In Vitro Evaluation of Drug–Drug Interaction Between Gliclazide and Antacids at the Absorption Level
Abstract
:1. Introduction
2. Results
3. Discussion
4. Materials and Methods
4.1. Materials
4.2. Preparation of Solutions
4.3. Permeability Study
4.4. HPLC Analysis
4.5. Calculation of pH-Dependent Solubility of Gliclazide in Water
4.6. Statistical Analysis
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Sun, X.M.; Tan, J.C.; Zhu, Y.; Lin, L. Association between diabetes mellitus and gastroesophageal reflux disease: A meta-analysis. World J. Gastroenterol. 2015, 21, 3085–3092. [Google Scholar] [CrossRef] [PubMed]
- Ricci, J.A.; Siddique, R.; Stewart, W.F.; Sandler, R.S.; Sloan, S.; Farup, C.E. Upper gastrointestinal symptoms in a U.S. national sample of adults with diabetes. Scand. J. Gastroenterol. 2000, 35, 152–159. [Google Scholar] [CrossRef] [PubMed]
- Pal, P.; Pramanik, S.; Ray, S. Disorders of Gastrointestinal Motility in Diabetes Mellitus: An Unattended Borderline Between Diabetologists and Gastroenterologists. EMJ Diabetes 2021, 9, 64–74. [Google Scholar] [CrossRef]
- Nishida, T.; Tsuji, S.; Tsujii, M.; Arimitsu, S.; Sato, T.; Haruna, Y.; Miyamoto, T.; Kanda, T.; Kawano, S.; Hori, M. Gastroesophageal reflux disease related to diabetes: Analysis of 241 cases with type 2 diabetes mellitus. J. Gastroenterol. Hepatol. 2004, 19, 258–265. [Google Scholar] [CrossRef]
- Garg, V.; Narang, P. Antacids revisited: Review on contemporary facts and relevance for self-management. J. Int. Med. Res. 2022, 50, 3000605221086457. [Google Scholar] [CrossRef]
- Yosmar, R.; Shepany, E.; Fitria, N. A comprehensive analysis of antidiabetic drug interactions in geriatric non-insulin dependent diabetes mellitus patients. Int. J. Appl. Pharm. 2024, 16, 62–65. [Google Scholar] [CrossRef]
- Salisbury, B.H.; Terrell, J.M. Antacids; StatPearls Publishing: Treasure Island, FL, USA, 2023. [Google Scholar]
- Zhang, L.; Wu, F.; Lee, S.C.; Zhao, H.; Zhang, L. pH-dependent drug-drug interactions for weak base drugs: Potential implications for new drug development. Clin. Pharmacol. Ther. 2014, 96, 266–277. [Google Scholar] [CrossRef]
- Ogawa, R.; Echizen, H. Clinically significant drug interactions with antacids: An update. Drugs 2011, 71, 1839–1864. [Google Scholar] [CrossRef]
- Arayne, M.S.; Sultana, N.; Zaman, R.K. In vitro availability of glibenclamide in presence of antacids. Pak. J. Pharm. Sci. 2004, 17, 41–56. [Google Scholar]
- Kivistö, K.T.; Neuvonen, P.J. Differential effects of sodium bicarbonate and aluminium hydroxide on the absorption and activity of glipizide. Eur. J. Clin. Pharmacol. 1991, 40, 383–386. [Google Scholar] [CrossRef]
- Neuvonen, P.J.; Kivistö, K.T. The effects of magnesium hydroxide on the absorption and efficacy of two glibenclamide preparations. Br. J. Clin. Pharmacol. 1991, 32, 215–220. [Google Scholar] [CrossRef] [PubMed]
- Mapa, B.d.C.; Araújo, L.U.; Silva-Barcellos, N.M.; Caldeira, T.G.; Souza, J. Gliclazide: Biopharmaceutics Characteristics to Discuss the Biowaiver of Immediate and Extended Release Tablets. Appl. Sci. 2020, 10, 7131. [Google Scholar] [CrossRef]
- Mikov, M.; Đanić, M.; Pavlović, N.; Stanimirov, B.; Goločorbin-Kon, S.; Stankov, K.; Al-Salami, H. Potential Applications of Gliclazide in Treating Type 1 Diabetes Mellitus: Formulation with Bile Acids and Probiotics. Eur. J. Drug Metab. Pharmacokinet. 2018, 43, 269–280. [Google Scholar] [CrossRef] [PubMed]
- Amod, A. The Place of Sulfonylureas in Guidelines: Why Are There Differences? Diabetes Ther. 2020, 11, 5–14. [Google Scholar] [CrossRef]
- Grbic, S.; Parojcic, J.; Ibric, S.; Djuric, Z. In vitro-in vivo correlation for gliclazide immediate-release tablets based on mechanistic absorption simulation. AAPS PharmSciTech 2011, 12, 165–171. [Google Scholar] [CrossRef]
- Prueksaritanont, T.; Chu, X.; Gibson, C.; Cui, D.; Yee, K.L.; Ballard, J.; Cabalu, T.; Hochman, J. Drug-drug interaction studies: Regulatory guidance and an industry perspective. AAPS J. 2013, 15, 629–645. [Google Scholar] [CrossRef]
- Zhao, Y.; Yin, J.; Zhang, L.; Zhang, Y.; Chen, X. Drug-drug interaction prediction: Databases, web servers and computational models. Brief. Bioinform. 2023, 25, bbad445. [Google Scholar] [CrossRef]
- Mikov, M.; Đanić, M.; Pavlović, N.; Stanimirov, B.; Goločorbin-Kon, S.; Stankov, K.; Al-Salami, H. The Role of Drug Metabolites in the Inhibition of Cytochrome P450 Enzymes. Eur. J. Drug Metab. Pharmacokinet. 2017, 42, 881–890. [Google Scholar] [CrossRef]
- Patel, D.; Bertz, R.; Ren, S.; Boulton, D.W.; Någård, M. A Systematic Review of Gastric Acid-Reducing Agent-Mediated Drug-Drug Interactions with Orally Administered Medications. Clin. Pharmacokinet. 2020, 59, 447–462. [Google Scholar] [CrossRef]
- Srinivas, N.R. Antacid use and reduced bioavailability of oral drugs. Case studies, overview and perspectives. Arzneimittelforschung 2009, 59, 327–334. [Google Scholar] [CrossRef]
- Neuvonen, P.J.; Kivistö, K.T. Enhancement of Drug Absorption by Antacids. Clin. Pharmacokinet. 1994, 27, 120–128. [Google Scholar] [CrossRef] [PubMed]
- Vizserálek, G.; Balogh, T.; Takács-Novák, K.; Sinkó, B. PAMPA study of the temperature effect on permeability. Eur. J. Pharm. Sci. 2014, 53, 45–49. [Google Scholar] [CrossRef] [PubMed]
- Intasiri, A.; Illa, S.E.; Prertprawnon, S.; Wang, S.; Li, L.; Bell, T.W.; Li, D. Comparison of in vitro membrane permeabilities of diverse environmental chemicals with in silico predictions. Sci. Total Environ. 2024, 933, 173244. [Google Scholar] [CrossRef] [PubMed]
- Đanić, M.; Pavlović, N.; Stanimirov, B.; Lazarević, S.; Vukmirović, S.; Al-Salami, H.; Mikov, M. PAMPA model of gliclazide permeability: The impact of probiotic bacteria and bile acids. Eur. J. Pharm. Sci. 2021, 158, 105668. [Google Scholar] [CrossRef]
- El-Sabawi, D.; Hamdan, I.I. Improvement of Dissolution Rate of Gliclazide Through Sodium Salt Formation. Dissolution Technol. 2014, 21, 49–55. [Google Scholar] [CrossRef]
- Parojcić, J.; Corrigan, O.I. Rationale for ibuprofen co-administration with antacids: Potential interaction mechanisms affecting drug absorption. Eur. J. Pharm. Biopharm. 2008, 69, 640–647. [Google Scholar] [CrossRef]
- Tanakit, A.; Rouffet, M.; Martin, D.P.; Cohen, S.M. Investigating chelating sulfonamides and their use in metalloproteinase inhibitors. Dalton Trans. 2012, 41, 6507–6515. [Google Scholar] [CrossRef]
- Zaman, M.K.; Arayne, M.S.; Sultana, N.; Farooq, A. Synthesis and characterization of glibenclamide complexes of magnesium, chromium, cobalt, nickel, zinc and cadmium salts. Pak. J. Pharm. Sci. 2006, 19, 114–118. [Google Scholar]
- Abd El-Wahed, M.; El-Sayed, M.; El-Megharbel, S.; Zahran, Y.; Refat, M. Outline about biological and chemical coordination of some sulphonyl drugs. J. Infect. Dis. Ther. 2014, 2, 132. [Google Scholar] [CrossRef]
- Tawkir, M.; Iqbal, S.A. Synthesis, characterization and medical efficacy of Cr(III) complexes of sulphonyl-ureas, as oral antidiabetics. Asian J. Pharm. Clin. Res. 2012, 5, 129–137. [Google Scholar]
- Aktar, F.; Sultan, M.Z.; Rashid, M.A. Chromium (III) complexes of metformin, dapagliflozin, vildagliptin and glimepiride potentiate antidiabetic activity in animal model. Int. J. Curr. Res. Rev. 2021, 13, 64–69. [Google Scholar] [CrossRef]
- Tyczyńska, M.; Hunek, G.; Kawecka, W.; Brachet, A.; Gędek, M.; Kulczycka, K.; Czarnek, K.; Flieger, J.; Baj, J. Association Between Serum Concentrations of (Certain) Metals and Type 2 Diabetes Mellitus. J. Clin. Med. 2024, 13, 7443. [Google Scholar] [CrossRef] [PubMed]
- Born, T.; Kontoghiorghe, C.N.; Spyrou, A.; Kolnagou, A.; Kontoghiorghes, G.J. EDTA chelation reappraisal following new clinical trials and regular use in millions of patients: Review of preliminary findings and risk/benefit assessment. Toxicol. Mech. Methods 2012, 23, 11–17. [Google Scholar] [CrossRef]
- Winters, C.S.; Shields, L.; Timmins, P.; York, P. Solid-state properties and crystal structure of gliclazide. J. Pharm. Sci. 1994, 83, 300–304. [Google Scholar] [CrossRef]
- Ambrogi, V.; Perioli, L.; Ciarnelli, V.; Nocchetti, M.; Rossi, C. Effect of gliclazide immobilization into layered double hydroxide on drug release. Eur. J. Pharm. Biopharm. 2009, 73, 285–291. [Google Scholar] [CrossRef]
- Costantino, U.; Ambrogi, V.; Nocchetti, M.; Perioli, L. Hydrotalcite-like compounds: Versatile layered hosts of molecular anions with biological activity. Microporous Mesoporous Mater. 2008, 107, 149–160. [Google Scholar] [CrossRef]
- Dahan, A.; Miller, J.M. The solubility-permeability interplay and its implications in formulation design and development for poorly soluble drugs. AAPS J. 2012, 14, 244–251. [Google Scholar] [CrossRef]
- Dahan, A.; Beig, A.; Lindley, D.; Miller, J.M. The solubility-permeability interplay and oral drug formulation design: Two heads are better than one. Adv. Drug Deliv. Rev. 2016, 101, 99–107. [Google Scholar] [CrossRef]
- Pawar, B.M.; Rahman, S.N.R.; Pawde, D.M.; Goswami, A.; Shunmugaperumal, T. Orally Administered Drug Solubility-Enhancing Formulations: Lesson Learnt from Optimum Solubility-Permeability Balance. AAPS PharmSciTech 2021, 22, 63. [Google Scholar] [CrossRef]
- Ibrahim, M.; Munir, S.; Ahmed, S.; Chughtai, A.H.; Ahmad, W.; Khan, J.; Murtey, M.D.; Ijaz, H.; Ojha, S.C. Gliclazide in Binary and Ternary Systems Improves Physicochemical Properties, Bioactivity, and Antioxidant Activity. Oxidative Med. Cell. Longev. 2022, 2022, 2100092. [Google Scholar] [CrossRef]
- Bezerra, K.C.; Pinto, E.C.; Cabral, L.M.; de Sousa, V.P. Development of a Dissolution Method for Gliclazide Modified-Release Tablets Using USP Apparatus 3 with in Vitro-in Vivo Correlation. Chem. Pharm. Bull. 2018, 66, 701–707. [Google Scholar] [CrossRef] [PubMed]
- Koo, J.; Marshall, D.L.; DePaola, A. Antacid increases survival of Vibrio vulnificus and Vibrio vulnificus phage in a gastrointestinal model. Appl. Environ. Microbiol. 2001, 67, 2895–2902. [Google Scholar] [CrossRef] [PubMed]
- Li, R.; Shokri, F. Bi-Directional Interactions between Glucose-Lowering Medications and Gut Microbiome in Patients with Type 2 Diabetes Mellitus: A Systematic Review. Genes 2023, 14, 1572. [Google Scholar] [CrossRef]
- Ðanić, M.; Stanimirov, B.; Pavlović, N.; Vukmirović, S.; Lazić, J.; Al-Salami, H.; Mikov, M. Transport and Biotransformation of Gliclazide and the Effect of Deoxycholic Acid in a Probiotic Bacteria Model. Front. Pharmacol. 2019, 10, 1083. [Google Scholar] [CrossRef]
- Đanić, M.; Pavlović, N.; Zaklan, D.; Stanimirov, B.; Lazarević, S.; Al-Salami, H.; Mikov, M. Computational studies for pre-evaluation of pharmacological profile of gut microbiota-produced gliclazide metabolites. Front. Pharmacol. 2024, 15, 1492284. [Google Scholar] [CrossRef]
- Fortuna, A.; Alves, G.; Soares-Da-Silva, P.; Falcão, A. Optimization of a Parallel Artificial Membrane Permeability Assay for the Fast and Simultaneous Prediction of Human Intestinal Absorption and Plasma Protein Binding of Drug Candidates: Application to Dibenz[b,f]azepine-5-Carboxamide Derivatives. J. Pharm. Sci. 2012, 101, 530–540. [Google Scholar] [CrossRef]
- Wiglusz, K.; Żurawska-Płaksej, E.; Rorbach-Dolata, A.; Piwowar, A. How Does Glycation Affect Binding Parameters of the Albumin-Gliclazide System in the Presence of Drugs Commonly Used in Diabetes? In Vitro Spectroscopic Study. Molecules 2021, 26, 3869. [Google Scholar] [CrossRef]
- Maggi, L.; Canobbio, A.; Bruni, G.; Musitelli, G.; Conte, U. Improvement of the dissolution behavior of gliclazide, a slightly soluble drug, using solid dispersions. J. Drug Deliv. Sci. Technol. 2015, 26, 17–23. [Google Scholar] [CrossRef]
- Zaklan, D.; Nešić, D.; Mitrović, D.; Lazarević, S.; Đanić, M.; Mikov, M.; Pavlović, N. Influence of Bile Acids on Clindamycin Hydrochloride Skin Permeability: In Vitro and In Silico Preliminary Study. Eur. J. Drug Metab. Pharmacokinet. 2024, 49, 219–228. [Google Scholar] [CrossRef]
Group | G | GNa | GCa | GAl | GH | GCaMg |
---|---|---|---|---|---|---|
Buffer pH 1.2 | ||||||
pH | 1.2 | 1.9 | 1.2 | 1.2 | 3.7 | 2.1 |
Buffer pH 4.5 | ||||||
pH | 4.5 | 5.6 | 4.9 | 4.6 | 5.2 | 5.1 |
Buffer pH 6.8 | ||||||
pH | 6.8 | 7.2 | 6.9 | 7.3 | 7.4 | 7.0 |
Water | ||||||
pH | 5.5 | 8.5 | 5.7 | 6.1 | 6.3 | 7.4 |
Input Parameter | Value |
---|---|
logP [13] | 1.7 |
Albumin binding [48] | up to 97% (95%) |
Unbound fraction [48] | 0.05 (5%) |
Molecular weight (MW) [13] | 323.41 g/mol |
Acidic group pKa [13] | 5.8 |
Basic group pKa [13] | 2.9 |
Solubility in water (at 37 °C, pH 7) [49] | 55 mg/L |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lazarević, S.; Kosijer, S.; Đanić, M.; Zaklan, D.; Stanimirov, B.; Mikov, M.; Pavlović, N. In Vitro Evaluation of Drug–Drug Interaction Between Gliclazide and Antacids at the Absorption Level. Pharmaceuticals 2025, 18, 684. https://doi.org/10.3390/ph18050684
Lazarević S, Kosijer S, Đanić M, Zaklan D, Stanimirov B, Mikov M, Pavlović N. In Vitro Evaluation of Drug–Drug Interaction Between Gliclazide and Antacids at the Absorption Level. Pharmaceuticals. 2025; 18(5):684. https://doi.org/10.3390/ph18050684
Chicago/Turabian StyleLazarević, Slavica, Srđan Kosijer, Maja Đanić, Dragana Zaklan, Bojan Stanimirov, Momir Mikov, and Nebojša Pavlović. 2025. "In Vitro Evaluation of Drug–Drug Interaction Between Gliclazide and Antacids at the Absorption Level" Pharmaceuticals 18, no. 5: 684. https://doi.org/10.3390/ph18050684
APA StyleLazarević, S., Kosijer, S., Đanić, M., Zaklan, D., Stanimirov, B., Mikov, M., & Pavlović, N. (2025). In Vitro Evaluation of Drug–Drug Interaction Between Gliclazide and Antacids at the Absorption Level. Pharmaceuticals, 18(5), 684. https://doi.org/10.3390/ph18050684