2019, 25, 825–828. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y.; Qian, Z.; Ding, Y.; Ji, J.; Ning, X.; Yin, S.; Zhang, K. Isolation and Characterization of a Strain Clostridium butyricum B3 from the Intestine of Pelteobagrus Fulvidraco and Its Potential Probiotic Roles. Aquaculture 2025, 595, 741590. [Google Scholar] [CrossRef]
- Li, J.; Wang, J.; Kong, D.; Zhou, F.; Shi, J.; Hu, X.; Xu, C.; Jiang, K.; Hong, M.; Yang, K.; et al. Research Progress on the Application of Clostridium butyricum in Shrimp Aquaculture. Isr. J. Aquac.-Bamidgeh 2024, 76, 195–207. [Google Scholar] [CrossRef]
- Kheadr, E.; Dabour, N.; Le Lay, C.; Lacroix, C.; Fliss, I. Antibiotic Susceptibility Profile of Bifidobacteria as Affected by Oxgall, Acid, and Hydrogen Peroxide Stress. Antimicrob. Agents Chemother. 2007, 51, 169–174. [Google Scholar] [CrossRef]
- Seki, H.; Shiohara, M.; Matsumura, T.; Miyagawa, N.; Tanaka, M.; Komiyama, A.; Kurata, S. Prevention of Antibiotic-associated Diarrhea in Children by Clostridium butyricum MIYAIRI. Pediatr. Int. 2003, 45, 86–90. [Google Scholar] [CrossRef]
- Tomita, Y.; Sakata, S.; Imamura, K.; Iyama, S.; Jodai, T.; Saruwatari, K.; Hamada, S.; Akaike, K.; Anai, M.; Fukusima, K.; et al. Association of Clostridium Butyricum Therapy Using the Live Bacterial Product CBM588 with the Survival of Patients with Lung Cancer Receiving Chemoimmunotherapy Combinations. Cancers 2023, 16, 47. [Google Scholar] [CrossRef]
- Amund, O.D. Exploring the Relationship between Exposure to Technological and Gastrointestinal Stress and Probiotic Functional Properties of Lactobacilli and Bifidobacteria. Can. J. Microbiol. 2016, 62, 715–725. [Google Scholar] [CrossRef]
- Grujović, M.Ž.; Mladenović, K.G.; Nikodijević, D.D.; Čomić, L.R. Autochthonous Lactic Acid Bacteria—Presentation of Potential Probiotics Application. Biotechnol. Lett. 2019, 41, 1319–1331. [Google Scholar] [CrossRef]
- Schöpping, M.; Zeidan, A.A.; Franzén, C.J. Stress Response in Bifidobacteria. Microbiol. Mol. Biol. Rev. 2022, 86, e00170-21. [Google Scholar] [CrossRef]
- Sada, R.M.; Matsuo, H.; Motooka, D.; Kutsuna, S.; Hamaguchi, S.; Yamamoto, G.; Ueda, A. Clostridium Butyricum Bacteremia Associated with Probiotic Use, Japan. Emerg. Infect. Dis. 2024, 30, 665. [Google Scholar] [CrossRef] [PubMed]
- Ferraris, L.; Balvay, A.; Bellet, D.; Delannoy, J.; Maudet, C.; Larcher, T.; Rozé, J.-C.; Philippe, C.; Meylheuc, T.; Butel, M.-J.; et al. Neonatal Necrotizing Enterocolitis: Clostridium butyricum and Clostridium neonatale Fermentation Metabolism and Enteropathogenicity. Gut Microbes 2023, 15, 2172666. [Google Scholar] [CrossRef] [PubMed]
- Ashammakhi, N.; Nasiri, R.; Barros, N.R.D.; Tebon, P.; Thakor, J.; Goudie, M.; Shamloo, A.; Martin, M.G.; Khademhosseini, A. Gut-on-a-Chip: Current Progress and Future Opportunities. Biomaterials 2020, 255, 120196. [Google Scholar] [CrossRef] [PubMed]
- Olaitan, A.O.; Dureja, C.; Youngblom, M.A.; Topf, M.A.; Shen, W.-J.; Gonzales-Luna, A.J.; Deshpande, A.; Hevener, K.E.; Freeman, J.; Wilcox, M.H.; et al. Decoding a Cryptic Mechanism of Metronidazole Resistance among Globally Disseminated Fluoroquinolone-Resistant Clostridioides Difficile. Nat. Commun. 2023, 14, 4130. [Google Scholar] [CrossRef]
- Bush, N.G.; Diez-Santos, I.; Sankara Krishna, P.; Clavijo, B.; Maxwell, A. Insights into Antibiotic Resistance Promoted by Quinolone Exposure. Antimicrob. Agents Chemother. 2025, 69, e00997-24. [Google Scholar] [CrossRef]
Class | Antibiotics | Concentration in SGF (μg/mL) | Concentration in SIF (μg/mL) | Manufacturer | |
---|---|---|---|---|---|
β-lactams | Cephalexin | 333.3 | 250 | Sinopharm Shantou Jinshi Pharmaceutical Co., Ltd., Shantou, China | |
Cefradine | 333.3 | 250 | Shandong Lukang Pharmaceutical Co., Ltd., Jining, China | ||
Cefuroxime | 333.3 | 250 | Sinopharm Zhijun (Shenzhen) Pharmaceutical Co., Ltd., Shenzhen, China | ||
Ampicillin | 500 | 375 | Zhuhai United Laboratories (Zhongshan) Co., Ltd., China | ||
Amoxicillin | 333.3 | 250 | CSPC Zhongnuo Pharmaceutical (Shijiazhuang) Co., Ltd., Shijiazhuang China | ||
Macrolides | Azithromycin | 333.3 | 250 | Beijing Sihuan Pharmaceutical Co., Ltd., Beijing, China | |
Roxithromycin | 200 | 150 | Shanxi Tongda Pharmaceutical Co., Ltd., Datong, China | ||
Aminoglycosides | Gentamicin | 106.7 | 80 | Hunan Qianjin Xiangjiang Pharmaceutical Co., Ltd., Zhuzhou, China | |
Tetracyclines | Tetracycline | 333.3 | 250 | Guangdong Huanan Pharmaceutical Group Co., Ltd., Dongguan, China | |
Doxycycline | 133.3 | 100 | Hunan Xiangya Pharmaceutical Co., Ltd., Changsha, China |
Sampling Time (h) | 0 | 1 | 2 | 3 | 4 | ||
---|---|---|---|---|---|---|---|
Average Survival Rate(%) | β-lactams | Cephalexin | 100.00 ± 0.00 | 84.00 ± 7.64 | 74.70 ± 12.49 * | 67.69 ± 8.42 ** | 68.18 ± 8.68 ** |
Cefradine | 100.00 ± 0.00 | 95.18 ± 3.90 | 98.81 ± 9.58 | 76.35 ± 8.19 * | 73.48 ± 8.35 ** | ||
Cefuroxime | 100.00 ± 0.00 | 90.97 ± 6.76 | 80.24 ± 6.74 | 82.10 ± 18.17 | 83.14 ± 4.75 | ||
Ampicillin | 100.00 ± 0.00 | 98.18 ± 12.58 | 95.55 ± 9.91 | 93.10 ± 5.47 | 92.99 ± 13.83 | ||
Amoxicillin | 100.00 ± 0.00 | 84.00 ± 3.78 | 61.66 ± 4.11 *** | 63.93 ± 5.36 *** | 60.33 ± 11.52 *** | ||
Macrolides | Azithromycin | 100.00 ± 0.00 | 100.99 ± 2.97 | 98.63 ± 14.12 | 93.27 ± 10.80 | 93.28 ± 5.85 | |
Roxithromycin | 100.00 ± 0.00 | 95.11 ± 11.21 | 79.00 ± 12.12 | 75.46 ± 16.74 | 67.68 ± 12.97 * | ||
Aminoglycosides | Gentamicin | 100.00 ± 0.00 | 94.32 ± 14.22 | 96.44 ± 6.22 | 94.28 ± 7.30 | 95.98 ± 12.08 | |
Tetracyclines | Tetracycline | 100.00 ± 0.00 | 98.18 ± 6.64 | 92.89 ± 3.81 | 98.31 ± 8.46 * | 96.10 ± 13.74 | |
Doxycycline | 100.00 ± 0.00 | 85.93 ± 7.01 * | 81.33 ± 1.53 ** | 80.30 ± 8.04 ** | 73.57 ± 3.44 *** |
Sampling Time (h) | 0 | 1 | 2 | 3 | 4 | ||
---|---|---|---|---|---|---|---|
Average Survival Rate (%) | β-lactams | Cephalexin | 100.00 ± 0.00 | 91.79 ± 16.12 | 88.51 ± 3.23 | 90.60 ± 3.02 | 89.51 ± 5.35 |
Cefradine | 100.00 ± 0.00 | 91.03 ± 2.94 | 99.39 ± 18.13 | 95.07 ± 32.93 | 96.50 ± 10.64 | ||
Cefuroxime | 100.00 ± 0.00 | 96.71 ± 7.91 | 88.40 ± 1.95 | 87.73 ± 3.61 | 89.81 ± 9.40 | ||
Ampicillin | 100.00 ± 0.00 | 104.37 ± 7.17 | 92.53 ± 11.81 | 94.22 ± 7.65 | 90.91 ± 7.88 | ||
Amoxicillin | 100.00 ± 0.00 | 101.38 ± 19.37 | 100.41 ± 19.84 | 96.18 ± 8.02 | 97.86 ± 3.27 | ||
Macrolides | Azithromycin | 100.00 ± 0.00 | 94.20 ± 6.75 | 91.18 ± 18.18 | 91.85 ± 27.62 | 92.42 ± 13.12 | |
Roxithromycin | 100.00 ± 0.00 | 98.84 ± 8.36 | 92.77 ± 0.87 | 94.98 ± 17.11 | 95.16 ± 6.44 | ||
Aminoglycosides | Gentamicin | 100.00 ± 0.00 | 97.98 ± 21.55 | 101.61 ± 9.81 | 98.68 ± 15.26 | 97.81 ± 19.17 | |
Tetracyclines | Tetracycline | 100.00 ± 0.00 | 90.96 ± 21.81 | 93.62 ± 8.75 | 90.21 ± 5.38 | 93.87 ± 9.53 | |
Doxycycline | 100.00 ± 0.00 | 98.48 ± 23.02 | 91.85 ± 4.87 | 90.00 ± 18.87 | 91.36 ± 31.31 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yang, Y.-M.; Zhang, M.-Y.; Wu, Y.-Y.; Zhang, L.; Zhang, Y.-X. Survival and Morphological Changes of Clostridium butyricum Spores Co-Exposed to Antibiotics and Simulated Gastrointestinal Fluids: Implications for Antibiotic Stewardship. Microorganisms 2025, 13, 1347. https://doi.org/10.3390/microorganisms13061347
Yang Y-M, Zhang M-Y, Wu Y-Y, Zhang L, Zhang Y-X. Survival and Morphological Changes of Clostridium butyricum Spores Co-Exposed to Antibiotics and Simulated Gastrointestinal Fluids: Implications for Antibiotic Stewardship. Microorganisms. 2025; 13(6):1347. https://doi.org/10.3390/microorganisms13061347
Chicago/Turabian StyleYang, Yi-Meng, Meng-Yue Zhang, Ying-Ying Wu, Lu Zhang, and Yi-Xuan Zhang. 2025. "Survival and Morphological Changes of Clostridium butyricum Spores Co-Exposed to Antibiotics and Simulated Gastrointestinal Fluids: Implications for Antibiotic Stewardship" Microorganisms 13, no. 6: 1347. https://doi.org/10.3390/microorganisms13061347
APA StyleYang, Y.-M., Zhang, M.-Y., Wu, Y.-Y., Zhang, L., & Zhang, Y.-X. (2025). Survival and Morphological Changes of Clostridium butyricum Spores Co-Exposed to Antibiotics and Simulated Gastrointestinal Fluids: Implications for Antibiotic Stewardship. Microorganisms, 13(6), 1347. https://doi.org/10.3390/microorganisms13061347