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Abstract: In this paper, we compare three energy harvesting systems in which we introduce addi-
tional bumpers whose mathematical model is mapped with a non-linear characteristic based on the
hyperbolic sine Fibonacci function. For the analysis, we construct non-linear two-well, three-well
and four-well systems with a cantilever beam and permanent magnets. In order to compare the
effectiveness of the systems, we assume comparable distances between local minima of external
wells and the maximum heights of potential barriers. Based on the derived dimensionless models of
the systems, we perform simulations of non-linear dynamics in a wide spectrum of frequencies to
search for chaotic and periodic motion zones of the systems. We present the issue of the occurrence
of transient chaos in the analyzed systems. In the second part of this work, we determine and
compare the effectiveness of the tested structures depending on the characteristics of the bumpers
and an external excitation whose dynamics are described by the harmonic function, and find the best
solutions from the point view of energy harvesting. The most effective impact of the use of bumpers
can be observed when dealing with systems described by potential with deep external wells. In
addition, the use of the Fibonacci hyperbolic sine is a simple and effective numerical tool for mapping
non-linear properties of such motion limiters in energy harvesting systems.

Keywords: transient chaos; bifurcations; energy effectiveness; multistable energy harvester

1. Introduction

Vibration energy harvesting technology is a popular way to power small autonomic
sensors and system monitoring in the emerging technologies [1–6]. On account of their high
energy density, piezoelectric transducers are proposed to convert mechanical vibration
energy into electrical power. In many proposed energy harvesting systems, ambient
conditions are used as a source of vibration and the device is composed of a mechanical
resonator and a piezoelectric part where its deformations produce electromotive force [6–9].
Unfortunately, any simple linear system can only work well at its resonance frequency.
To overcome this limitation, nonlinear devices are proposed by many scholars [10]. The
main directions of the modeling and laboratory studies include multi-stable [11,12] and/or
impacting devices [13–16]. Additional possibilities are using multiple-degree-of-freedom
systems [17–21], self-adapting the resonator to the excitation conditions [22].

We have been observing the dynamic development of research on this issue since the
appearance of the first papers on non-linear systems [23,24]. The advantage of such systems
enables effective energy generation in a wide range of excitation parameters (frequencies
and amplitudes), as opposed to linear systems tuned only to the resonant frequency of the
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excitation source. A typical design form of kinetic energy harvesters is made of a flexible
cantilever beam with piezoelectric materials glued on [25–27]. Mechanical vibrations of
the beam, excited by the source of excitation, cause its deformation, and piezoelectric
materials convert kinetic energy into electric energy. Non-linearities are introduced by the
system of magnets [28,29] placed on the rigid frame and the end of the cantilever beam,
which can construct bistable (BEH), tristable (TEH) and multistable systems [30]. Other
ways to introduce non-linearity to the system are introducing spring elements [31] or a
buckling-possible design [32]. The amount of energy obtained is small, but it is sufficient to
power various sensors monitoring the operation of machines [33].

Issues related to the use of bumpers (motion limiters, amplitude limiters) in kinetic
energy harvesting systems have already been the subject of scientific publications [34–36].
The main goal was to find a method for broadening the operating frequency range. The
wideband frequency responses of an EH system with limiters on one side and two sides
was the subject of Liu et al.’s paper [37]. The laboratory experiment show that the operating
frequency bandwidth was broadened together with the corresponding optimal power
ranges. Similar studies were carried out in [38], which proposed a two-degree-of-freedom
piecewise linear piezoelectric energy harvester by combining the multimodal harvesting
technique and nonlinear method. Hu et al. [39] proposed a parametric study of stopper
distance for the piecewise linear stiffness model on the energy harvesting performance in
terms of both the bandwidth and open-circuit voltage output. Laboratory experiments and
FEM model simulations on the use of bumpers in energy harvesting systems were also
carried out in the papers [40–42].

In this paper, we propose a system with multistable potential and additional impacts.
The impact interaction is modeled with the Fibonacci hyperbolic sine. The simulation
results are provided to compare the system responses for several cases with and without
impacts. Finally, the effectiveness of the corresponding system is studied.

2. Mathematical Model Formulation

The subject of model tests is the design solution of the energy harvesting system, the
dynamics of which are based on the potential induced by permanent magnets fixed in
a rigid frame V. The dynamic properties of the system are tested for three symmetrical
potentials with four (Figure 1a), three (Figure 1b) and two wells (Figure 1c). In the con-
ducted numerical experiments, the mechanical limiters (bumpers) VII which can limit the
movement of the flexible cantilever beam I are taken into account. During the computer
simulations, the possibility of adjusting the “zone of free motion” of the flexible cantilever
beam is assumed. At this point, we explain that the term “zone of free motion” means beam
vibrations in the plane located between the upper and lower limiters VII. The beam element
I on which the piezoelectric transducers II are glued is fixed in a rigid, non-deformable
frame III, which is attached to the mechanically vibrating object VI by means of screws IV.
The general description of the energy harvesting system is only intended to sketch and
illustrate the essence of the research object. It does not refer to a specific design solution
that must meet many technical requirements.

The inclusion of bumpers during model tests is intended to limit the displacement
of the cantilever beam. In addition, their presence in the design of the energy harvesting
system is also directly related to increasing the durability of the vibrating element on which
the piezoelectric transducers are glued. External mechanical vibrations of high amplitude
affecting the system over time can lead to device failure, which is mainly caused by the
phenomenon of material fatigue [43,44]. Examples of potential characteristics reflecting
the cause-and-effect relationships of permanent magnet configurations of the tested design
solutions of energy harvesting systems are shown in the diagrams (Figure 2).
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Figure 1. Schematic diagram and phenomenological model of the tested energy harvesting systems: 
(a) structural form of the system with 4 potential wells, (b) magnet system for 3 potential wells, (c) 
magnet system for 2 potential wells. 
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During the identification of potentials, comparable distances between local minima
of external wells are assumed, with the estimated average value being at the level of
2x0 ≈ 0.057 ± 0.0058 m. It should be noted that the maximum heights of potential barriers
should have similar values of h0 ≈ 0.036 ± 0.009 m. The potentials identified in this way
are transformed into a dimensionless form. Based on these, the quantitative and qualitative
numerical simulations are carried out in the field of energy harvesting effectiveness.
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2.1. Model of the Flexible Vibration Limiter

In the identified configurations of the tested design solution of the energy harvesting
system, solutions characterized by an asymmetric arrangement of the potential wells
dominate (Figure 3). Moreover, in the analyzed set of configurations, there are very often
potentials whose external wells are characterized by large or very large depth. If the
structure is characterized by such mapped potential, then there is a very high probability
that the operating point of the system will be in the area of its attraction. As a result, the
effectiveness of energy harvesting is significantly reduced. Minimizing the impact of deep
potential wells can be limited by using mechanical limiters. The use of such bumpers has
its disadvantages, which boil down to reducing the potential width and thus limiting the
amplitudes of large orbits circulating the potential well. Nevertheless, the use of flexible
motion bumpers can significantly improve energy harvesting effectiveness. Numerous
mathematical models are used to numerically represent the mechanical properties of flexible
limiters. The most popular of them is a model based on a non-smooth piecewise-defined
function, also called a function with a dead zone [45,46]:

f (q) =


q + d, q < −d,

0, −d ≤ q ≤ d,
q− d, q > d.

x =
q
x0

, η = d
x0============⇒ x0 f (x) =


x + η, x < −η,

0, −η ≤ x ≤ η,
x− η, x > η.

(1)
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The popularity of such a description is mainly determined by the simplicity of the
mathematical notation. Much better results can be achieved when carrying out numerical
simulations by mapping the “zones of free motion” with a continuous model. The reason is
that the piecewise function (1) extends the time of computer simulations, which is caused
by the need to verify the operating point with logical conditions in each calculation step.

f (q) =
(

q + |q−d|−|q+d|
2

) x = q
x0

, η = d
x0===========⇒ x0 f (x) =

(
x + |x−η|−|x+η|

2

)
. (2)

From an engineering point of view, limiters have different mechanical properties.
Depending on the construction and the materials used for the flexible washer, there are
buffers with linear and non-linear characteristics. To account for the simplification of the
notation of equations while maintaining the essence of the phenomena occurring in systems
with motion limiters, we map the mathematical model of the bumpers with a non-linear
characteristic based on the hyperbolic sine Fibonacci function [47,48]. By doing such, it is
possible to easily reproduce the soft and hard mechanical characteristics of washers and the
stiffening effect of the material showed by a rapid increase in stress with a relatively small
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change in its deformation. The mathematical model of the limiters that we used during the
computer simulations takes the following form:

FO = cO·sFh(q)2· f (q). (3)

where

Fh(q) = 2√
5

sinh(2ln(ϕ)q), ϕ ≈ 1.61803—golden ratio;

cO—parameter defining the variable stiffness of the bumpers.

In general, the formulated mathematical model of the bumper is the product of the
classical model with the dead zone and the square of the Fibonacci hyperbolic sine. At
this point, it should be noted that, from a technical point of view, the stiffness of the
bumpers (limiters) can be shaped in any way. First of all, it is determined by the applied
construction solution. If the motion limiters are to be characterized by linear characteristics
and low stiffness values, then their construction solutions can be based on flexible cantilever
beams or beams fixed on both sides. From the technical point of view, the easiest way to
characterize bumpers with high stiffness is in the form of rods. Such limiters equipped with
flexible tips made of plastics or silicones are described by non-linear characteristics which
can be represented by the proposed function (3). The impact of the non-linear limiter on the
mechanical characteristics and potential shape are shown in the diagrams (Figure 3). The
presented functions are plotted against the background of the linear model of the bumper
whose characteristics are plotted with black dashed lines. The sand color marks the area
where we are dealing with unlimited vibrations of the flexible cantilever beam of the tested
design solution of the energy harvesting system.

The graphs show that increasing the hardness of the flexible tips reduces the distance
measured between the external potential barriers. At this point, it is worth mentioning that
the hardness of flexible tips is directly correlated with their stiffness. In other words, the
harder the material is, the greater its stiffness is. The images of the exemplary characteristics
suggest that, from the point view of energy harvesting, it is reasonable to use soft tips
(washers). The orbits of stable periodic solutions reach larger vibration amplitudes, as a
consequence of which the effectiveness of energy harvesting is improved. The impulse to
undertake model tests is the assessment of the mechanical properties of the bumpers and
the width of the “zone of free motion” on the effectiveness of energy generation. Numerical
simulations are carried out for the four-well potential, whose external wells are much
deeper than the internal wells. Example diagrams showing the influence of the linear and
non-linear motion limiter on the mechanical characteristics and potential are shown in the
diagrams (Figure 4).

The presented results of the model tests indicate a significant impact of the bumper
stiffness on the potential width. At the same time, its value decreases with increasing
stiffness of the bumper (Figure 4a). This situation takes place regardless of the tested design
solutions of energy harvesting systems. Analogous conclusions can be drawn with regard
to the location of motion limiters. For example, for narrow “zones of free motion”, the use
of rigid bumpers limits the number of wells. On the other hand, bumpers characterized
by high susceptibility do not significantly reduce the height of the potential barrier. This
situation is particularly visible in relation to multi-well systems (Figure 4b,c).



Sensors 2023, 23, 6593 6 of 21
Sensors 2023, 23, 6593 6 of 23 
 

 

 
Figure 4. The influence of the width of the “zone of free motion” and stiffness on the following 
potential characteristics: (a) two-well, (b) three-well, (c) four-well. The sand shadow marks the area 
where we are dealing with unlimited vibrations of the flexible cantilever beam. Black dashed lines 
represent the linear model of the limiter. 

The presented results of the model tests indicate a significant impact of the bumper 
stiffness on the potential width. At the same time, its value decreases with increasing stiff-
ness of the bumper (Figure 4a). This situation takes place regardless of the tested design 
solutions of energy harvesting systems. Analogous conclusions can be drawn with regard 
to the location of motion limiters. For example, for narrow “zones of free motion”, the use 
of rigid bumpers limits the number of wells. On the other hand, bumpers characterized 
by high susceptibility do not significantly reduce the height of the potential barrier. This 
situation is particularly visible in relation to multi-well systems (Figure 4b,c). 

2.2. Dimensionless Mathematical Model of Energy Harvesting Systems 
Differential equations of the motion of non-linear dynamical systems can be derived 

by various methods: classical and non-classical [49–51]. Regardless of the method used, 
the mathematical model is ultimately represented by the same structure of differential 

Figure 4. The influence of the width of the “zone of free motion” and stiffness on the following
potential characteristics: (a) two-well, (b) three-well, (c) four-well. The sand shadow marks the area
where we are dealing with unlimited vibrations of the flexible cantilever beam. Black dashed lines
represent the linear model of the limiter.

2.2. Dimensionless Mathematical Model of Energy Harvesting Systems

Differential equations of the motion of non-linear dynamical systems can be de-
rived by various methods: classical and non-classical [49–51]. Regardless of the method
used, the mathematical model is ultimately represented by the same structure of dif-
ferential equations. In the numerical experiments, it is assumed that the system is af-
fected by an external excitation whose dynamics are described by the harmonic function
y0 = Asin(ωW t). The general structure of the system of differential equations representing
the dynamics of the analyzed design solutions of energy harvesting systems takes the
following form:
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
m d2y1

dt2 + bB

(
dy1
dt −

dy0
dt

)
+ cB(y1 − y0)− c1(y1 − y0) + c2(y1 − y0)

3

−c3(y1 − y0)
5 + c4(y1 − y0)

7 + cO f (y1 − y0) + kPv = 0,
CP

dv
dt +

1
RP

v− kP

(
dy1
dt −

dy0
dt

)
= 0.

(4)

Taking into account the efficient performance of computer simulations, the math-
ematical model (4) can be transformed into a dimensionless form. For this purpose, a
new coordinate representing the difference of displacements q = y1 − y0 is introduced.
Mathematical models provided by systems of non-linear differential equations reflect the
dynamics of the two-well (5), three-well (6) and four-well (7) systems, respectively.{ ..

x + δ
.
x + x

(
1 + µ1

(
βx4 − 1

))
+ µ2 f (x) + θu = ω2 psin(ωτ),

.
u + κu− .

x = 0,
(5)

{ ..
x + δ

.
x + x

(
1 + µ1

(
βx4 − αx2 + 1

))
+ µ2 f (x) + θu = ω2 psin(ωτ),

.
u + κu− .

x = 0,
(6)

{ ..
x + δ

.
x + x

(
1 + µ1

(
γx6 − βx4 + αx2 − 1

))
+ µ2 f (x) + θu = ω2 psin(ωτ),

.
u + κu− .

x = 0,
(7)

where

ω2
0 = cB

m , τ = ω0t, x = q
x0

, δ = bB
ω0m , µ1 = c1

cB
, µ2 = cO

cB
, η = d

x0
, α =

c2x2
0

c1
,

β =
c3x4

0
c1

, γ =
c4x6

0
c1

, ω = ωW
ω0

, p = A
x0

, u = CP
kPx0

v κ = 1
ω0CPRP

, θ =
k2

P
mω2

0CP
.

The parameter values which are used in the numerical simulations when we analyze
the dynamic properties of the considered systems are summarized in Table 1.

Table 1. Geometric and physical parameters characterizing the tested systems.

Name Symbol Value

Inertial element (mass) loading the beam m 0.01 kg
Energy losses in the cantilever system bB 0.02 Nsm−1

Cantilever beam stiffness cB 15 Nm−1

Scaling parameters x0 0.0253 m 0.03 m 0.0307 m

Physical parameters defining potential barriers

c1
c2
c3
c4

144 Nm−1

35 × 107 Nm−5

243 Nm−1

1.35 × 106 Nm−3

1.2 × 109 Nm−5

210 Nm−1

2.7 × 106 Nm−3

7.8 × 109 Nm−5

5496 × 109 Nm−7

Load resistance Rp 1.1 MΩ
Piezoelectric capacity CP 72 nF

Electromechanical constant of piezoelectric
converter kP 3.985 × 10−5 NV−1

The derived mathematical model is a formal basis for conducting quantitative and
qualitative model tests in the field of evaluating the effectiveness of harvesting energy from
vibrating mechanical devices.

3. Results of Numerical Calculations
3.1. Periodicity of Solutions and Transient Chaos

The results presented in the graphs (Figure 4) showing the impact of the bumper
characteristics on the potential clearly indicate the possibility of a direct impact on the
shape of the potential barrier—in particular, the depth of the well. In the later part of the
paper, computer simulations are carried out, the purpose of which is to assess the dynamic
properties of the tested design solutions of energy harvesting systems. Considering their
performance, the characteristics of the motion limiters are assumed in such a way that the
potential depth of the two-well system with bumpers is equal to half of the potential depth
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without it. In the case of structural solutions whose potentials are provided by three and
four wells, the maximum height of the potential barrier of the system with limiters is equal
to the depth of the shallowest well. The assumptions adopted in this way regarding the
height of the maximum potential barrier directly determine the minimum and maximum
width of the “zone of free motion”. For each analyzed construction solution, the assumed
maximum heights of the potential barrier are highlighted in yellow. The width of the
“zone of free motion” is determined based on the equivalent stiffness of the bumpers. Their
values are selected in such a way as to ensure the assumed maximum height of the potential
barrier. The characteristics of the potentials analyzed below are marked in blue, red and
green against the background of the potential corresponding to the solution without motion
limiters, which is drawn with a dashed line in black (Figure 5).
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excitation. On the other hand, the dynamic properties of steady states are considered in 
the time window, the length of which is assumed to be 50 periods of mechanical vibrations 
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Figure 5. The impact of the stiffness and position of the bumper (motion limiter) on potential
characteristics in the system with (a) two wells, (b) three wells, (c) four wells. The assumed maximum
heights of the potential barrier are highlighted in sand shadow. The characteristic of the potential
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In the first stage of the model tests, the influence of the equivalent stiffness of the
bumpers and their position on the structure of steady-state bifurcation diagrams is pre-
sented (Figure 6). During their plotting, the dimensionless frequency of external vibrations
affecting the tested construction solutions is selected as the control parameter. As a result,
we have the opportunity to assess the energy harvesting effectiveness in a wide range of
frequency variability, which is carried out with a resolution of 1200 periods of excitation.
On the other hand, the dynamic properties of steady states are considered in the time
window, the length of which is assumed to be 50 periods of mechanical vibrations affecting
the tested structural design.

One of the basic applications of bifurcation diagrams comes down to the identification
of zones of occurrence of periodic and chaotic solutions. From a theoretical point of view,
bifurcation diagrams can be plotted using various algorithms. The most popular approach
is based on the identification of local minima and maxima in the time sequence of the
generalized coordinate. In our research, we use an alternative approach, the formal basis
of which is the Poincaré section. We made such a decision because the periodicity of the
excited solutions determined on the basis of the time sequence does not always provide
reliable results. In this context, bifurcation diagrams drawn on the basis of Poincaré sections
are much more accurate. At this point, it should be mentioned that any attempt to estimate
the size of the orbit of the solution on the basis of the bifurcation diagram drawn in this
way will basically fail in advance. This situation occurs because the points in the diagram
de facto represent the points of intersection of the phase flow with the control plane, and in
principle they never coincide with the points corresponding to the maximum displacements
of the orbit.
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Figure 6. The results of computer simulations showing periodic solutions with and without motion
limiters in systems with the following potential: (a) two-well, (b) three-well, (c) four-well. The red
color corresponds to the energy harvester with bumpers, and the blue color corresponds to the energy
harvester without limiters.

The identified steady-state bifurcation diagrams indicate the existence of areas of
chaotic solutions. In particular, it is clearly visible in the case of the system based on the
two-well potential (Figure 6a), when the energy harvesting system is affected by an external
load with a small amplitude (p = 0.1). In the case of a level of mechanical vibrations twice
as high, we are basically dealing only with periodic solutions. A similar situation occurs
with regard to systems based on the three- and four-well potential. In the example of the
three-well system (Figure 6b), chaotic solutions are excited in the range of high values of
the dimensionless excitation frequency ω > 9. If the dynamics of the energy harvesting
system are based on the four-well potential (Figure 6c), the zones of chaotic solutions are
excited at significantly lower frequenciesω > 5. It is worth noting that only in relation to
the three-well potential can it be claimed that the chaotic responses of structures with and
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without bumpers coincide. In the other two cases, these zones are located in different bands.
Detailed numerical experiments are carried out for selecting values of the dimensionless
frequency of mechanical vibrations which affect the systems, and the results have shown
that the unstable chaotic solutions over time are attracted by stable periodic responses. The
presence of the phenomenon of transient chaos is indicated by clear branches of bifurcation
diagrams occurring in these bands. It is possible to distinguish them by assigning a specific
transparency to the points in the diagrams. When several points overlap, the resultant point
is plotted in a darker shade. These branches are very visible in the bifurcation diagrams
that have been identified for systems with a two-well potential (Figure 6a) and a four-well
potential (Figure 6c).

Examples of cases illustrating the phenomenon of transient chaos identified in the
analyzed design solutions of the energy harvesting systems are shown in the diagrams
(Figure 7).
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tation makes it possible to determine the time after which unstable chaotic solutions are 
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is absorbed into a stable periodic orbit. At this point, we would like to indicate the indi-
vidual planes assigned to systems without bumpers ① and with them ②. Such analyses 
are important for this reason, because they clearly determine what kind of solution we are 
dealing with. In the graphs (Figure 7), transient chaotic solutions are attracted by periodic 
orbits with a periodicity of 1T. On the other hand, in the two-well system with soft bump-
ers and a narrow “zone of free motion” (c0 = 230, d = 0.2x0), the chaotic solution is attracted 
by a periodic orbit with a periodicity of 2T. It is worth noting that the use of limiters does 
not have a significant effect on the excitation of unstable or unpredictable solutions. 

Permanent chaotic solutions are very rare and have been identified in the case of a 
system with a two-well potential. Example images of chaotic solutions showing the im-
pact of damping on them are shown in the graphs (Figure 8). 

Figure 7. Simulation results showing the phenomenon of unstable chaos in the system: (a) two-well,
(b) three-well, (c) four-well, in the form of three-dimensional Poincaré sections versus dimensionless
time. The system parameters are included in the figures. The light blue and yellow surfaces define
the times when the chaotic response is absorbed into a stable periodic orbit. Notation of individual
surfaces assigned to systems: without limiters 1© and with them 2©.
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To visualize unstable chaotic solutions, we use the procedure based on the Poincaré
section. From the mathematical point of view, the graphs (Figure 7) are de facto classic
Poincaré sections, which have been depicted in three-dimensional form. Such a represen-
tation makes it possible to determine the time after which unstable chaotic solutions are
extinguished. The light blue and yellow planes define the times when the chaotic response
is absorbed into a stable periodic orbit. At this point, we would like to indicate the indi-
vidual planes assigned to systems without bumpers 1© and with them 2©. Such analyses
are important for this reason, because they clearly determine what kind of solution we are
dealing with. In the graphs (Figure 7), transient chaotic solutions are attracted by periodic
orbits with a periodicity of 1T. On the other hand, in the two-well system with soft bumpers
and a narrow “zone of free motion” (c0 = 230, d = 0.2x0), the chaotic solution is attracted by
a periodic orbit with a periodicity of 2T. It is worth noting that the use of limiters does not
have a significant effect on the excitation of unstable or unpredictable solutions.

Permanent chaotic solutions are very rare and have been identified in the case of a
system with a two-well potential. Example images of chaotic solutions showing the impact
of damping on them are shown in the graphs (Figure 8).

In this system, the geometry of chaotic attractors is represented by a random distribu-
tion of Poincaré cross-section points in a limited area of the phase plane (Figure 8a). The
fuzzy structure of the chaotic attractor is mainly determined by the small value of the factor
responsible for the dissipation of energy in the system. In the case of a flexible cantilever
beam made of a material exhibiting higher dissipation properties, its geometry begins to
take on a clear picture. It is also worth mentioning that, by increasing the damping of
the energy harvesting system, the zones in which unpredictable solutions are excited are
limited. From an engineering point of view, this can be achieved by making a flexible can-
tilever beam out of a composite material. It is worth bearing this in mind when designing
the structure because, in the areas of chaotic solutions, there is a loss of the system’s ability
to harvest energy [26,31].

Modification of the damping coefficient in the system is also associated with a change
in the nature of the system response. In particular, this applies to solutions excited in the
system without limiters. In the example (Figure 8a), we deal with an unstable chaotic
solution, which, over time, is attracted to a sTable 1T-periodic orbit. Increasing the di-
mensionless damping coefficient to the value δ = 0.13 causes a stable chaotic solution to
be excited in the system. If the value of the dimensionless damping coefficient increases
to the level δ = 0.2, then the response of the system 1© in steady state is a periodic orbit
characterized by high periodicity. In the example presented in the graphs (Figure 8b),
we deal with periodic solutions with a periodicity of 1T. On the other hand, a change in
the value of the energy dissipation affects the location of the solution. In other words,
the response of the system is located in one of the external potential wells. In the third
example (Figure 8c), the change in the damping coefficient does not affect the nature of the
excited solutions.

3.2. Effectiveness of Energy Harvesting

To assess the effectiveness of energy generation, an indicator based on the difference
in the RMS values of the voltages induced on the piezoelectric electrodes ∆uRMS for energy
harvesting systems with and without motion limiters was used (Figure 9). At this point,
we indicate that the adopted indicator is identified for a steady state of the system in a time
window with a width of 50 periods of external excitation. We deal with the steady state
of a dynamical system at the moment of extinction of transient processes and phenomena
characterizing unstable periodic and chaotic solutions. The colors of the plotted RMS
diagrams directly correlate with the corresponding characteristics of the potentials, which
are depicted in the graphs (Figure 5). The values of the dimensionless frequency of the
external load in which the design solution without bumpers shows a higher efficiency of
energy harvesting in relation to the system with bumpers are marked in gray.
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Figure 8. The results of computer simulations showing periodic solutions with and without mo-
tion limiters in systems with potential (a) p = 0.1, ω = 9.25, (b) p = 0.1, ω = 8, (c) p = 0.1, ω = 7.25. The 
shadows over the Poincare points (in black) indicate the ranges of phase portraits. The individual 
planes have been assigned to systems without limiters ① and with them ②. The system parame-
ters are included in the figures. 

Figure 8. The results of computer simulations showing periodic solutions with and without motion
limiters in systems with potential (a) p = 0.1, ω = 9.25, (b) p = 0.1, ω = 8, (c) p = 0.1, ω = 7.25. The
shadows over the Poincare points (in black) indicate the ranges of phase portraits. The individual
planes have been assigned to systems without limiters 1© and with them 2©. The system parameters
are included in the figures.
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The results of numerical experiments that are carried out for the energy harvesting 
system with a two-well potential (Figure 9a) indicate that the use of mechanical bumpers 
improves the energy generation effectiveness in a relatively narrow band of variation of 
the control parameter ω ∈ [3, 4.5] (p = 0.1). With regard to the other values of ω, there are 
also high color peaks of the RMS difference. Nevertheless, in the case of the indicated 
band, we can talk about a homogeneous zone. With regard to the remaining values of the 
dimensionless excitation frequency, e.g., ω ∈ [7, 8.5] (p = 0.1), we deal with an alternating 
distribution of gray and colored peaks. In other words, for one frequency, the system with 
bumpers shows a better ability to generate energy than the design solution without bump-
ers, while a relatively small frequency disturbance reverses the situation. In such situa-
tions, the use of motion limiters acts as a fuse preventing excessive deformations of the 

Figure 9. The results of computer simulations showing the impact of the stiffness and position of the
bumper on the effectiveness of energy harvesting in the system: (a) two-well, (b) three-well, (c) four-
well. The colors of the plotted diagrams directly correlate with the corresponding characteristics
of the potentials, which are depicted in the graphs (Figure 5). In gray is construction without
limiters. The gray and colored bars show which system has a greater energy harvesting effectiveness
(difference in the RMS values of the voltages induced on the piezoelectric electrodes ∆uRMS) for a
given dimensionless excitation frequency.

The results of numerical experiments that are carried out for the energy harvesting
system with a two-well potential (Figure 9a) indicate that the use of mechanical bumpers
improves the energy generation effectiveness in a relatively narrow band of variation of
the control parameter ω ∈ [3, 4.5] (p = 0.1). With regard to the other values of ω, there
are also high color peaks of the RMS difference. Nevertheless, in the case of the indicated
band, we can talk about a homogeneous zone. With regard to the remaining values of the
dimensionless excitation frequency, e.g.,ω ∈ [7, 8.5] (p = 0.1), we deal with an alternating
distribution of gray and colored peaks. In other words, for one frequency, the system
with bumpers shows a better ability to generate energy than the design solution without
bumpers, while a relatively small frequency disturbance reverses the situation. In such
situations, the use of motion limiters acts as a fuse preventing excessive deformations of the
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flexible cantilever beam, which may lead to structural damage in the long term. Regardless
of the width of the “zone of free motion” and the substitute value of the bumper stiffness, it
basically does not change its position in the frequency spectrum. However, in the range of
low values of the dimensionless excitation frequencyω < 1.3, regardless of the considered
design solution, the use of motion limiters is pointless because the identified differences in
the RMS values of the voltage induced on the piezoelectric electrodes take values close to
zero. Such values indicate that we are dealing with small orbits of solutions that are located
inside the potential well. Doubling the level of external load affecting the two-well system
with mechanical bumpers drastically reduces the effectiveness of energy harvesting. Only
in very narrow bands located in the range of ω ∈ [1.5, 2] does the use of limiters have a
beneficial effect.

If the design solution of the energy harvesting system is based on the three-well
potential (Figure 9b), the use of bumpers is possible in relatively narrow bands. However,
at a low level of external excitation p = 0.1, in the bands ω ∈ [0, 3] and ω ∈ [6.5, 9], no
improvement in the effectiveness of energy generation through the use of mechanical
limiters is observed. Correcting their mechanical characteristics and location also does
not improve the situation. Large differences in RMS values of the voltage induced on the
piezoelectric electrodes occur in the range of high excitation frequenciesω > 9. Nevertheless,
they do not indicate whether we deal with periodic solutions, which are characterized by
significantly higher energy effectiveness in relation to unpredictable solutions. Considering
the variable heights of individual ∆uRMS peaks, we can suspect the existence of chaotic or
quasiperiodic solutions. The answer we deal with can be obtained at the point of additional
numerical simulations, the results of which are included in the further part of the work.
As is the case with the design solution based on the two-well potential, doubling the
dimensionless amplitude of mechanical vibrations to the level of p = 0.2 means that the
bumpers used in the system fulfill the function of protecting against excessive vibrations of
the flexible cantilever beam.

The greatest energy benefits from the use of mechanical bumpers are recorded in the
case of the energy harvesting system based on the four-well potential (Figure 9c). This
situation takes place because a relatively small external load (p = 0.1) can cause the “knock-
out” of the solution trajectory from relatively shallow potential wells. In the range of
variability ω ∈ [2.25, 7.25], we are dealing with a homogeneous band, excluding from it
the area of variabilityω ∈ [2.75, 4.25] of the dominance of the construction solution with
motion limiters over the solution without them. The uniform distribution of differences in
RMS values of the voltage induced on the piezoelectric electrodes suggests the existence
of periodic solutions. Nevertheless, limiting the spacing of the bumpers with a simul-
taneous reduction of the equivalent stiffness (diagrams drawn in red and green) causes
unpredictable solutions. As is the case in the two previously analyzed design solutions, in
the range of low excitation frequenciesω < 1.5, no impact of the applied bumpers on the
improvement of energy harvesting effectiveness is observed. Increasing the external load to
the level p = 0.2 makes effective energy harvesting possible in a narrow band ω ∈ [1.3, 1.8]
when dealing with rigid bumpers (diagram drawn in blue). A direct comparison of RMS
difference diagrams suggests that reducing the stiffness of the bumpers while limiting the
“zone of free motion” increases the effectiveness of energy harvesting (the area highlighted
in gray decreases).

Exemplary images of stable periodic solutions limited to a single case corresponding
to each potential are shown in Figure 10. This is because, in the case of stable periodic
solutions which are provided in the form of large orbits circling all the potential wells, the
dimensionless excitation frequency affects the energy trajectory in steady state. However,
for high-energy orbits, its shape resembles a rectangle with rounded tops. The selected
results presented in the graphs (Figure 10) clearly illustrate the beneficial effect of the use
of mechanical limiters on energy harvesting.
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the orbits of stable periodic solutions plotted in red are located inside the external poten-
tial wells and are characterized by small vibration amplitudes of flexible cantilever beams. 
On the other hand, steady-state phase streams of energy harvesting systems with mechan-
ical limiters are plotted in blue. It is worth noting that the appropriately selected charac-
teristics of the bumpers work to minimize the effect of attracting the phase stream through 
deep wells from which they cannot escape at a low level of external load affecting the 
system. Orbits can leave the potential wells when dealing with a chaotic solution or a suf-
ficiently high level of mechanical vibrations affecting the system. 

In the last stage of the model research, a comparison of the energy harvesting effec-
tiveness of different bumper configurations in the analyzed design solutions is presented. 
Numerical experiments are carried out with reference to the same model assumptions as 
those adopted during computer simulations, the results of which are presented in the 
graphs (Figure 9). The results of the numerical simulations are presented in the form of 
diagrams of differences in the RMS values of the voltage induced on the piezoelectric elec-
trodes (Figure 11). It is worth noting that, regardless of the potential characterizing the 
energy harvesting system, in the range of low values of the dimensionless excitation fre-
quency ω < 1.5, the configuration and characteristics of the bumper do not have a signifi-
cant impact on the harvester effectiveness (the difference ΔuRMS assumes values close to 
zero). This situation is also observed in the range of higher load levels affecting energy 
harvesting systems. In the case of the system based on the three-well potential, with the 
lack of sensitivity due to the configuration and characteristics of the bumper, we deal 
within the variability bands ω ∈ [0, 3] and ω ∈ [7, 9]. 

Figure 10. The results of computer simulations showing periodic solutions with and without motion
limiters in systems with the following potential: (a) two-well, (b) three-well, (c) four-well. Potentials
characterizing the system without bumpers (P1 surfaces) and with bumpers (P2 surfaces) are shown.
Orbits without limiters in red; with, in blue.

The results of computer simulations are presented in the form of spatial orbits depicted
against the background of potentials characterizing the system without (P1 surfaces) and
with bumpers (P2 surfaces). In the case of structural solutions without bumpers, the orbits
of stable periodic solutions plotted in red are located inside the external potential wells and
are characterized by small vibration amplitudes of flexible cantilever beams. On the other
hand, steady-state phase streams of energy harvesting systems with mechanical limiters
are plotted in blue. It is worth noting that the appropriately selected characteristics of the
bumpers work to minimize the effect of attracting the phase stream through deep wells
from which they cannot escape at a low level of external load affecting the system. Orbits
can leave the potential wells when dealing with a chaotic solution or a sufficiently high
level of mechanical vibrations affecting the system.

In the last stage of the model research, a comparison of the energy harvesting effec-
tiveness of different bumper configurations in the analyzed design solutions is presented.
Numerical experiments are carried out with reference to the same model assumptions
as those adopted during computer simulations, the results of which are presented in the
graphs (Figure 9). The results of the numerical simulations are presented in the form of
diagrams of differences in the RMS values of the voltage induced on the piezoelectric
electrodes (Figure 11). It is worth noting that, regardless of the potential characterizing
the energy harvesting system, in the range of low values of the dimensionless excitation
frequency ω < 1.5, the configuration and characteristics of the bumper do not have a
significant impact on the harvester effectiveness (the difference ∆uRMS assumes values
close to zero). This situation is also observed in the range of higher load levels affecting
energy harvesting systems. In the case of the system based on the three-well potential, with
the lack of sensitivity due to the configuration and characteristics of the bumper, we deal
within the variability bandsω ∈ [0, 3] andω ∈ [7, 9].

For the system based on the two-well potential (Figure 11a) in the range of low values
of dimensionless mechanical vibration amplitudes (p = 0.1), it is preferable to use bumpers
with rigid characteristics and a relatively wide “zone of free motion”. The frequency of the
external load affecting the energy harvesting system should be in the rangeω ∈ [5, 7].

On the other hand, in the range of higher values ω > 7, much better results will be
obtained by using bumpers with soft mechanical characteristics and relatively narrow
“zones of free motion”. Soft and narrow “zone of free motion” allows for more effective
energy harvesting when the system is subjected to higher dynamic loads (p = 0.2). In the
variability bandω ∈ [1, 4.5] (p = 0.1), the colors assigned to the individual characteristics of
the bumpers are arranged alternately. Such a distribution of the diagrams of differences in
RMS values of the voltage induced on the piezoelectric electrodes show a strong sensitivity
to the configuration and characteristics of the bumpers used. This behavior of the system is
also observed in the case of a design solution based on the three-well potential (Figure 11b).
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Taking into account the results presented in the diagrams (Figure 9b), it can be concluded
that the use of bumpers in the considered three-well system has a positive effect on im-
proving the effectiveness of energy harvesting in very narrow bands of variability of the
dimensionless frequency of the external excitation (p = 0.1).
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Figure 11. Comparison of the energy harvesting effectiveness of different mechanical characteristics
of motion limiters in the following systems: (a) two-well, (b) three-well, (c) four-well. The colors of
the plotted diagrams directly correlate with the corresponding characteristics of the potentials, which
are depicted in the graphs (Figure 5). The colored bars show which limiter stiffness characteristics
have greater energy harvesting effectiveness (difference in the RMS values of the voltages induced on
the piezoelectric electrodes ∆uRMS) for a given dimensionless excitation frequency.

The configuration and mechanical characteristics of the motion limiters (bumpers)
are highly sensitive due to the change in the value of the control parameter in the energy
harvesting system with a four-well potential (Figure 11c). Such dynamic properties are
determined by the characteristics of the potential, which is characterized by very shallow
internal wells. In addition, such behavior of the system is significantly influenced by the
number of coexisting solutions, which—in the case of multi-well systems—is definitely
higher than in systems with a smaller number of wells. In this system, there is basically no
relatively wide homogeneous zone in which it would be possible to indicate the benefits
resulting from the use of a dedicated configuration and characteristics of the bumpers. The
situation changes significantly if the level of load affecting the energy harvesting system
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increases (p = 0.2). At higher levels of external mechanical vibration in the identified dia-
grams, it is possible to distinguish homogeneous bands where effective energy generation
takes place. As in the other analyzed design solutions, and also in the case of a system with
a four-well potential, it is advantageous to use bumpers whose mechanical properties are
mapped with soft characteristics.

The results of computer simulations published so far illustrate the dynamic properties
of the tested design solutions of energy harvesting systems in a qualitative manner. On their
basis, it is possible to assess the nature of the system responses that are induced in a wide
range of variability of the control parameterω. Considering the quantitative assessment
of the energy harvesting effectiveness, the results of the model tests were presented in the
form of bar charts showing the power and effective voltage recorded on the piezoelectric
electrodes. For this purpose, indicators were used, which were defined as the area under
the diagrams of power and effective voltage values:

AP =
∫ ωj

ωi
κ·u2dω, AU =

∫ ωj
ωi

udω. (8)

Through them, it is possible to quantify the impact of the mechanical characteristics of
the stoppers on the energy harvesting effectiveness. At this point, it is worth noting that
regardless of what indicator is taken as the baseline (power or RMS voltage), forecasting
the effectiveness of the tested solutions provides similar results (Figure 12). The results of
numerical simulations presented in the graphs were carried out for low levels of mechanical
vibrations p = 0.1. For larger values of the dimensionless vibration amplitude p, the defined
coefficients assume correspondingly higher values. The results presented in the graphs
were obtained assuming zero initial conditions and fixed positions of mechanical stoppers
in relation to the potential characteristics reflecting the dynamic properties of the tested
solution. The bars highlighted in yellow correspond to the design solutions of the energy
harvesting system, which does not include motion limiters.

The presented results clearly show that the introduction of mechanical bumpers in the
design solution significantly improves the energy harvesting effectiveness in the system
with the potential represented by four wells (Figure 12c). This property basically applies
to the entire analyzed range of variability of the control parameter. Only in the case of
very low ω ∈ [0, 2] and very high ω ∈ [8, 10] external load frequencies does the use of
motion limiters drastically reduce the energy generation (bars highlighted in orange). Such
a large increase in the energy harvesting effectiveness in the four-well system is directly
determined by the height of the internal potential barriers, which are definitely lower in
relation to the two-well (Figure 12a) and three-well (Figure 12b) systems. In relation to these
systems, the use of stoppers does not look so impressive. For the case of high excitation
frequenciesω ∈ [8, 10], one can even speak of a limitation of the energy generation. On the
other hand, in the intermediate bands of the variability of the control parameterω, we do
not deal with such a large improvement as in the four-well system.

It is worth noting that, for the system represented by the three-well potential, effective
energy harvesting takes place in the range of high excitation frequency valuesω ∈ [8, 10]
(Figure 12b). This situation is caused by excitation for zero initial conditions of periodic
solutions represented by a large orbit circulating around the potential well. This case shows,
in principle, a negligible ability to harvest energy in the range of low frequencies of the
external loadω ∈ [0, 2]. A direct comparison of the values of the identified indicators (8)
shows that the three-well system is characterized by the lowest effectiveness of energy
harvesting, despite the fact that the height of the potential barrier is much lower than the
two-well system. This situation is directly related to the width of the potential. At very low
levels of mechanical vibrations affecting the three-well system, the potential width is so
large that the external excitation does not provide enough energy to achieve a periodic orbit
around all wells. The results of computer simulations indicate that the distance measured
between the contact surfaces of the bumpers should be taken as equal to d = 0.75x0, because
their close proximity reduces the effectiveness of energy harvesting (graph bars marked in
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red, blue and orange). Only in the case of the system represented by the three-well potential
is the influence of the distance measured between the bumpers basically not significant.
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Figure 12. Quantitative results of computer simulations showing the effectiveness of energy har-
vesting in the system: (a) two-well, (b) three-well, (c) four-well. The bars highlighted in yellow
correspond to the design solutions which do not include motion limiters. The colors of the individual
bars represent the system characteristics described in the legend. Simulations were performed for
zero initial conditions.
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4. Summary and Conclusions

The use of the Fibonacci hyperbolic sine is a simple and effective numerical tool for
mapping the non-linear properties of bumpers in energy harvesting systems. The use of
the Fibonacci function makes it possible to simplify the mathematical model because the
mechanical characteristics of the bumpers can be modified by changing only one parameter.
This is a significant simplification compared to the model based on a polynomial function.
In addition, the model represented by straight lines is an idealized description of the
functioning of the limiter. It does not fully reflect the nature of cooperation with the free
end of the beam. The use of the Fibonacci function makes it possible to take into account
the elastic deformations of the bumper at the moment of contact with the beam. In the case
of a bumper model based on a linear function with a dead zone, we are not able to take this
into account.

The most effective impact of the use of bumpers can be observed when dealing with
deep external wells. The width of the “zone of free motion” should be limited by the
minima of the outer wells and the maxima of the outer saddles. By means of mechanical
limiters, it is possible to minimize the influence of the depth of external wells. In addition,
the use of mechanical bumpers in the design solutions of energy harvesting systems reduces
the vibration amplitude of flexible cantilever beams.

The use of mechanical bumpers in the design solution allows us to increase the
energy harvesting effectiveness when the system is subjected to relatively small dynamic
loads and the use of motion limiters does not affect the presence of the transient chaos
phenomenon. The distance measured between the contact surfaces of the bumpers should
be taken as equal to d = 0.75x0, because their close proximity reduces the effectiveness of
energy harvesting.

The presented simulation results concern tests aimed at providing information about
the possibility of designing a laboratory stand and the possible results. Now, we are at the
stage of preparing experiments. Model studies provide information on how to plan the
course of an laboratory experiment. In addition, our simulation results consider the system
in a wide range of parameters, while laboratory experiments will be limited to selected
configurations characterized by the best energy harvesting effectiveness.
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