applsci-logo

Journal Browser

Journal Browser

Application of Computational Fluid Mechanics in Fluid Machinery

A special issue of Applied Sciences (ISSN 2076-3417). This special issue belongs to the section "Mechanical Engineering".

Deadline for manuscript submissions: 20 November 2025 | Viewed by 312

Special Issue Editor


E-Mail Website
Guest Editor
Wigner Research Centre for Physics, Budapest, Hungary
Interests: hydrodynamics; thermohydraulics of two-phase flow (water or mercury)
Special Issues, Collections and Topics in MDPI journals

Special Issue Information

Dear Colleagues,

Fluid mechanics is of immense interest in both science and engineering. On one hand, the mathematical intricacies of the Navier–Stokes equations remain an unsolved challenge. On the other hand, engineers face increasing pressure to design and construct machines that operate reliably with fluids, even under extreme conditions. The key to overcoming this challenge lies in the application of sophisticated, state-of-the-art numerical methods to effectively solve complex flow problems. The aim of this Special Issue is to showcase outstanding studies that analyze and solve complex hydrodynamical problems using advanced numerical algorithms and methods.

Dr. Imre Ferenc Barna
Guest Editor

Manuscript Submission Information

Manuscripts should be submitted online at www.mdpi.com by registering and logging in to this website. Once you are registered, click here to go to the submission form. Manuscripts can be submitted until the deadline. All submissions that pass pre-check are peer-reviewed. Accepted papers will be published continuously in the journal (as soon as accepted) and will be listed together on the special issue website. Research articles, review articles as well as short communications are invited. For planned papers, a title and short abstract (about 100 words) can be sent to the Editorial Office for announcement on this website.

Submitted manuscripts should not have been published previously, nor be under consideration for publication elsewhere (except conference proceedings papers). All manuscripts are thoroughly refereed through a single-blind peer-review process. A guide for authors and other relevant information for submission of manuscripts is available on the Instructions for Authors page. Applied Sciences is an international peer-reviewed open access semimonthly journal published by MDPI.

Please visit the Instructions for Authors page before submitting a manuscript. The Article Processing Charge (APC) for publication in this open access journal is 2400 CHF (Swiss Francs). Submitted papers should be well formatted and use good English. Authors may use MDPI's English editing service prior to publication or during author revisions.

Keywords

  • Navier–Stokes equation
  • finite-element methods
  • complex hydrodynamical problems

Benefits of Publishing in a Special Issue

  • Ease of navigation: Grouping papers by topic helps scholars navigate broad scope journals more efficiently.
  • Greater discoverability: Special Issues support the reach and impact of scientific research. Articles in Special Issues are more discoverable and cited more frequently.
  • Expansion of research network: Special Issues facilitate connections among authors, fostering scientific collaborations.
  • External promotion: Articles in Special Issues are often promoted through the journal's social media, increasing their visibility.
  • Reprint: MDPI Books provides the opportunity to republish successful Special Issues in book format, both online and in print.

Further information on MDPI's Special Issue policies can be found here.

Published Papers (1 paper)

Order results
Result details
Select all
Export citation of selected articles as:

Research

24 pages, 5617 KiB  
Article
Study on the Propulsion Characteristics of a Flapping Flat-Plate Pumping Device
by Ertian Hua, Yang Lin, Sihan Li, Xiaopeng Wu and Mingwang Xiang
Appl. Sci. 2025, 15(13), 7034; https://doi.org/10.3390/app15137034 - 22 Jun 2025
Viewed by 220
Abstract
To improve hydrodynamic conditions and self-purification in plain river networks, this study optimized an existing hydrofoil-based pumping device and redesigned its flow channel. Using the finite volume method (FVM) and overset grid technique, a comparative numerical analysis was conducted on the pumping performance [...] Read more.
To improve hydrodynamic conditions and self-purification in plain river networks, this study optimized an existing hydrofoil-based pumping device and redesigned its flow channel. Using the finite volume method (FVM) and overset grid technique, a comparative numerical analysis was conducted on the pumping performance of hydrofoils operating under simple harmonic and quasi-harmonic flapping motions. Based on the tip vortex phenomenon observed at the channel outlet, the flow channel structure was further designed to inform the structural optimization of bionic pumping devices. Results show both modes generate reversed Kármán vortex streets, but the quasi-harmonic mode induces a displacement in vorticity distribution, whereas that of the simple harmonic motion extends farther downstream. Pumping efficiency under simple harmonic motion consistently outperforms that of quasi-harmonic motion, exceeding its peak by 20.2%. The pumping and propulsion efficiencies show a generally positive correlation with the outlet angle of the channel, both reaching their peak when the outlet angle α is −10°. Compared to an outlet angle of 0°, an outlet angle of −10° results in an 8.5% increase in pumping efficiency and a 10.2% increase in propulsion efficiency. Full article
(This article belongs to the Special Issue Application of Computational Fluid Mechanics in Fluid Machinery)
Show Figures

Figure 1

Back to TopTop