Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (34)

Search Parameters:
Keywords = simple harmonics motion

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
15 pages, 3568 KiB  
Article
Construction of Chitin-Based Composite Hydrogel via AlCl3/ZnCl2/H2O Ternary Molten Salt System and Its Flexible Sensing Performance
by Yanjun Lv, Hailong Huang, Guozhong Wu and Yuan Qian
Gels 2025, 11(7), 501; https://doi.org/10.3390/gels11070501 - 27 Jun 2025
Viewed by 387
Abstract
Bio-based ionic conductive hydrogels have attracted significant attention for use in wearable electronic sensors due to their inherent flexibility, ionic conductivity, and biocompatibility. However, achieving a balance between high ionic conductivity and mechanical robustness remains a significant challenge. In this study, we present [...] Read more.
Bio-based ionic conductive hydrogels have attracted significant attention for use in wearable electronic sensors due to their inherent flexibility, ionic conductivity, and biocompatibility. However, achieving a balance between high ionic conductivity and mechanical robustness remains a significant challenge. In this study, we present a simple yet effective strategy for fabricating a polyelectrolyte–chitin double-network hydrogel (CAA) via the copolymerization of acrylamide (AM) and acrylic acid (AA) with chitin in an AlCl3-ZnCl2-H2O ternary molten salt system. The synergistic interactions of dynamic metal ion coordination bonds and hydrogen bonding impart the CAA hydrogel with outstanding mechanical properties, including a fracture strain of 1765.5% and a toughness of 494.4 kJ/m3, alongside a high ionic conductivity of 1.557 S/m. Moreover, the hydrogel exhibits excellent thermal stability across a wide temperature range (−50 °C to 25 °C). When employed as a wearable sensor, the hydrogel demonstrates a rapid response time (<0.2 s), remarkable durability over 95 cycles with less than 5% resistance drift, and high sensitivity in detecting various human joint motions (e.g., finger, knee, and elbow bending). It presents a scalable strategy for biomass-derived flexible electronics that harmonizes mechanical robustness with electromechanical performance. Full article
(This article belongs to the Section Gel Analysis and Characterization)
Show Figures

Graphical abstract

17 pages, 4945 KiB  
Article
Numerical Simulation of Regular Wave and Ice Floe Interaction Using Coupled Eulerian–Lagrangian Method
by Chaoge Yu and Yukui Tian
Water 2025, 17(13), 1879; https://doi.org/10.3390/w17131879 - 24 Jun 2025
Viewed by 475
Abstract
Wave propagation is impacted by the presence of ice floes. The influence of waves, on the other hand, causes ice floes to overlap and accumulate. In this paper, the interaction of ice floes and regular waves was simulated using the Finite Element Method. [...] Read more.
Wave propagation is impacted by the presence of ice floes. The influence of waves, on the other hand, causes ice floes to overlap and accumulate. In this paper, the interaction of ice floes and regular waves was simulated using the Finite Element Method. Firstly, natural ice floe fields were generated using the Python 3.10 programing language, with floe size distribution and randomness taken into consideration. Then, using the velocity inlet boundary wave generation method, regular simple harmonic waves were produced. The process where ice floes couple with waves was simulated with the Coupled Eulerian–Lagrangian (CEL) approach. Variations in wave height after passing through the ice floe field were investigated, and further research was conducted on the movement and fragmentation characteristics of ice floes. Simulations employing the Coupled Eulerian–Lagrangian (CEL) approach reveal that (1) ice floe motion exhibits periodic characteristics synchronized with incident wave periods; (2) wave height attenuation increases by 62–80% with rising ice concentration (70–90%); and (3) fragmentation predominantly occurs at wave trough phases due to flexural stress concentration. These findings quantitatively characterize wave–ice energy transfer mechanisms critical for polar navigation safety assessments. Full article
Show Figures

Figure 1

24 pages, 5617 KiB  
Article
Study on the Propulsion Characteristics of a Flapping Flat-Plate Pumping Device
by Ertian Hua, Yang Lin, Sihan Li, Xiaopeng Wu and Mingwang Xiang
Appl. Sci. 2025, 15(13), 7034; https://doi.org/10.3390/app15137034 - 22 Jun 2025
Viewed by 429
Abstract
To improve hydrodynamic conditions and self-purification in plain river networks, this study optimized an existing hydrofoil-based pumping device and redesigned its flow channel. Using the finite volume method (FVM) and overset grid technique, a comparative numerical analysis was conducted on the pumping performance [...] Read more.
To improve hydrodynamic conditions and self-purification in plain river networks, this study optimized an existing hydrofoil-based pumping device and redesigned its flow channel. Using the finite volume method (FVM) and overset grid technique, a comparative numerical analysis was conducted on the pumping performance of hydrofoils operating under simple harmonic and quasi-harmonic flapping motions. Based on the tip vortex phenomenon observed at the channel outlet, the flow channel structure was further designed to inform the structural optimization of bionic pumping devices. Results show both modes generate reversed Kármán vortex streets, but the quasi-harmonic mode induces a displacement in vorticity distribution, whereas that of the simple harmonic motion extends farther downstream. Pumping efficiency under simple harmonic motion consistently outperforms that of quasi-harmonic motion, exceeding its peak by 20.2%. The pumping and propulsion efficiencies show a generally positive correlation with the outlet angle of the channel, both reaching their peak when the outlet angle α is −10°. Compared to an outlet angle of 0°, an outlet angle of −10° results in an 8.5% increase in pumping efficiency and a 10.2% increase in propulsion efficiency. Full article
(This article belongs to the Special Issue Application of Computational Fluid Mechanics in Fluid Machinery)
Show Figures

Figure 1

19 pages, 26314 KiB  
Article
Effects of Wing Kinematics on Aerodynamics Performance for a Pigeon-Inspired Flapping Wing
by Tao Wu, Kai Wang, Qiang Jia and Jie Ding
Biomimetics 2025, 10(5), 328; https://doi.org/10.3390/biomimetics10050328 - 17 May 2025
Viewed by 617
Abstract
The wing kinematics of birds plays a significant role in their excellent unsteady aerodynamic performance. However, most studies investigate the influence of different kinematic parameters of flapping wings on their aerodynamic performance based on simple harmonic motions, which neglect the aerodynamic effects of [...] Read more.
The wing kinematics of birds plays a significant role in their excellent unsteady aerodynamic performance. However, most studies investigate the influence of different kinematic parameters of flapping wings on their aerodynamic performance based on simple harmonic motions, which neglect the aerodynamic effects of the real flapping motion. The purpose of this article was to study the effects of wing kinematics on aerodynamic performance for a pigeon-inspired flapping wing. In this article, the dynamic geometric shape of a flapping wing was reconstructed based on data of the pigeon wing profile. The 3D wingbeat kinematics of a flying pigeon was extracted from the motion trajectories of the wingtip and the wrist during cruise flight. Then, we used a hybrid RANS/LES method to study the effects of wing kinematics on the aerodynamic performance and flow patterns of the pigeon-inspired flapping wing. First, we investigated the effects of dynamic spanwise twisting on the lift and thrust performance of the flapping wing. Numerical results show that the twisting motion weakens the leading-edge vortex (LEV) on the upper surface of the wing during the downstroke by reducing the effective angle of attack, thereby significantly reducing the time-averaged lift and power consumption. Then, we further studied the effects of the 3D sweeping motion on the aerodynamic performance of the flapping wing. Backward sweeping reduces the wing area and weakens the LEV on the lower surface of the wing, which increases the lift and reduces the aerodynamic power consumption significantly during the upstroke, leading to a high lift efficiency. These conclusions are significant for improving the aerodynamic performance of bionic flapping-wing micro air vehicles. Full article
Show Figures

Figure 1

19 pages, 3751 KiB  
Article
A Novel Methodology for Scrutinizing Periodic Solutions of Some Physical Highly Nonlinear Oscillators
by Gamal M. Ismail, Galal M. Moatimid, Stylianos V. Kontomaris and Livija Cveticanin
Computation 2025, 13(5), 105; https://doi.org/10.3390/computation13050105 - 28 Apr 2025
Viewed by 465
Abstract
The study offers a comprehensive investigation of periodic solutions in highly nonlinear oscillator systems, employing advanced analytical and numerical techniques. The motivation stems from the urgent need to understand complex dynamical behaviors in physics and engineering, where traditional linear approximations fall short. This [...] Read more.
The study offers a comprehensive investigation of periodic solutions in highly nonlinear oscillator systems, employing advanced analytical and numerical techniques. The motivation stems from the urgent need to understand complex dynamical behaviors in physics and engineering, where traditional linear approximations fall short. This work precisely applies He’s Frequency Formula (HFF) to provide theoretical insights into certain classes of strongly nonlinear oscillators, as illustrated through five broad examples drawn from various scientific and engineering disciplines. Additionally, the novelty of the present work lies in reducing the required time compared to the classical perturbation techniques that are widely employed in this field. The proposed non-perturbative approach (NPA) effectively converts nonlinear ordinary differential equations (ODEs) into linear ones, equivalent to simple harmonic motion. This method yields a new frequency approximation that aligns closely with the numerical results, often outperforming existing approximation techniques in terms of accuracy. To aid readers, the NPA is thoroughly explained, and its theoretical predictions are validated through numerical simulations using Mathematica Software (MS). An excellent agreement between the theoretical and numerical responses highlights the robustness of this method. Furthermore, the NPA enables a detailed stability analysis, an area where traditional methods frequently underperform. Due to its flexibility and effectiveness, the NPA presents a powerful and efficient tool for analyzing highly nonlinear oscillators across various fields of engineering and applied science. Full article
(This article belongs to the Special Issue Numerical Simulation of Nanofluid Flow in Porous Media)
Show Figures

Figure 1

30 pages, 13622 KiB  
Article
Performance Simulation and Experimental Verification of a Low-Temperature Differential Free-Piston Stirling Air Conditioner Under Multi-Harmonic Drive
by Yajuan Wang, Junan Zhang, Junde Guo, Gao Zhang and Jianhua Zhang
Processes 2025, 13(1), 134; https://doi.org/10.3390/pr13010134 - 6 Jan 2025
Viewed by 1152
Abstract
This study seeks to improve the performance of a low-temperature differential free-piston Stirling air conditioner (FPSAC). To achieve this, a novel approach is proposed, which replaces the conventional simple harmonic drive with a multi-harmonic drive. This modification aims to optimize the motion of [...] Read more.
This study seeks to improve the performance of a low-temperature differential free-piston Stirling air conditioner (FPSAC). To achieve this, a novel approach is proposed, which replaces the conventional simple harmonic drive with a multi-harmonic drive. This modification aims to optimize the motion of the driving piston, bringing it closer to the ideal movement pattern. The research involves both thermodynamic and dynamic coupling simulations of the FPSAC, complemented by experimental verification of its key performance parameters. A thermodynamic model for the gas medium, employing a quasi-one-dimensional dynamic approach for compressible fluids, and a nonlinear two-dimensional vibration dynamic model for the solid piston are developed, focusing on the low-temperature differential FPSAC physical model. The finite difference method is employed to numerically simulate the entire system, including the electromagnetic thrust of the multi-harmonic-driven linear oscillating motor, fluid transport equations, and the nonlinear dynamic equations of the power and gas control pistons. Variations in displacement, velocity, and pressure for each control volume at any given time are obtained, along with the indicator and temperature–entropy diagrams after the system stabilizes. The simulation results show that, in cooling mode, assuming no heat loss or mechanical friction, the Stirling cooler operates at a frequency of 80 Hz. Using the COPsin value for the simple harmonic drive as a baseline, performance is improved by altering the driving method. Under the multi-harmonic drive, the COPc5 increased by 10.03% and COPc7 by 14.23%. In heating mode, the COP under the multi-harmonic drive improved by 0.51% for COPh5 and 2.61% for COPh7. Performance experiments were conducted on the low-temperature differential FPSAC, and the key parameter test results showed good agreement with the simulation outcomes. The maximum deviation at the trough was found to be less than 2.45%, while at the peak, the maximum error did not exceed 3.61%. When compared to the simple harmonic drive, the application of the multi-harmonic drive significantly enhances the overall efficiency of the FPSAC, demonstrating its superior performance. The simulation analysis and experimental results indicate a significant improvement in the coefficient of performance of the Stirling cooler under the multi-harmonic drive at the same power level, demonstrating that the multi-harmonic drive is an effective approach for enhancing FPSAC performance. Furthermore, it should be noted that the method proposed in this study is applicable to other types of low-temperature differential free-piston Stirling air conditioners. Full article
(This article belongs to the Section Energy Systems)
Show Figures

Figure 1

21 pages, 7910 KiB  
Article
Nonlinear Dynamics of an Electromagnetically Actuated Cantilever Beam Under Harmonic External Excitation
by Nicolae Herisanu, Bogdan Marinca and Vasile Marinca
Appl. Sci. 2024, 14(22), 10335; https://doi.org/10.3390/app142210335 - 10 Nov 2024
Viewed by 1999
Abstract
The present work is devoted to the study of nonlinear vibrations of an electromagnetically actuated cantilever beam subject to harmonic external excitation. The soft actuator that controls the vibratory motion of such components of a robotic structure led to a strongly nonlinear governing [...] Read more.
The present work is devoted to the study of nonlinear vibrations of an electromagnetically actuated cantilever beam subject to harmonic external excitation. The soft actuator that controls the vibratory motion of such components of a robotic structure led to a strongly nonlinear governing differential equation, which was solved in this work by using a highly accurate technique, namely the Optimal Auxiliary Functions Method. Comparisons between the results obtained using our original approach with those of numerical integration show the efficiency and reliability of our procedure, which can be applied to give an explicit analytical approximate solution in two cases: the nonresonant case and the nearly primary resonance. Our technique is effective, simple, easy to use, and very accurate by means of only the first iteration. On the other hand, we present an analysis of the local stability of the model using Routh–Hurwitz criteria and the eigenvalues of the Jacobian matrix. Global stability is analyzed by means of Lyapunov’s direct method and LaSalle’s invariance principle. For the first time, the Lyapunov function depends on the approximate solution obtained using OAFM. Also, Pontryagin’s principle with respect to the control variable is applied in the construction of the Lyapunov function. Full article
(This article belongs to the Special Issue World of Soft Actuators and Soft Robotics)
Show Figures

Figure 1

23 pages, 5618 KiB  
Article
The Fluid Behavior of a Non-Orifice TLCD under Harmonic Excitation: From Experiments to Analytical Solution
by Sefer Arda Serbes, Tahsin Engin, Muaz Kemerli, Egemen Kayrakoğlu and Ahmet Aydın
Buildings 2024, 14(9), 2782; https://doi.org/10.3390/buildings14092782 - 4 Sep 2024
Viewed by 1072
Abstract
Tuned liquid column damper (TLCD) is a well-known liquid damper designed to absorb the vibration of structures used in many applications, such as high-story buildings, wind turbines, and offshore platforms, requiring an accurate mathematical determination of the liquid level to model the TLCD [...] Read more.
Tuned liquid column damper (TLCD) is a well-known liquid damper designed to absorb the vibration of structures used in many applications, such as high-story buildings, wind turbines, and offshore platforms, requiring an accurate mathematical determination of the liquid level to model the TLCD structure system motion. The mathematical model of a TLCD is a nonlinear ordinary differential equation, unlike the structure, due to the term containing a viscous damping coefficient, and cannot be solved analytically. In this study, the fluid behavior of a TLCD without an orifice, directly connected to a shaking table under harmonic excitation, was investigated experimentally and a new linearization coefficient was proposed to be used in the mathematical model. First, the nonlinear mathematical model was transformed to a nondimensional form to better analyze the parameter relations, focusing on the steady-state amplitude of the liquid level during the harmonic excitation. The experimental data were then processed using the fourth-order Runge–Kutta method, and a correlation to calculate the viscous damping coefficient was proposed in the dimensionless form. Accordingly, a novel empirical model was proposed for the dimensionless steady-state amplitude of the liquid level using this correlation. Finally, with the help of the proposed correlation and the empirical model, an original linearization coefficient was introduced which does not need experimental data. The nonlinear mathematical model was linearized by using the developed linearization coefficient and solved analytically using the Laplace transform method. The study presents a generalized method for the analytical determination of the liquid level in a non-orifice TLCD under harmonic excitation, using a correlation and an empirical model proposed for the first time in this study, providing a novel and simple solution to be used in the examination of various TLCD structure systems. Full article
(This article belongs to the Special Issue Structural Vibration Control Research)
Show Figures

Figure 1

12 pages, 4309 KiB  
Communication
Computer-Based Experiment for the Motion of Spring Oscillator on a Linear Air Track Using Ultrasonic Sensor
by Bin Wu, Yiqing Xu, Guoquan Zhou and Yan Fan
Sensors 2024, 24(14), 4441; https://doi.org/10.3390/s24144441 - 9 Jul 2024
Viewed by 1496
Abstract
In the present paper, an affordable innovative physical experimental equipment consisting of an upper computer, an ultrasonic sensor module, and an Arduino microcontroller has been designed. The relationship between the position of the slider fixed on two springs and time is measured by [...] Read more.
In the present paper, an affordable innovative physical experimental equipment consisting of an upper computer, an ultrasonic sensor module, and an Arduino microcontroller has been designed. The relationship between the position of the slider fixed on two springs and time is measured by using the ultrasonic sensor module. A system for slider motion data and image acquisition is constructed by using the LabVIEW interface of Arduino UNO R3. The purpose of this experiment is to demonstrate and interpret the propagation of waves represented by harmonic motion. The spring oscillator system including a slider and two springs is measured and recorded, and the motion can be realized using curve fitting to the wave equation in Sigmaplot. The vibration periods obtained from experimental measurements and curve fitting of the wave equation are 1.130 s and 1.165 s, respectively. The experimental data are in good agreement with the theoretical model. The experimental measurement results show that the maximum kinetic energy is 0.0792 J, the maximum potential energy is 0.0795 J, and the total energy at the position of half the amplitude is 0.0791 J. The results verify the mechanical energy conservation of spring oscillator system in a short time. This self-made instrument has improved the visualization and the automation level of the corresponding experiments. Full article
(This article belongs to the Section Physical Sensors)
Show Figures

Figure 1

15 pages, 301 KiB  
Article
Entropy Production of Run-and-Tumble Particles
by Matteo Paoluzzi, Andrea Puglisi and Luca Angelani
Entropy 2024, 26(6), 443; https://doi.org/10.3390/e26060443 - 24 May 2024
Cited by 3 | Viewed by 1441
Abstract
We analyze the entropy production in run-and-tumble models. After presenting the general formalism in the framework of the Fokker–Planck equations in one space dimension, we derive some known exact results in simple physical situations (free run-and-tumble particles and harmonic confinement). We then extend [...] Read more.
We analyze the entropy production in run-and-tumble models. After presenting the general formalism in the framework of the Fokker–Planck equations in one space dimension, we derive some known exact results in simple physical situations (free run-and-tumble particles and harmonic confinement). We then extend the calculation to the case of anisotropic motion (different speeds and tumbling rates for right- and left-oriented particles), obtaining exact expressions of the entropy production rate. We conclude by discussing the general case of heterogeneous run-and-tumble motion described by space-dependent parameters and extending the analysis to the case of d-dimensional motions. Full article
(This article belongs to the Collection Disorder and Biological Physics)
Show Figures

Figure 1

17 pages, 308 KiB  
Article
Generalization of the Schrödinger Equation for Open Systems Based on the Quantum-Statistical Approach
by Konstantin G. Zloshchastiev
Universe 2024, 10(1), 36; https://doi.org/10.3390/universe10010036 - 12 Jan 2024
Cited by 3 | Viewed by 1748
Abstract
Within the framework of the quantum-statistical approach, utilizing both non-Hermitian Hamiltonian and Lindblad’s jump operators, one can derive various generalizations of the von Neumann equation for reduced density operators, also known as hybrid master equations. If one considers the evolution of pure states [...] Read more.
Within the framework of the quantum-statistical approach, utilizing both non-Hermitian Hamiltonian and Lindblad’s jump operators, one can derive various generalizations of the von Neumann equation for reduced density operators, also known as hybrid master equations. If one considers the evolution of pure states only, i.e., disregarding the coherence between states and spontaneous transitions from pure to mixed states, then one can resort to quantum-mechanical equations of the Schrödinger type. We derive them from the hybrid master equations and study their main properties, which indicate that our equations have a larger range of applicability compared to other generalized Schrödinger equations proposed hitherto. Among other features, they can describe not only systems which remain in the stationary eigenstates of the Hamiltonian as time passes, but also those which evolve from those eigenstates. As an example, we consider a simple but important model, a quantum harmonic oscillator driven by both Hamiltonian and non-Hamiltonian terms, and derive its classical limit, which turns out to be the damped harmonic oscillator. Using this model, we demonstrate that the effects of dissipative environments of different types can cancel each other, thus resulting in an effectively dissipation-free classical system. Another discussed phenomenon is whether a non-trivial quantum system can reduce to a classical system in free motion, i.e., without experiencing any classical Newtonian forces. This uncovers a large class of quantum-mechanical non-Hamiltonian systems whose dynamics are not determined by conventional mechanics’ potentials and forces, but rather come about through quantum statistical effects caused by the system’s environment. Full article
(This article belongs to the Section Foundations of Quantum Mechanics and Quantum Gravity)
21 pages, 15541 KiB  
Article
Force and Torque Model of Magnetically Levitated System with 2D Halbach Array and Printed Circuit Board Coils
by Menglong Zou, Mingxing Song, Shun Zhou, Xianze Xu and Fengqiu Xu
Sensors 2023, 23(21), 8735; https://doi.org/10.3390/s23218735 - 26 Oct 2023
Cited by 3 | Viewed by 2553
Abstract
Precision machining fields often require worktables with different stroke sizes. To address the need for scalability and facilitate manufacturing, this study proposes a novel infinite expansion magnetically levitated planar motor (MLPM) based on PCB stator coils. Different from existing magnetic levitation systems that [...] Read more.
Precision machining fields often require worktables with different stroke sizes. To address the need for scalability and facilitate manufacturing, this study proposes a novel infinite expansion magnetically levitated planar motor (MLPM) based on PCB stator coils. Different from existing magnetic levitation systems that use PCB coils, the design presented in this paper utilizes smaller coil units, with each coil being independent of one another. The coils are structured in a spiral pattern on a 16-layer PCB, comprising 15 layers of coils, while the last layer is dedicated to wiring and other circuits. Magnetic field modeling is conducted for both the stator coil and the 2D Halbach array structure employed in the system. A simple table lookup method is employed to accurately account for the prevalent end effects observed during system motion. Additionally, the decoupling effect of magnetic force and torque is evaluated by solving for the current vector at different points along a specific trajectory. To verify the accuracy of the proposed system’s modeling, a prototype is developed and tested. Experimental results demonstrate that compared to traditional harmonic model methods, the proposed approach improves the calculation accuracy of magnetic force by 50.31% and torque by 70.65%. This study presents a new MLPM system with vast potential applications in precision manufacturing and robotics. The innovative design and improved performance characteristics make it a promising technology for enhancing the capabilities of worktables in precision machining fields. Full article
(This article belongs to the Topic Modern Technologies and Manufacturing Systems, 2nd Volume)
Show Figures

Figure 1

32 pages, 11554 KiB  
Article
Enhancing Electrical Generation Efficiency through Parametrical Excitation and Slapping Force in Nonlinear Elastic Beams for Vibration Energy Harvesting
by Yi-Ren Wang and Chun-Hsiao Kuo
Sensors 2023, 23(17), 7610; https://doi.org/10.3390/s23177610 - 1 Sep 2023
Cited by 4 | Viewed by 1337
Abstract
This study aims to enhance conventional vibration energy harvesting systems (VEHs) by repositioning the piezoelectric patch (PZT) in the middle of a fixed–fixed elastic steel sheet instead of the root, as is commonly the case. The system is subjected to an axial simple [...] Read more.
This study aims to enhance conventional vibration energy harvesting systems (VEHs) by repositioning the piezoelectric patch (PZT) in the middle of a fixed–fixed elastic steel sheet instead of the root, as is commonly the case. The system is subjected to an axial simple harmonic force at one end to induce transversal vibration and deformation. To further improve power conversion, a baffle is strategically installed at the point of maximum deflection, introducing a slapping force to augment electrical energy harvesting. Employing the theory of nonlinear beams, the equation of motion for this nonlinear elastic beam is derived, and the method of multiple scales (MOMS) is used to analyze the phenomenon of parametric excitation. This study demonstrates through experiments and theoretical analysis that the second mode yields better power generation benefits than the first mode. Additionally, the voltage generation benefits of the enhanced system with the added baffle (slapping force) surpass those of traditional VEH systems. Overall, the proposed model proves feasible and holds promising potential for efficient vibration energy harvesting applications in various industrial sectors. Full article
(This article belongs to the Section Industrial Sensors)
Show Figures

Figure 1

27 pages, 5555 KiB  
Article
A Frequency-Dependent Dynamic Electric–Mechanical Network for Thin-Wafer Piezoelectric Transducers Polarized in the Thickness Direction: Physical Model and Experimental Confirmation
by Lin Fa, Dongning Liu, Hong Gong, Wenhui Chen, Yandong Zhang, Yimei Wang, Rui Liang, Baoni Wang, Guiquan Shi, Xiangrong Fang, Yuxia Li and Meishan Zhao
Micromachines 2023, 14(8), 1641; https://doi.org/10.3390/mi14081641 - 20 Aug 2023
Cited by 3 | Viewed by 1534
Abstract
This paper is concerned with electric–acoustic/acoustic–electric conversions of thin-wafer piezoelectric transducers polarized in the thickness direction. By introducing two mechanical components with frequency-dependent values, i.e., radiation resistance and radiation mass, into the equivalent circuit of the thin-wafer piezoelectric transducer, we established a frequency-dependent [...] Read more.
This paper is concerned with electric–acoustic/acoustic–electric conversions of thin-wafer piezoelectric transducers polarized in the thickness direction. By introducing two mechanical components with frequency-dependent values, i.e., radiation resistance and radiation mass, into the equivalent circuit of the thin-wafer piezoelectric transducer, we established a frequency-dependent dynamic mechanic-electric equivalent network with four terminals for an arbitrary given frequency, an enhancement from the conventional circuit networks. We derived the analytic expressions of its electric–acoustic and acoustic–electric conversion impulse responses using the four-terminal equivalent circuit to replace the traditional six-terminal equivalent circuit for a thin-wafer transducer with harmonic vibrational motion. For multifrequency electrical/acoustic signals acting on the transducer, we established parallel electric–acoustic/acoustic–electric conversion transmission networks. These two transmission network models have simple structures and clear physical and mathematical descriptions of thin-wafer transducers for electric–acoustic/acoustic–electric conversion when excited by a multifrequency electric/acoustic signal wavelet. The calculated results showed that the transducer’s center frequency shift relates to its mechanical load and vibration state. The method reported in this paper can be applied to conventional-sized and small-sized piezoelectric transducers with universal applicability. Full article
Show Figures

Figure 1

21 pages, 23525 KiB  
Article
Energy Harvesting System Whose Potential Is Mapped with the Modified Fibonacci Function
by Jerzy Margielewicz, Damian Gąska, Grzegorz Litak, Jacek Caban, Agnieszka Dudziak, Xiaoqing Ma and Shengxi Zhou
Sensors 2023, 23(14), 6593; https://doi.org/10.3390/s23146593 - 21 Jul 2023
Cited by 1 | Viewed by 1339
Abstract
In this paper, we compare three energy harvesting systems in which we introduce additional bumpers whose mathematical model is mapped with a non-linear characteristic based on the hyperbolic sine Fibonacci function. For the analysis, we construct non-linear two-well, three-well and four-well systems with [...] Read more.
In this paper, we compare three energy harvesting systems in which we introduce additional bumpers whose mathematical model is mapped with a non-linear characteristic based on the hyperbolic sine Fibonacci function. For the analysis, we construct non-linear two-well, three-well and four-well systems with a cantilever beam and permanent magnets. In order to compare the effectiveness of the systems, we assume comparable distances between local minima of external wells and the maximum heights of potential barriers. Based on the derived dimensionless models of the systems, we perform simulations of non-linear dynamics in a wide spectrum of frequencies to search for chaotic and periodic motion zones of the systems. We present the issue of the occurrence of transient chaos in the analyzed systems. In the second part of this work, we determine and compare the effectiveness of the tested structures depending on the characteristics of the bumpers and an external excitation whose dynamics are described by the harmonic function, and find the best solutions from the point view of energy harvesting. The most effective impact of the use of bumpers can be observed when dealing with systems described by potential with deep external wells. In addition, the use of the Fibonacci hyperbolic sine is a simple and effective numerical tool for mapping non-linear properties of such motion limiters in energy harvesting systems. Full article
(This article belongs to the Special Issue Piezoelectric Energy Harvesting System)
Show Figures

Figure 1

Back to TopTop