Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (186)

Search Parameters:
Keywords = simulated annealing particle swarm optimization

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
36 pages, 7177 KB  
Article
Performance Optimization Analysis of Partial Discharge Detection Manipulator Based on STPSO-BP and CM-SA Algorithms
by Lisha Luo, Junjie Huang, Yuyuan Chen, Yujing Zhao, Jufang Hu and Chunru Xiong
Sensors 2025, 25(16), 5214; https://doi.org/10.3390/s25165214 - 21 Aug 2025
Viewed by 191
Abstract
In high-voltage switchgear, partial discharge (PD) detection using six-degree-of-freedom (6-DOF) manipulators presents challenges. However, these involve inverse kinematics (IK) solution redundancy and the lack of synergistic optimization between end-effector positioning accuracy and energy consumption. To address these issues, a dual-layer adaptive optimization model [...] Read more.
In high-voltage switchgear, partial discharge (PD) detection using six-degree-of-freedom (6-DOF) manipulators presents challenges. However, these involve inverse kinematics (IK) solution redundancy and the lack of synergistic optimization between end-effector positioning accuracy and energy consumption. To address these issues, a dual-layer adaptive optimization model integrating multiple algorithms is proposed. In the first layer, a spatio-temporal correlation particle memory-based particle swarm optimization BP neural network (STPSO-BP) is employed. It replaces traditional IK, while long short-term memory (LSTM) predicts particle movement trends, and trajectory similarity penalties constrain search trajectories. Thereby, positioning accuracy and adaptability are enhanced. In the second layer, a chaotic mapping-based simulated annealing (CM-SA) algorithm is utilized. Chaotic joint angle constraints, dynamic weight adjustment, and dynamic temperature regulation are incorporated. This approach achieves collaborative optimization of energy consumption and positioning error, utilizing cubic spline interpolation to smooth the joint trajectory. Specifically, the positioning error decreases by 68.9% compared with the traditional BP neural network algorithm. Energy consumption is reduced by 60.18% in contrast to the pre-optimization state. Overall, the model achieves significant optimization. An innovative solution for synergistic accuracy–energy control in 6-DOF manipulators for PD detection is offered. Full article
(This article belongs to the Section Sensors and Robotics)
Show Figures

Figure 1

22 pages, 2216 KB  
Article
Joint Placement Optimization and Sum Rate Maximization of RIS-Assisted UAV with LEO-Terrestrial Dual Wireless Backhaul
by Naba Raj Khatiwoda, Babu R. Dawadi and Shashidhar R. Joshi
Telecom 2025, 6(3), 61; https://doi.org/10.3390/telecom6030061 - 18 Aug 2025
Viewed by 751
Abstract
Achieving ubiquitous coverage in 6G networks presents significant challenges due to the limitations of high-frequency signals and the need for extensive infrastructure, and providing seamless connectivity in remote and rural areas remains a challenge. We propose an integrated optimization framework for UAV-LEO-RIS-assisted wireless [...] Read more.
Achieving ubiquitous coverage in 6G networks presents significant challenges due to the limitations of high-frequency signals and the need for extensive infrastructure, and providing seamless connectivity in remote and rural areas remains a challenge. We propose an integrated optimization framework for UAV-LEO-RIS-assisted wireless networks, aiming to maximize system sum rate through the strategic placement and configuration of Unmanned Aerial Vehicles (UAVs), Low Earth Orbit (LEO) satellites, and Reconfigurable Intelligent Surfaces (RIS). The framework employs a dual wireless backhaul and utilizes a grid search method for UAV placement optimization, ensuring a comprehensive evaluation of potential positions to enhance coverage and data throughput. Simulated Annealing (SA) is utilized for RIS placement optimization, effectively navigating the solution space to identify configurations that improve signal reflection and network performance. For sum rate maximization, we incorporate several metaheuristic algorithms, including Particle Swarm Optimization (PSO), Genetic Algorithm (GA), Grey Wolf Optimization (GWO), Salp Swarm Algorithm (SSA), Marine Predators Algorithm (MPA), and a hybrid PSO-GWO approach. Simulation results demonstrate that the hybrid PSO-GWO algorithm outperforms individual metaheuristics in terms of convergence speed and achieving a higher sum rate. The coverage improves from 62% to 100%, and the results show an increase in spectrum efficiency of 23.7%. Full article
Show Figures

Figure 1

26 pages, 6989 KB  
Article
Model-Based and Data-Driven Global Optimization of Rainbow-Trapping Mufflers
by Cédric Maury, Teresa Bravo, Daniel Mazzoni, Muriel Amielh and Antonio J. Reinoso
Technologies 2025, 13(8), 356; https://doi.org/10.3390/technologies13080356 - 14 Aug 2025
Viewed by 301
Abstract
Compared to rigidly-backed absorbers, the selection of appropriate optimization techniques for the optimal design of broadband acoustic mufflers remains under-investigated. This study determines the most effective optimization strategy for maximizing the total dissipation of rainbow-trapping silencers (RTSs), composed of graded side-branch cavities that [...] Read more.
Compared to rigidly-backed absorbers, the selection of appropriate optimization techniques for the optimal design of broadband acoustic mufflers remains under-investigated. This study determines the most effective optimization strategy for maximizing the total dissipation of rainbow-trapping silencers (RTSs), composed of graded side-branch cavities that enable broadband dissipation of sound through visco-thermal effects. Model-based and data-driven optimization strategies are compared, particularly in high-dimensional design spaces with flat cost function landscapes where gradient-based approaches are inadequate. It is found that model-based particle swarm optimization (PSO) outperforms simulated annealing, genetic algorithm, and surrogate method in maximizing RTS total dissipation, especially in high-dimensional designs. PSO uniquely handles flat or valleyed cost landscapes through efficient exploration–exploitation trade-offs. Data-driven approaches using Bayesian regularization neural networks (BRNNs) drastically reduce computational cost in high-dimensional spaces, though they require large datasets to avoid over-smoothing. In low dimensions, direct optimization on BRNN outputs suffices, making global search unnecessary. Both model-based and BRNN methods show robustness to input errors, but data-driven approaches handle output noise better. These findings, validated using transfer matrix models, offer strategic guidance for selecting optimization methods, especially when using computationally expensive visco-thermal finite element simulations. Full article
(This article belongs to the Section Environmental Technology)
Show Figures

Graphical abstract

22 pages, 4248 KB  
Article
ASA-PSO-Optimized Elman Neural Network Model for Predicting Mechanical Properties of Coarse-Grained Soils
by Haijuan Wang, Jiang Li, Yufei Zhao and Biao Liu
Processes 2025, 13(8), 2447; https://doi.org/10.3390/pr13082447 - 1 Aug 2025
Viewed by 284
Abstract
Coarse-grained soils serve as essential fill materials in earth–rock dam engineering, where their mechanical properties critically influence dam deformation and stability, directly impacting project safety. Artificial intelligence (AI) techniques are emerging as powerful tools for predicting the mechanical properties of coarse-grained soils. However, [...] Read more.
Coarse-grained soils serve as essential fill materials in earth–rock dam engineering, where their mechanical properties critically influence dam deformation and stability, directly impacting project safety. Artificial intelligence (AI) techniques are emerging as powerful tools for predicting the mechanical properties of coarse-grained soils. However, AI-based prediction models for these properties face persistent challenges, particularly in parameter tuning—a process requiring substantial computational resources, extensive time, and specialized expertise. To address these limitations, this study proposes a novel prediction model that integrates Adaptive Simulated Annealing (ASA) with an improved Particle Swarm Optimization (PSO) algorithm to optimize the Elman Neural Network (ENN). The methodology encompasses three key aspects: First, the standard PSO algorithm is enhanced by dynamically adjusting its inertial weight and learning factors. The ASA algorithm is then employed to optimize the Adaptive PSO (APSO), effectively mitigating premature convergence and local optima entrapment during training, thereby ensuring convergence to the global optimum. Second, the refined PSO algorithm optimizes the ENN, overcoming its inherent limitations of slow convergence and susceptibility to local minima. Finally, validation through real-world engineering case studies demonstrates that the ASA-PSO-optimized ENN model achieves high accuracy in predicting the mechanical properties of coarse-grained soils. This model provides reliable constitutive parameters for stress–strain analysis in earth–rock dam engineering applications. Full article
(This article belongs to the Section Particle Processes)
Show Figures

Figure 1

31 pages, 2271 KB  
Article
Research on the Design of a Priority-Based Multi-Stage Emergency Material Scheduling System for Drone Coordination
by Shuoshuo Gong, Gang Chen and Zhiwei Yang
Drones 2025, 9(8), 524; https://doi.org/10.3390/drones9080524 - 25 Jul 2025
Viewed by 416
Abstract
Emergency material scheduling (EMS) is a core component of post-disaster emergency response, with its efficiency directly impacting rescue effectiveness and the satisfaction of affected populations. However, due to severe road damage, limited availability of resources, and logistical challenges after disasters, current EMS practices [...] Read more.
Emergency material scheduling (EMS) is a core component of post-disaster emergency response, with its efficiency directly impacting rescue effectiveness and the satisfaction of affected populations. However, due to severe road damage, limited availability of resources, and logistical challenges after disasters, current EMS practices often suffer from uneven resource distribution. To address these issues, this paper proposes a priority-based, multi-stage EMS approach with drone coordination. First, we construct a three-level EMS network “storage warehouses–transit centers–disaster areas” by integrating the advantages of large-scale transportation via trains and the flexible delivery capabilities of drones. Second, considering multiple constraints, such as the priority level of disaster areas, drone flight range, transport capacity, and inventory capacities at each node, we formulate a bilevel mixed-integer nonlinear programming model. Third, given the NP-hard nature of the problem, we design a hybrid algorithm—the Tabu Genetic Algorithm combined with Branch and Bound (TGA-BB), which integrates the global search capability of genetic algorithms, the precise solution mechanism of branch and bound, and the local search avoidance features of Tabu search. A stage-adjustment operator is also introduced to better adapt the algorithm to multi-stage scheduling requirements. Finally, we designed eight instances of varying scales to systematically evaluate the performance of the stage-adjustment operator and the Tabu search mechanism within TGA-BB. Comparative experiments were conducted against several traditional heuristic algorithms. The experimental results show that TGA-BB outperformed the other algorithms across all eight test cases, in terms of both average response time and average runtime. Specifically, in Instance 7, TGA-BB reduced the average response time by approximately 52.37% compared to TGA-Particle Swarm Optimization (TGA-PSO), and in Instance 2, it shortened the average runtime by about 97.95% compared to TGA-Simulated Annealing (TGA-SA).These results fully validate the superior solution accuracy and computational efficiency of TGA-BB in drone-coordinated, multi-stage EMS. Full article
Show Figures

Figure 1

21 pages, 1057 KB  
Article
Hybrid Sensor Placement Framework Using Criterion-Guided Candidate Selection and Optimization
by Se-Hee Kim, JungHyun Kyung, Jae-Hyoung An and Hee-Chang Eun
Sensors 2025, 25(14), 4513; https://doi.org/10.3390/s25144513 - 21 Jul 2025
Viewed by 334
Abstract
This study presents a hybrid sensor placement methodology that combines criterion-based candidate selection with advanced optimization algorithms. Four established selection criteria—modal kinetic energy (MKE), modal strain energy (MSE), modal assurance criterion (MAC) sensitivity, and mutual information (MI)—are used to evaluate DOF sensitivity and [...] Read more.
This study presents a hybrid sensor placement methodology that combines criterion-based candidate selection with advanced optimization algorithms. Four established selection criteria—modal kinetic energy (MKE), modal strain energy (MSE), modal assurance criterion (MAC) sensitivity, and mutual information (MI)—are used to evaluate DOF sensitivity and generate candidate pools. These are followed by one of four optimization algorithms—greedy, genetic algorithm (GA), particle swarm optimization (PSO), or simulated annealing (SA)—to identify the optimal subset of sensor locations. A key feature of the proposed approach is the incorporation of constraint dynamics using the Udwadia–Kalaba (U–K) generalized inverse formulation, which enables the accurate expansion of structural responses from sparse sensor data. The framework assumes a noise-free environment during the initial sensor design phase, but robustness is verified through extensive Monte Carlo simulations under multiple noise levels in a numerical experiment. This combined methodology offers an effective and flexible solution for data-driven sensor deployment in structural health monitoring. To clarify the rationale for using the Udwadia–Kalaba (U–K) generalized inverse, we note that unlike conventional pseudo-inverses, the U–K method incorporates physical constraints derived from partial mode shapes. This allows a more accurate and physically consistent reconstruction of unmeasured responses, particularly under sparse sensing. To clarify the benefit of using the U–K generalized inverse over conventional pseudo-inverses, we emphasize that the U–K method allows the incorporation of physical constraints derived from partial mode shapes directly into the reconstruction process. This leads to a constrained dynamic solution that not only reflects the known structural behavior but also improves numerical conditioning, particularly in underdetermined or ill-posed cases. Unlike conventional Moore–Penrose pseudo-inverses, which yield purely algebraic solutions without physical insight, the U–K formulation ensures that reconstructed responses adhere to dynamic compatibility, thereby reducing artifacts caused by sparse measurements or noise. Compared to unconstrained least-squares solutions, the U–K approach improves stability and interpretability in practical SHM scenarios. Full article
Show Figures

Figure 1

17 pages, 1016 KB  
Article
Design of Wideband Power Amplifier Using Improved Particle Swarm Optimization with Output Power and Efficiency Constraints
by Hanyue Wang, Yunqin Chen, Wa Kong, Jianwei Qi, Zhaowen Zheng and Jing Xia
Electronics 2025, 14(14), 2813; https://doi.org/10.3390/electronics14142813 - 12 Jul 2025
Viewed by 388
Abstract
In order to expand the bandwidth of the power amplifier (PA), this paper proposes a PA optimization design method based on improved particle swarm optimization (PSO) with output power and efficiency as optimization objectives. Simulated annealing strategy and adaptive inertia weight are introduced [...] Read more.
In order to expand the bandwidth of the power amplifier (PA), this paper proposes a PA optimization design method based on improved particle swarm optimization (PSO) with output power and efficiency as optimization objectives. Simulated annealing strategy and adaptive inertia weight are introduced to PSO to achieve the global optimum and accelerate the convergence speed. Considering performance metrics of PA, such as the efficiency and output power, a piecewise objective function is formulated for wideband PA optimization design. For validation, a wideband PA operating at 0.5–4.3 GHz (fractional bandwidth of 158.3%) was designed and fabricated. Measured results show a saturated output power ranging from 39.7 to 42.4 dBm and an efficiency between 60.5 and 68.8% within the operating bandwidth. Full article
(This article belongs to the Section Microwave and Wireless Communications)
Show Figures

Figure 1

22 pages, 1425 KB  
Article
Study on Multi-Objective Optimization of Construction of Yellow River Grand Bridge
by Jing Hu, Jinke Ji, Mengyuan Wang and Qingfu Li
Buildings 2025, 15(13), 2371; https://doi.org/10.3390/buildings15132371 - 6 Jul 2025
Viewed by 377
Abstract
As an important transportation hub connecting the two sides of the Yellow River, the Yellow River Grand Bridge is of great significance for strengthening regional exchanges and promoting the high-quality development of the Yellow River Basin. However, due to the complex terrain, changeable [...] Read more.
As an important transportation hub connecting the two sides of the Yellow River, the Yellow River Grand Bridge is of great significance for strengthening regional exchanges and promoting the high-quality development of the Yellow River Basin. However, due to the complex terrain, changeable climate, high sediment concentration, long construction duration, complicated process, strong dynamic, and many factors affecting construction. It often brings many problems, including low quality, waste of resources, and environmental pollution, which makes it difficult to achieve the balance of multiple objectives at the same time. Therefore, it is very important to carry out multi-objective optimization research on the construction of the Yellow River Grand Bridge. This paper takes the Yellow River Grand Bridge on a highway as the research object and combines the concept of “green construction” and the national policy of “carbon neutrality and carbon peaking” to construct six major construction projects, including construction time, cost, quality, environment, resources, and carbon emission. Then, according to the multi-attribute utility theory, the objectives of different attributes are normalized, and the multi-objective equilibrium optimization model of construction time-cost-quality-environment-resource-carbon emission of the Yellow River Grand Bridge is obtained; finally, in order to avoid the shortcomings of a single algorithm, the particle swarm optimization algorithm and the simulated annealing algorithm are combined to obtain the simulated annealing particle swarm optimization (SA-PSO) algorithm. The multi-objective equilibrium optimization model of the construction of the Yellow River Grand Bridge is solved. The optimization result is 108 days earlier than the construction period specified in the contract, which is 9.612 million yuan less than the maximum cost, 6.3% higher than the minimum quality level, 11.1% lower than the maximum environmental pollution level, 4.8% higher than the minimum resource-saving level, and 3.36 million tons lower than the maximum carbon emission level. It fully illustrates the effectiveness of the SA-PSO algorithm for solving multi-objective problems. Full article
(This article belongs to the Section Construction Management, and Computers & Digitization)
Show Figures

Figure 1

18 pages, 4203 KB  
Article
Enhancing Lithium-Ion Battery State-of-Health Estimation via an IPSO-SVR Model: Advancing Accuracy, Robustness, and Sustainable Battery Management
by Siyuan Shang, Yonghong Xu, Hongguang Zhang, Hao Zheng, Fubin Yang, Yujie Zhang, Shuo Wang, Yinlian Yan and Jiabao Cheng
Sustainability 2025, 17(13), 6171; https://doi.org/10.3390/su17136171 - 4 Jul 2025
Viewed by 456
Abstract
Precise forecasting of lithium-ion battery health status is crucial for safe, efficient, and sustainable operation throughout the battery life cycle, especially in applications like electric vehicles (EVs) and renewable energy storage systems. In this study, an improved particle swarm optimization–support vector regression (IPSO-SVR) [...] Read more.
Precise forecasting of lithium-ion battery health status is crucial for safe, efficient, and sustainable operation throughout the battery life cycle, especially in applications like electric vehicles (EVs) and renewable energy storage systems. In this study, an improved particle swarm optimization–support vector regression (IPSO-SVR) model is proposed for dynamic hyper-parameter tuning, integrating multiple intelligent optimization algorithms (including PSO, genetic algorithm, whale optimization, and simulated annealing) to enhance the accuracy and generalization of battery state-of-health (SOH) estimation. The model dynamically adjusts SVR hyperparameters to better capture the nonlinear aging characteristics of batteries. We validate the approach using a publicly available NASA lithium-ion battery degradation dataset (cells B0005, B0006, B0007). Key health features are extracted from voltage–capacity curves (via incremental capacity analysis), and correlation analysis confirms their strong relationship with battery capacity. Experimental results show that the proposed IPSO-SVR model outperforms a conventional PSO-SVR benchmark across all three datasets, achieving higher prediction accuracy: a mean MAE of 0.611%, a mean RMSE of 0.794%, a mean MSE of 0.007%, and robustness a mean R2 of 0.933. These improvements in SOH prediction not only ensure more reliable battery management but also support sustainable energy practices by enabling longer battery life spans and more efficient resource utilization. Full article
Show Figures

Figure 1

18 pages, 1910 KB  
Article
Structural Damage Identification Using PID-Based Search Algorithm: A Control-Theory Inspired Application
by Kuang Shi and Tingting Sun
Buildings 2025, 15(13), 2216; https://doi.org/10.3390/buildings15132216 - 24 Jun 2025
Viewed by 270
Abstract
This study employs a PID (Proportion, Integral, Differential)-based search algorithm (PSA) to achieve structural damage identification (SDI), localization, and quantification. We developed finite element programs for a 10-element simply supported beam, a 21-element truss, and a 7-story steel frame, assigning damage factors to [...] Read more.
This study employs a PID (Proportion, Integral, Differential)-based search algorithm (PSA) to achieve structural damage identification (SDI), localization, and quantification. We developed finite element programs for a 10-element simply supported beam, a 21-element truss, and a 7-story steel frame, assigning damage factors to each element as design variables. The Relative Frequency Change Rate (RFCR) and Modal Assurance Criterion (MAC) were calculated as objective functions for PSA iteration; comparative studies were then conducted against Particle Swarm Optimization (PSO), Genetic Algorithm (GA), and Simulated Annealing (SA) in terms of damage identification accuracy, computational efficiency, and noise robustness. Results demonstrate that PSA achieves exceptional damage localization accuracy within 1% error in severity under noise-free conditions. With 1–3% noise, PSA maintains precise damage localization despite minor severity estimation errors, while other algorithms exhibit false positives in intact elements. Within the fixed number of iterations, PSA outperforms GA and PSO in computational efficiency. Although SA shows faster computation, it significantly compromises identification accuracy and fails in damage detection. The regularization term enables PSA to maintain noise-resistant damage identification even in a 70-element frame structure, demonstrating its potential for robust damage assessment across diverse structural types, scales, and noisy environments. Full article
(This article belongs to the Section Building Structures)
Show Figures

Figure 1

13 pages, 3487 KB  
Article
Inverse Design of Microstrip Antennas Based on Deep Learning
by Shiyang Chen, Guang-Hua Sun and Kaixu Wang
Electronics 2025, 14(13), 2510; https://doi.org/10.3390/electronics14132510 - 20 Jun 2025
Viewed by 749
Abstract
This paper introduces a novel inverse design framework that combines pixelated microstrip antenna modeling, convolutional neural network (CNN), and binary particle swarm optimization (BPSO) to automate the process of generating antenna structures from specified performance targets. The framework operates through a streamlined workflow: [...] Read more.
This paper introduces a novel inverse design framework that combines pixelated microstrip antenna modeling, convolutional neural network (CNN), and binary particle swarm optimization (BPSO) to automate the process of generating antenna structures from specified performance targets. The framework operates through a streamlined workflow: the radiating patch is discretized into a 10 × 10 binary matrix to enable combinatorial design space exploration; a CNN is trained on 150,000 simulated datasets to predict S-parameters as a surrogate for time-consuming electromagnetic simulations; and BPSO optimizes pixel states guided by a fitness function that minimizes reflection coefficients at target frequencies. By representing the patch as binary pixels, the approach exponentially expands the design space from traditional parametric limits to about 1030 combinatorial possibilities, overcoming the inefficiencies of manual trial-and-error design. Comparative studies with genetic algorithms (GAs) and simulated annealing (SA) demonstrate that the BPSO-CNN framework achieves faster convergence and lower S11 error at target frequencies. This work not only advances the state of the art in intelligent antenna design but also provides a scalable paradigm for automated electromagnetic device optimization. Full article
Show Figures

Figure 1

21 pages, 1560 KB  
Article
Energy-Efficient Deployment Simulator of UAV-Mounted Base Stations Under Dynamic Weather Conditions
by Gyeonghyeon Min and Jaewoo So
Sensors 2025, 25(12), 3648; https://doi.org/10.3390/s25123648 - 11 Jun 2025
Viewed by 420
Abstract
In unmanned aerial vehicle (UAV)-mounted base station (MBS) networks, user equipment (UE) experiences dynamic channel variations because of the mobility of the UAV and the changing weather conditions. In order to overcome the degradation in the quality of service (QoS) of the UE [...] Read more.
In unmanned aerial vehicle (UAV)-mounted base station (MBS) networks, user equipment (UE) experiences dynamic channel variations because of the mobility of the UAV and the changing weather conditions. In order to overcome the degradation in the quality of service (QoS) of the UE due to channel variations, it is important to appropriately determine the three-dimensional (3D) position and transmission power of the base station (BS) mounted on the UAV. Moreover, it is also important to account for both geographical and meteorological factors when deploying UAV-MBSs because they service ground UE in various regions and atmospheric environments. In this paper, we propose an energy-efficient UAV-MBS deployment scheme in multi-UAV-MBS networks using a hybrid improved simulated annealing–particle swarm optimization (ISA-PSO) algorithm to find the 3D position and transmission power of each UAV-MBS. Moreover, we developed a simulator for deploying UAV-MBSs, which took the dynamic weather conditions into consideration. The proposed scheme for deploying UAV-MBSs demonstrated superior performance, where it achieved faster convergence and higher stability compared with conventional approaches, making it well suited for practical deployment. The developed simulator integrates terrain data based on geolocation and real-time weather information to produce more practical results. Full article
(This article belongs to the Special Issue Energy-Efficient Communication Networks and Systems: 2nd Edition)
Show Figures

Figure 1

24 pages, 8207 KB  
Article
Research on Energy-Saving Optimization Control Strategy for Distributed Hub Motor-Driven Vehicles
by Bin Huang, Jinyu Wei, Minrui Ma and Xu Yang
Energies 2025, 18(12), 3025; https://doi.org/10.3390/en18123025 - 6 Jun 2025
Viewed by 453
Abstract
Aiming at the problems of energy utilization efficiency and braking stability in electric vehicles, a high-efficiency and energy-saving control strategy that takes both driving and braking into account is proposed with the distributed hub motor-driven vehicle as the research object. Under regular driving [...] Read more.
Aiming at the problems of energy utilization efficiency and braking stability in electric vehicles, a high-efficiency and energy-saving control strategy that takes both driving and braking into account is proposed with the distributed hub motor-driven vehicle as the research object. Under regular driving and braking conditions, the front and rear axle torque distribution coefficients are optimized by an adaptive particle swarm algorithm based on simulated annealing and a multi-objective co-optimization strategy based on variable weight coefficients, respectively. During emergency braking, the anti-lock braking strategy (ABS) based on sliding mode control realizes the independent distribution of torque among four wheels. The joint simulation verification based on MATLAB R2023a/Simulink-Carsim 2020.0 shows that under World Light Vehicle Test Cycle (WLTC) conditions, the optimization strategy reduces the driving energy consumption by 3.20% and 2.00%, respectively, compared with the average allocation and the traditional strategy. The braking recovery energy increases by 4.07% compared with the fixed proportion allocation, improving the energy utilization rate of the entire vehicle. The wheel slip rate can be quickly stabilized near the optimal value during emergency braking under different adhesion coefficients, which ensures the braking stability of the vehicle. The effectiveness of the strategy is verified. Full article
Show Figures

Figure 1

30 pages, 3781 KB  
Article
Adaptive Multi-Objective Firefly Optimization for Energy-Efficient and QoS-Aware Scheduling in Distributed Green Data Centers
by Ahmed Chiheb Ammari, Wael Labidi and Rami Al-Hmouz
Energies 2025, 18(11), 2940; https://doi.org/10.3390/en18112940 - 3 Jun 2025
Viewed by 564
Abstract
Green data centers (GDCs) are increasingly deployed worldwide to power digital infrastructure sustainably. These centers integrate renewable energy sources, such as solar and wind, to reduce dependence on grid electricity and lower operational costs. When distributed geographically, GDCs face considerable challenges due to [...] Read more.
Green data centers (GDCs) are increasingly deployed worldwide to power digital infrastructure sustainably. These centers integrate renewable energy sources, such as solar and wind, to reduce dependence on grid electricity and lower operational costs. When distributed geographically, GDCs face considerable challenges due to spatial variations in renewable energy availability, electricity pricing, and bandwidth costs. This paper addresses the joint optimization of operational cost and service quality for delay-sensitive applications scheduled across distributed green data centers (GDDCs). We formulate a multi-objective optimization problem that minimizes total operational costs while reducing the Average Task Loss Probability (ATLP), a key Quality of Service (QoS) metric. To solve this, we propose an Adaptive Firefly-Based Bi-Objective Optimization (AFBO) algorithm that introduces multiple adaptive mechanisms to improve convergence and diversity. The minimum Manhattan distance method is adopted to select a representative knee solution from each algorithm’s Pareto front, determining optimal task service rates and ISP task splits into each time slot. AFBO is evaluated using real-world trace-driven simulations and compared against benchmark multi-objective algorithms, including multi-objective particle swarm optimization (MOPSO), simulated annealing-based bi-objective differential evolution (SBDE), and the baseline Multi-Objective Firefly Algorithm (MOFA). The results show that AFBO achieves up to 64-fold reductions in operational cost and produces an extremely low ATLP value (1.875×107) that is nearly two orders of magnitude lower than SBDE and MOFA and several orders better than MOPSO. These findings confirm AFBO’s superior capability to balance energy cost savings and Quality of Service (QoS), outperforming existing methods in both solution quality and convergence speed. Full article
(This article belongs to the Special Issue Studies in Renewable Energy Production and Distribution)
Show Figures

Figure 1

28 pages, 9195 KB  
Article
Enhancing Sealing Performance Predictions: A Comprehensive Study of XGBoost and Polynomial Regression Models with Advanced Optimization Techniques
by Weiru Zhou and Zonghong Xie
Materials 2025, 18(10), 2392; https://doi.org/10.3390/ma18102392 - 20 May 2025
Cited by 1 | Viewed by 615
Abstract
Motors, as the core carriers of pollution-free power, realize efficient electric energy conversion in clean energy systems such as electric vehicles and wind power generation, and are widely used in industrial automation, smart home appliances, and rail transit fields with their low-noise and [...] Read more.
Motors, as the core carriers of pollution-free power, realize efficient electric energy conversion in clean energy systems such as electric vehicles and wind power generation, and are widely used in industrial automation, smart home appliances, and rail transit fields with their low-noise and zero-emission operating characteristics, significantly reducing the dependence on fossil energy. As the requirements of various application scenarios become increasingly complex, it becomes particularly important to accurately and quickly design the sealing structure of motors. However, traditional design methods show many limitations when facing such challenges. To solve this problem, this paper proposes hybrid models of machine learning that contain polynomial regression and optimization XGBOOST models to rapidly and accurately predict the sealing performance of motors. Then, the hybrid model is combined with the simulated annealing algorithm and multi-objective particle swarm optimization algorithm for optimization. The reliability of the results is verified by the mutual verification of the results of the simulated annealing algorithm and the particle swarm optimization algorithm. The prediction accuracy of the hybrid model for data outside the training set is within 2.881%. Regarding the prediction speed of this model, the computing time of ML is less than 1 s, while the computing time of FEA is approximately 9 h, with an efficiency improvement of 32,400 times. Through the cross-validation of single-objective optimization and multi-objective optimization algorithms, the optimal design scheme is a groove depth of 0.8–0.85 mm and a pre-tightening force of 80 N. The new method proposed in this paper solves the limitations in the design of motor sealing structures, and this method can be extended to other fields for application. Full article
(This article belongs to the Section Materials Simulation and Design)
Show Figures

Figure 1

Back to TopTop