Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (88)

Search Parameters:
Keywords = simple payback period

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
30 pages, 5415 KiB  
Article
Grid-Connected Photovoltaic Systems as an Alternative for Sustainable Urbanization in Southeastern Mexico
by Adán Acosta-Banda, Verónica Aguilar-Esteva, Liliana Hechavarría Difur, Eduardo Campos-Mercado, Benito Cortés-Martínez and Miguel Patiño-Ortiz
Urban Sci. 2025, 9(8), 329; https://doi.org/10.3390/urbansci9080329 - 20 Aug 2025
Viewed by 293
Abstract
Rapid urban growth poses distinct energy and environmental challenges in various regions of the world. This study evaluated the technical and economic feasibility of a grid-connected photovoltaic system in Santo Domingo Tehuantepec, Oaxaca, Mexico, using Homer Pro software, version 3.14.2, to simulate realistic [...] Read more.
Rapid urban growth poses distinct energy and environmental challenges in various regions of the world. This study evaluated the technical and economic feasibility of a grid-connected photovoltaic system in Santo Domingo Tehuantepec, Oaxaca, Mexico, using Homer Pro software, version 3.14.2, to simulate realistic scenarios. The analysis incorporated local climate data, residential load profiles, and updated economic parameters for 2024. System optimization resulted in an installed capacity of 173 kW of solar panels and 113 kW of inverters, yielding a levelized cost of energy (LCOE) of MXN 1.43/kWh, a return on investment (ROI) of 5.3%, an internal rate of return (IRR) of 8%, and a simple payback period of 10 years. The projected annual energy output was 281,175 kWh, covering 36% of the local energy demand. These results highlight the potential for integrating renewable energy into urban contexts, offering significant economic and environmental benefits. The integration of public policy with urban planning can enhance energy resilience and sustainability in intermediate cities. This study also supports the application of tools such as Homer Pro in designing energy solutions tailored to local conditions and contributes to a fair and decentralized energy transition. Full article
(This article belongs to the Special Issue Sustainable Urbanization, Regional Planning and Development)
Show Figures

Figure 1

17 pages, 899 KiB  
Article
Optimal Sizing of Residential PV and Battery Systems Under Grid Export Constraints: An Estonian Case Study
by Arko Kesküla, Kirill Grjaznov, Tiit Sepp and Alo Allik
Energies 2025, 18(16), 4405; https://doi.org/10.3390/en18164405 - 19 Aug 2025
Viewed by 250
Abstract
This study investigates the optimal sizing of photovoltaic (PV) and battery storage (BAT) systems for Estonian households operating under grid constraints that prevent selling surplus energy. We develop and compare three sizing models of increasing complexity, ranging from a simple heuristic to a [...] Read more.
This study investigates the optimal sizing of photovoltaic (PV) and battery storage (BAT) systems for Estonian households operating under grid constraints that prevent selling surplus energy. We develop and compare three sizing models of increasing complexity, ranging from a simple heuristic to a full simulation based optimization. Their performance is evaluated using a multi-criteria decision analysis (MCDA) framework that integrates Net Present Value (NPV), Internal Rate of Return (IRR), Profitability Index Ratio (PIR), and payback period. Sensitivity analyses are used to test the robustness of each configuration against electricity price shifts and market volatility. Our findings reveal that standalone PV-only systems are the most economically robust investment. They consistently outperform combined PV + BAT and BAT-only configurations in terms of investment efficiency and overall financial attractiveness. Key results demonstrate that the simplest heuristic-based model (Model 1) identifies configurations with a better balance of financial returns and capital efficiency than the more complex simulation-based approach (Model 3). While the optimization model achieves the highest absolute NPV, it requires significantly higher investment and results in lower overall efficiency. The economic case for batteries remains weak, with viability depending heavily on price volatility and arbitrage potential. These results provide practical guidance, suggesting that for grid constrained households, a well-sized PV-only system identified with a simple model offers the most effective path to cost savings and energy self-sufficiency. Full article
(This article belongs to the Section A1: Smart Grids and Microgrids)
Show Figures

Figure 1

21 pages, 3422 KiB  
Article
Techno-Economic Optimization of a Grid-Tied PV/Battery System in Johannesburg’s Subtropical Highland Climate
by Webster J. Makhubele, Bonginkosi A. Thango and Kingsley A. Ogudo
Sustainability 2025, 17(14), 6383; https://doi.org/10.3390/su17146383 - 11 Jul 2025
Viewed by 507
Abstract
With rising energy costs and the need for sustainable power solutions in urban South African settings, grid-tied renewable energy systems have become viable alternatives for reducing dependence on traditional grid supply. This study investigates the techno-economic feasibility of a grid-connected hybrid photovoltaic (PV) [...] Read more.
With rising energy costs and the need for sustainable power solutions in urban South African settings, grid-tied renewable energy systems have become viable alternatives for reducing dependence on traditional grid supply. This study investigates the techno-economic feasibility of a grid-connected hybrid photovoltaic (PV) and battery storage system designed for a commercial facility located in Johannesburg, South Africa—an area characterized by a subtropical highland climate. We conducted the analysis using the HOMER Grid software and evaluated the performance of the proposed PV/battery system against the baseline grid-only configuration. Simulation results indicate that the optimal systems, comprising 337 kW of flat-plate PV and 901 kWh of lithium-ion battery storage, offers a significant reduction in electricity expenditure, lowering the annual utility cost from $39,229 to $897. The system demonstrates a simple payback period of less than two years and achieves a net present value (NPV) of approximately $449,491 over a 25-year project lifespan. In addition to delivering substantial cost savings, the proposed configuration also enhances energy resilience. Sensitivity analyses were conducted to assess the impact of variables such as inflation rate, discount rate, and load profile fluctuations on system performance and economic returns. The results affirm the suitability of hybrid grid-tied PV/battery systems for cost-effective, sustainable urban energy solutions in climates with high solar potential. Full article
Show Figures

Figure 1

38 pages, 2576 KiB  
Article
Photovoltaic Farms: Economic Efficiency of Investments in South-East Poland
by Joanna Żurakowska-Sawa, Arkadiusz Gromada, Anna Trocewicz, Adrianna Wojciechowska, Marcin Wysokiński and Anetta Zielińska
Energies 2025, 18(1), 170; https://doi.org/10.3390/en18010170 - 3 Jan 2025
Cited by 3 | Viewed by 1207
Abstract
The main objective of this study was to identify the status and development opportunities and evaluate the economic viability of investments in large-scale photovoltaic installations in Southeastern Poland. The primary data sources used in the study were empirical materials from all photovoltaic installations [...] Read more.
The main objective of this study was to identify the status and development opportunities and evaluate the economic viability of investments in large-scale photovoltaic installations in Southeastern Poland. The primary data sources used in the study were empirical materials from all photovoltaic installations implemented with support from the Regional Operational Program of the Lublin Voivodeship (ROP WL) for 2007–2013 (31 projects). The following indices were used to evaluate the economic efficiency of the investments studied: rate of return on investment (ROI), simple payback period (SPP), net present value of investment (NPV), internal rate of return (IRR), discounted payback period (DPBT), and averaged unit cost of electricity generation (LCOE). They were carried out for three scenarios–baseline, conservative, and optimistic–in two variants, for actual capital expenditures considering financial support used and without subsidies. It was determined that the expected lifetime of the studied investments would be 25 years. The sensitivity analysis shows that, regardless of the adopted scenario, investments in solar thermal power with the level of support that took place under the 2007–2013 financial perspective were reasonable long-term investments. In the least favorable scenario (conservative) included in the analysis, the discounted payback period ranged from 8.1 to 22 years. In the optimistic scenario, DPBT values ranged from 5.6 years to more than 15 years. The payback period (both simple and discounted) for investments with the subsidy was, on average, almost twice as fast as for investments without the subsidy, while the average unit cost of electricity generation with the subsidy was about 30% lower than without it. Full article
Show Figures

Figure 1

39 pages, 2858 KiB  
Review
Thin-Film Technologies for Sustainable Building-Integrated Photovoltaics
by Andrew R. Smith, Mehrdad Ghamari, Sasireka Velusamy and Senthilarasu Sundaram
Energies 2024, 17(24), 6363; https://doi.org/10.3390/en17246363 - 18 Dec 2024
Cited by 6 | Viewed by 3247
Abstract
This study investigates the incorporation of thin-film photovoltaic (TFPV) technologies in building-integrated photovoltaics (BIPV) and their contribution to sustainable architecture. The research focuses on three key TFPV materials: amorphous silicon (a-Si), cadmium telluride (CdTe), and copper indium gallium selenide (CIGS), examining their composition, [...] Read more.
This study investigates the incorporation of thin-film photovoltaic (TFPV) technologies in building-integrated photovoltaics (BIPV) and their contribution to sustainable architecture. The research focuses on three key TFPV materials: amorphous silicon (a-Si), cadmium telluride (CdTe), and copper indium gallium selenide (CIGS), examining their composition, efficiency, and BIPV applications. Recent advancements have yielded impressive results, with CdTe and CIGS achieving laboratory efficiencies of 22.10% and 23.35%, respectively. The study also explores the implementation of building energy management systems (BEMS) for optimizing energy use in BIPV-equipped buildings. Financial analysis indicates that despite 10.00–30.00% higher initial costs compared to conventional materials, BIPV systems can generate 50–150 kWh/m2 annually, with simple payback periods of 5–15 years. The research emphasizes the role of government incentives and innovative financing in promoting BIPV adoption. As BIPV technology progresses, it offers a promising solution for transforming buildings from energy consumers to producers, significantly contributing to sustainable urban development and climate change mitigation. Full article
(This article belongs to the Special Issue Energy Efficiency and Energy Performance in Buildings)
Show Figures

Figure 1

24 pages, 9184 KiB  
Article
Biomass-Driven Polygeneration Coupled to Power-to-X: An Energy and Economic Comparison Between On-Site Electric Vehicle Charging and Hydrogen Production
by Simona Di Fraia, Rafał Figaj, Musannif Shah and Laura Vanoli
Energies 2024, 17(21), 5479; https://doi.org/10.3390/en17215479 - 1 Nov 2024
Viewed by 1390
Abstract
The power-to-X strategy for passenger car applications offers a viable solution for using the surplus electrical power from renewable energy sources instead of exporting it to the grid. The innovative system proposed in this study allocates surplus electrical power from a building-integrated biomass-based [...] Read more.
The power-to-X strategy for passenger car applications offers a viable solution for using the surplus electrical power from renewable energy sources instead of exporting it to the grid. The innovative system proposed in this study allocates surplus electrical power from a building-integrated biomass-based Combined Cooling Heating and Power (CCHP) system to on-site applications and evaluates the energetic and economic benefits. The system comprises two key components: a 50 kW electric vehicle (EV) charging station for EVs and a 50 kW alkaline electrolyzer system for on-site hydrogen production, which is later dispensed to fuel cell electric vehicles (FCEVs). The primary goal is to decrease the surplus of electricity exports while simultaneously encouraging sustainable transportation. The system’s economic viability is assessed through two scenarios of fuel (e.g., biomass) supply costs (e.g., with and without fuel market costs) and compared to the conventional approach of exporting the excess power. The key findings of this work include a substantial reduction in surplus electricity exports, with only 3.7% allocated for EV charging and 31.5% for hydrogen production. The simple payback period (SPB) is notably reduced, enhancing economic viability. Sensitivity analysis identifies the optimal hydrogen system, featuring a 120 kW electrolyzer and a 37 kg daily hydrogen demand. The results underscore the importance of prioritizing self-consumed energy over exports to the national grid, thereby supporting integrated renewable energy solutions that enhance local energy utilization and promote sustainable transportation initiatives. Full article
(This article belongs to the Special Issue Clean and Efficient Use of Energy: 2nd Edition)
Show Figures

Figure 1

22 pages, 6298 KiB  
Article
A Techno-Economic Analysis of a Hybrid Microgrid System in a Residential Area of Bangladesh: Optimizing Renewable Energy
by Md. Feroz Ali, Md. Alamgir Hossain, Mir Md. Julhash, Md Ashikuzzaman, Md Shafiul Alam and Md. Rafiqul Islam Sheikh
Sustainability 2024, 16(18), 8051; https://doi.org/10.3390/su16188051 - 14 Sep 2024
Cited by 10 | Viewed by 2729
Abstract
In the face of a significant power crisis, Bangladesh is turning towards renewable energy solutions, a move supported by the government’s initiatives. This article presents the findings of a study conducted in a residential area of Pabna, Bangladesh, using HOMER (Hybrid Optimization of [...] Read more.
In the face of a significant power crisis, Bangladesh is turning towards renewable energy solutions, a move supported by the government’s initiatives. This article presents the findings of a study conducted in a residential area of Pabna, Bangladesh, using HOMER (Hybrid Optimization of Multiple Energy Resources) Pro software version 3.14.2. The study investigates the feasibility and efficiency of a grid-connected hybrid power system, combining photovoltaics (PV), a biomass generator, and wind energy. The simulation produced six competing solutions, each featuring a distinct combination of energy sources. Among the configurations analyzed, the grid-connected PV–biomass generator system emerged as the most cost-effective, exhibiting the lowest COE at USD 0.0232, a total net present cost (NPC) of USD 321,798.00, and an annual operating cost of USD 6060.59. The system presents a simple payback period of 9.25 years, highlighting its economic viability. Moreover, this hybrid model significantly reduces CO2 emissions to 78,721 kg/year, compared to the 257,093 kg/year emissions from a solely grid-connected system, highlighting its environmental benefits. Sensitivity analyses further reveal that the system’s performance is highly dependent on solar irradiance, indicating that slight variations in solar input can significantly impact the system’s output. This study underscores the potential of integrating multiple renewable energy sources to address the power crisis in Bangladesh, offering a sustainable and economically viable solution while also mitigating environmental impacts. Full article
Show Figures

Figure 1

5 pages, 476 KiB  
Proceeding Paper
Power Generation Strategies for Converting Energy-Intensive Campuses of UK Higher Education Institutions to Low-Emission Facilities: A Case-Study-Based Analysis
by Ezekiel Okaga, Anusha Wijewardane and Wattala Fernando
Eng. Proc. 2024, 71(1), 7; https://doi.org/10.3390/engproc2024071007 - 31 Jul 2024
Viewed by 1010
Abstract
Two-thirds of UK higher education institutions operate as energy-intensive buildings and have failed to achieve the 2020 goal of reducing emissions by 43% from 2005 levels, as pledged in 2005. Converting existing buildings into low-emission ones is challenging, and setting achievable targets with [...] Read more.
Two-thirds of UK higher education institutions operate as energy-intensive buildings and have failed to achieve the 2020 goal of reducing emissions by 43% from 2005 levels, as pledged in 2005. Converting existing buildings into low-emission ones is challenging, and setting achievable targets with sustainable design strategies is crucial. A case study was conducted on the University of Dundee’s dental clinic, analysing the economic viability of a hybrid microgrid with an on-site solar photovoltaic, natural-gas-fuelled combined heat and power generator, and the national grid. Three design configurations were analysed: Grid + CHP, Grid + PV, and Grid + PV + CHP. The results showed that the Grid + PV + CHP system has the lowest levelised cost of electricity (LCOE) and is over 75% more cost-effective and shows a minimum of 7.5% reduction in emissions. This configuration has a simple payback period of 2.9 years, a discounted payback period of 2.6 years, a return on investment of 30.1%, and an internal rate of return of 34.4%. Full article
(This article belongs to the Proceedings of The 4th Annual Conference Solar and Wind Power)
Show Figures

Figure 1

16 pages, 3640 KiB  
Article
Integration of Full-Size Graywater Membrane-Aerated Biological Reactor with Reverse Osmosis System for Space-Based Wastewater Treatment
by Ghaem Hooshyari, Arpita Bose and W. Andrew Jackson
Membranes 2024, 14(6), 127; https://doi.org/10.3390/membranes14060127 - 30 May 2024
Cited by 3 | Viewed by 1736
Abstract
To date, life support systems on the International Space Center (ISS) or those planned for upcoming moon/Mars missions have not included biological reactors for wastewater treatment, despite their ubiquitous use for the treatment of terrestrial wastewaters. However, the new focus on partial gravity [...] Read more.
To date, life support systems on the International Space Center (ISS) or those planned for upcoming moon/Mars missions have not included biological reactors for wastewater treatment, despite their ubiquitous use for the treatment of terrestrial wastewaters. However, the new focus on partial gravity habitats reduces the required complexity of treatment systems compared with those operating in micro-gravity, and the likely addition of large-volume wastewaters with surfactant loads (e.g., laundry and shower) makes the current ISS wastewater treatment system inappropriate due to the foaming potential from surfactants, increased consumable requirements due to the use of non-regenerative systems (e.g., mixed adsorbent beds), the complexity of the system, and sensitivity to failures from precipitation and/or biological fouling. Hybrid systems that combine simple biological reactors with desalination (e.g., Reverse Osmosis (RO)) could reduce system and consumable mass and complexity. Our objective was to evaluate a system composed of a membrane-aerated bioreactor (MABR) coupled to a low-pressure commercial RO system to process partial gravity habitat wastewater. The MABR was able to serve as the only wastewater collection tank (variable volume), receiving all wastewaters as they were produced. The MABR treated more than 20,750 L of graywater and was able to remove more than 90% of dissolved organic carbon (DOC), producing an effluent with DOC < 14 mg/L and BOD < 12 mg/L and oxidizing >90% of the ammoniacal nitrogen into NOx. A single RO membrane (260 g) was able to process >3000 L of MABR effluent and produced a RO permeate with DOC < 5 mg/L, TN < 2 mg/L, and TDS < 10 mg/L, which would essentially meet ISS potable water standards after disinfection. The system has an un-optimized mass and volume of 128.5 kg. Consumables include oxygen (~4 g/crew-day), RO membranes, and a prefilter (1.7 g/crew-day). For a one-year mission with four crew, the total system + consumable mass are ~141 kg, which would produce ~15,150 kg of treated water, resulting in a pay-back period of 13.4 days (3.35 days for a crew of four). Given that the MABR in this study operated for 500 days, while in previous studies, similar systems operated for more than 3 years, the total system costs would be exceedingly low. These results highlight the potential application of hybrid treatment systems for space habitats, which may also have a direct application to terrestrial applications where source-separated systems are employed. Full article
(This article belongs to the Special Issue Developing Membrane Bioreactors for Wastewater Treatment and Reuse)
Show Figures

Figure 1

20 pages, 6336 KiB  
Article
A New Approach to the Economic Evaluation of Thermomodernization: Annual Assessment Based on the Example of Production Space
by Orest Voznyak, Edyta Dudkiewicz, Marta Laska, Ievgen Antypov, Nadiia Spodyniuk, Iryna Sukholova and Olena Savchenko
Energies 2024, 17(9), 2105; https://doi.org/10.3390/en17092105 - 28 Apr 2024
Cited by 1 | Viewed by 1395
Abstract
Energy and economic assessments are of great relevance in the context of decision processes for the most optimal solutions for building renovations. Following the method recommended by UNIDO, economic analyses of thermal modernization options are carried out based on the Simple Payback Time [...] Read more.
Energy and economic assessments are of great relevance in the context of decision processes for the most optimal solutions for building renovations. Following the method recommended by UNIDO, economic analyses of thermal modernization options are carried out based on the Simple Payback Time (SPBT), Net Present Value Ratio (NPVR) and Internal Rate of Return (IRR) indices. Incorporating these indicators and a new approach that involves aggregating thermomodernization activities not only in the cold and warm seasons separately, but throughout the whole year, an economic evaluation of the thermomodernization of a production space was carried out. In this case study, the renovation options included wall insulation, window replacement, the installation of infrared heater, a two-flow air diffuser (TFAD) and variable air volume. The economic effect indicated by the highest NPVR over a normative period of 15 years was obtained for the installation of an infrared heater and a TFAD with a variable mode ventilation system. The SPBT for this case was also the lowest. Full article
(This article belongs to the Special Issue Internal Environment and Thermal Performance of Buildings)
Show Figures

Figure 1

39 pages, 8329 KiB  
Review
Biomass Polygeneration Systems Integrated with Buildings: A Review
by Simona Di Fraia, Musannif Shah and Laura Vanoli
Sustainability 2024, 16(4), 1654; https://doi.org/10.3390/su16041654 - 17 Feb 2024
Cited by 9 | Viewed by 3119
Abstract
Biomass is widely acknowledged as a plentiful and easily accessible source of renewable energy. Unlike many other renewable sources, biomass offers a consistent and predictable power supply without significant concerns about energy and environmental impacts. When used as a fuel in polygeneration systems [...] Read more.
Biomass is widely acknowledged as a plentiful and easily accessible source of renewable energy. Unlike many other renewable sources, biomass offers a consistent and predictable power supply without significant concerns about energy and environmental impacts. When used as a fuel in polygeneration systems designed to produce multiple outputs such as electricity, heat, chemicals, and synthetic fuels, biomass greatly enhances overall system efficiency by minimizing energy losses. These systems gain further advantages when integrated in a decentralized manner with energy-intensive applications like buildings. This review article aims to shift the focus of readers from generic biomass-based systems to polygeneration systems tailored for specific applications, such as buildings. The overview will discuss various biomass resources, systematic approaches, technologies, successful case studies, potential benefits, and limitations of such systems integrated into real-life building applications. It also categorizes studies based on different conversion processes such as combustion, gasification, and anaerobic digestion, with combustion-based polygeneration systems being the most prevalent. The review also explores the use of standalone and hybrid biomass-based energy systems. Taking a multidisciplinary approach, the analysis considers energy, exergy, economic, and environmental perspectives. Parameters such as the primary energy savings (PES), exergy efficiency, simple payback (SPB) period, and CO2 emission reductions are commonly used in system analyses. The review underscores how polygeneration systems integrated into the building sector can enhance efficiency, resilience, and environmental sustainability. This synthesis aims to address current gaps, particularly in the domain of polygeneration systems connected with buildings, offering essential insights for researchers and specialists in the field. Full article
(This article belongs to the Special Issue Conversion of Residual Biomass Energy to Power Generation)
Show Figures

Figure 1

14 pages, 3256 KiB  
Article
Techno-Economic Assessment of Solar–Grid–Battery Hybrid Energy Systems for Grid-Connected University Campuses in Kenya
by Musong L. Katche, Augustine B. Makokha, Siagi O. Zachary and Muyiwa S. Adaramola
Electricity 2024, 5(1), 61-74; https://doi.org/10.3390/electricity5010004 - 29 Jan 2024
Cited by 10 | Viewed by 3111
Abstract
This paper presents the techno-economic feasibility of using grid-connected PV hybrid systems to supply power in large grid-dependent academic institutions. The study was conducted using the administration building of Moi University in Kenya. The power consumption profile of the building was collected using [...] Read more.
This paper presents the techno-economic feasibility of using grid-connected PV hybrid systems to supply power in large grid-dependent academic institutions. The study was conducted using the administration building of Moi University in Kenya. The power consumption profile of the building was collected using a PCE-360 power analyzer. The peak load demand was found to be 60 kW. Using random variability constants of 4% for day-to-day and 4% time-step load variability, a peak demand of 70.58 kW was obtained, which was used in our simulation. The solar radiation and temperature data for this site were collected from the weather station of the university. The hybrid system was simulated using HOMER Pro software. It was found from the simulation results that the optimal system was the solar PV/grid without battery storage, which had a levelized cost of energy (LCOE) of KSH 8.78/kWh (USD 0.072), net present cost (NPC) of KSH 27,974,492 (USD 230,813), capital expenditure (CAPEX) of KSH 26,300,000 (USD 216,997), and a simple payback period (SPBP) of 5.08 years for a 25-year life span. This system, when compared to the existing grid, showed an 83.94% reduction in the annual electricity bill of the administration building. These results demonstrate a reduction in energy cost by a renewable energy fraction of 67.1%. Full article
Show Figures

Figure 1

18 pages, 4523 KiB  
Article
Performance Analysis of an R744 Supermarket Refrigeration System Integrated with an Organic Rankine Cycle
by Ayan Sengupta, Paride Gullo, Mani Sankar Dasgupta and Vahid Khorshidi
Energies 2023, 16(22), 7478; https://doi.org/10.3390/en16227478 - 7 Nov 2023
Cited by 4 | Viewed by 1916
Abstract
The energy and economic performance of a transcritical R744 booster supermarket refrigeration system with and without parallel compression and integrated with an organic Rankine cycle (ORC) was investigated. The results obtained were compared with those of a transcritical R744 booster supermarket refrigeration system [...] Read more.
The energy and economic performance of a transcritical R744 booster supermarket refrigeration system with and without parallel compression and integrated with an organic Rankine cycle (ORC) was investigated. The results obtained were compared with those of a transcritical R744 booster supermarket refrigeration system with and without parallel compression and those of a conventional R404A direct expansion (DX) system. Nine different locations, namely Copenhagen (Denmark), Paris (France), Athens (Greece), New Delhi (India), Phoenix and Miami (US), Madrid (Spain), Bangkok (Thailand) and Riyadh (Saudi Arabia), were considered. It was discovered that the ORC is effective only at ambient temperatures higher than 27 °C when operating without parallel compression and 28 °C when operating with parallel compression. By using the heat recovered from the gas cooler to fuel the ORC, the latter was found to be capable of covering between 4% and 24% of the electricity demand of the R744 system in warm and hot climates (without parallel compression). The simple payback period of the additional investment associated with the ORC was found to be between 1.4 and 2.5 years in warm climate locations, while the same was found to be less than about 0.5 years in locations experiencing hot climatic conditions. Full article
Show Figures

Figure 1

6 pages, 857 KiB  
Proceeding Paper
Modeling and Optimizing the Performance of an Industrial Trigeneration Unit
by Miroslav Variny, Marianna Kšiňanová and Patrik Furda
Eng. Proc. 2023, 56(1), 37; https://doi.org/10.3390/ASEC2023-15409 - 27 Oct 2023
Viewed by 878
Abstract
Trigeneration provides an effective means of power, heat, and cold production on site. Proper design and well-managed operation of such units can bring in substantial savings in consumed primary energy as well as in the amount of greenhouse gases released to the atmosphere, [...] Read more.
Trigeneration provides an effective means of power, heat, and cold production on site. Proper design and well-managed operation of such units can bring in substantial savings in consumed primary energy as well as in the amount of greenhouse gases released to the atmosphere, compared to separate production of all three media. The studied sub-MW-sized trigeneration unit comprises an internal combustion engine combined with an absorption chiller and a heat management system, delivering all three media to a nearby industrial facility. A mathematical model is developed based on available design and process data, a profit function is set up, and the subsequent sensitivity analysis of economic parameters is realized. The lowered efficiency of summer operation is analyzed, and a suitable solution is proposed, with an estimated total investment cost of EUR 114,000 and an anticipated simple payback period less than 2 years. Full article
(This article belongs to the Proceedings of The 4th International Electronic Conference on Applied Sciences)
Show Figures

Figure 1

27 pages, 14168 KiB  
Article
Multi-Objective Decision-Making Tool for Envelope Energy Retrofitting Measures of Gated Community Housing in Egypt
by Sarah Ahmad Algohary, Ayman Mahmoud and Manal Yehya
Designs 2023, 7(6), 123; https://doi.org/10.3390/designs7060123 - 27 Oct 2023
Cited by 3 | Viewed by 2049
Abstract
Due to climate change, Egypt has recently suffered from recurring electricity crises. Despite efforts made to increase electricity production in Egypt, recently, in the summer months, the energy demand has increased at unprecedented rates, especially in the housing sector. Therefore, the government and [...] Read more.
Due to climate change, Egypt has recently suffered from recurring electricity crises. Despite efforts made to increase electricity production in Egypt, recently, in the summer months, the energy demand has increased at unprecedented rates, especially in the housing sector. Therefore, the government and homeowners should work together to improve the energy performance of residential buildings. This paper aimed to develop a decision-making tool that helps homeowners choose optimal energy retrofit measures that suit their priorities. The study began with the data-collection and case study selection. Then, the thermal evaluation of the base case for dwellings in the case study was conducted through simulation runs using the DesignBuilder v7.1 software. Then, the optimal envelope energy retrofitting measures were determined, followed by a retrofitting-measure scenario simulation process. Then, the payback periods were calculated for all scenarios, and the tool database was developed using an Excel spreadsheet. Finally, the user interface for envelope energy retrofitting measures for gated communities (EERMGCs) tool was designed by Visual Basic for Applications. EERMGCs, the tool developed in this paper, is a simple, multi-objective and interactive tool that provides the optimal envelope retrofit measures according to user priorities, either a specific budget, the shortest payback period, the lowest possible costs, or the highest energy saving rate. The outcome of this research is developing a framework that can be considered a basis for developing decision-making tools for gated community housing in Egypt. Full article
Show Figures

Figure 1

Back to TopTop