Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (275)

Search Parameters:
Keywords = silicone resin

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
21 pages, 3814 KiB  
Article
Features of the Structure of Layered Epoxy Composite Coatings Formed on a Metal-Ceramic-Coated Aluminum Base
by Volodymyr Korzhyk, Volodymyr Kopei, Petro Stukhliak, Olena Berdnikova, Olga Kushnarova, Oleg Kolisnichenko, Oleg Totosko, Danylo Stukhliak and Liubomyr Ropyak
Materials 2025, 18(15), 3620; https://doi.org/10.3390/ma18153620 - 1 Aug 2025
Viewed by 280
Abstract
Difficult, extreme operating conditions of parabolic antennas under precipitation and sub-zero temperatures require the creation of effective heating systems. The purpose of the research is to develop a multilayer coating containing two metal-ceramic layers, epoxy composite layers, carbon fabric, and an outer layer [...] Read more.
Difficult, extreme operating conditions of parabolic antennas under precipitation and sub-zero temperatures require the creation of effective heating systems. The purpose of the research is to develop a multilayer coating containing two metal-ceramic layers, epoxy composite layers, carbon fabric, and an outer layer of basalt fabric, which allows for effective heating of the antenna, and to study the properties of this coating. The multilayer coating was formed on an aluminum base that was subjected to abrasive jet processing. The first and second metal-ceramic layers, Al2O3 + 5% Al, which were applied by high-speed multi-chamber cumulative detonation spraying (CDS), respectively, provide maximum adhesion strength to the aluminum base and high adhesion strength to the third layer of the epoxy composite containing Al2O3. On this not-yet-polymerized layer of epoxy composite containing Al2O3, a layer of carbon fabric (impregnated with epoxy resin) was formed, which serves as a resistive heating element. On top of this carbon fabric, a layer of epoxy composite containing Cr2O3 and SiO2 was applied. Next, basalt fabric was applied to this still-not-yet-polymerized layer. Then, the resulting layered coating was compacted and dried. To study this multilayer coating, X-ray analysis, light and raster scanning microscopy, and transmission electron microscopy were used. The thickness of the coating layers and microhardness were measured on transverse microsections. The adhesion strength of the metal-ceramic coating layers to the aluminum base was determined by both bending testing and peeling using the adhesive method. It was established that CDS provides the formation of metal-ceramic layers with a maximum fraction of lamellae and a microhardness of 7900–10,520 MPa. In these metal-ceramic layers, a dispersed subgrain structure, a uniform distribution of nanoparticles, and a gradient-free level of dislocation density are observed. Such a structure prevents the formation of local concentrators of internal stresses, thereby increasing the level of dispersion and substructural strengthening of the metal-ceramic layers’ material. The formation of materials with a nanostructure increases their strength and crack resistance. The effectiveness of using aluminum, chromium, and silicon oxides as nanofillers in epoxy composite layers was demonstrated. The presence of structures near the surface of these nanofillers, which differ from the properties of the epoxy matrix in the coating, was established. Such zones, specifically the outer surface layers (OSL), significantly affect the properties of the epoxy composite. The results of industrial tests showed the high performance of the multilayer coating during antenna heating. Full article
(This article belongs to the Section Metals and Alloys)
Show Figures

Figure 1

21 pages, 5017 KiB  
Article
Effects of Phase Structure Regulation on Properties of Hydroxyl-Terminated Polyphenylpropylsiloxane-Modified Epoxy Resin
by Yundong Ji, Jun Pan, Chengxin Xu and Dongfeng Cao
Polymers 2025, 17(15), 2099; https://doi.org/10.3390/polym17152099 - 30 Jul 2025
Viewed by 236
Abstract
4,4’-Methylenebis(N,N-diglycidylaniline) (AG80), as a high-performance thermosetting material, holds significant application value due to the enhancement of its strength, toughness, and thermal stability. However, conventional toughening methods often lead to a decrease in material strength, limiting their application. Modification of AG80 epoxy resin was [...] Read more.
4,4’-Methylenebis(N,N-diglycidylaniline) (AG80), as a high-performance thermosetting material, holds significant application value due to the enhancement of its strength, toughness, and thermal stability. However, conventional toughening methods often lead to a decrease in material strength, limiting their application. Modification of AG80 epoxy resin was performed using hydroxy-terminated polyphenylpropylsiloxane (Z-6018) and a self-synthesized epoxy compatibilizer (P/E30) to regulate the phase structure of the modified resin, achieving a synergistic enhancement in both strength and toughness. The modified resin was characterized by Fourier transform infrared analysis (FTIR), proton nuclear magnetic resonance (1H NMR) spectroscopy, silicon-29 nuclear magnetic resonance (29Si NMR) spectroscopy, and epoxy value titration. It was found that the phase structure of the modified resin significantly affects mechanical properties. Thus, P/E30 was introduced to regulate the phase structure, achieving enhanced toughness and strength. At 20 wt.% P/E30 addition, the tensile strength, impact strength, and fracture toughness increased by 50.89%, 454.79%, and 152.43%, respectively, compared to AG80. Scanning electron microscopy (SEM) and atomic force microscopy (AFM) analyses indicate that P/E30 regulates the silicon-rich spherical phase and interfacial compatibility, establishing a bicontinuous structure within the spherical phase, which is crucial for excellent mechanical properties. Additionally, the introduction of Z-6018 enhances the thermal stability of the resin. Full article
(This article belongs to the Section Polymer Analysis and Characterization)
Show Figures

Figure 1

19 pages, 3671 KiB  
Article
Sustainable Benzoxazine Copolymers with Enhanced Thermal Stability, Flame Resistance, and Dielectric Tunability
by Thirukumaran Periyasamy, Shakila Parveen Asrafali and Jaewoong Lee
Polymers 2025, 17(15), 2092; https://doi.org/10.3390/polym17152092 - 30 Jul 2025
Viewed by 321
Abstract
Benzoxazine resins are gaining attention for their impressive thermal stability, low water uptake, and strong mechanical properties. In this work, two new bio-based benzoxazine monomers were developed using renewable arbutin: one combined with 3-(2-aminoethylamino) propyltrimethoxysilane (AB), and the other with furfurylamine (AF). Both [...] Read more.
Benzoxazine resins are gaining attention for their impressive thermal stability, low water uptake, and strong mechanical properties. In this work, two new bio-based benzoxazine monomers were developed using renewable arbutin: one combined with 3-(2-aminoethylamino) propyltrimethoxysilane (AB), and the other with furfurylamine (AF). Both were synthesized using a simple Mannich-type reaction and verified through FT-IR and 1H-NMR spectroscopy. By blending these monomers in different ratios, copolymers with adjustable thermal, dielectric, and surface characteristics were produced. Thermal analysis showed that the materials had broad processing windows and cured effectively, while thermogravimetric testing confirmed excellent heat resistance—especially in AF-rich blends, which left behind more char. The structural changes obtained during curing process were monitored using FT-IR, and XPS verified the presence of key elements like carbon, oxygen, nitrogen, and silicon. SEM imaging revealed that AB-based materials had smoother surfaces, while AF-based ones were rougher; the copolymers fell in between. Dielectric testing showed that increasing AF content raised both permittivity and loss, and contact angle measurements confirmed that surfaces ranged from water-repellent (AB) to water-attracting (AF). Overall, these biopolymers (AB/AF copolymers) synthesized from arbutin combine environmental sustainability with customizability, making them strong candidates for use in electronics, protective coatings, and flame-resistant composite materials. Full article
Show Figures

Figure 1

18 pages, 3288 KiB  
Article
Influence of Material Optical Properties in Direct ToF LiDAR Optical Tactile Sensing: Comprehensive Evaluation
by Ilze Aulika, Andrejs Ogurcovs, Meldra Kemere, Arturs Bundulis, Jelena Butikova, Karlis Kundzins, Emmanuel Bacher, Martin Laurenzis, Stephane Schertzer, Julija Stopar, Ales Zore and Roman Kamnik
Materials 2025, 18(14), 3287; https://doi.org/10.3390/ma18143287 - 11 Jul 2025
Viewed by 345
Abstract
Optical tactile sensing is gaining traction as a foundational technology in collaborative and human-interactive robotics, where reliable touch and pressure feedback are critical. Traditional systems based on total internal reflection (TIR) and frustrated TIR (FTIR) often require complex infrared setups and lack adaptability [...] Read more.
Optical tactile sensing is gaining traction as a foundational technology in collaborative and human-interactive robotics, where reliable touch and pressure feedback are critical. Traditional systems based on total internal reflection (TIR) and frustrated TIR (FTIR) often require complex infrared setups and lack adaptability to curved or flexible surfaces. To overcome these limitations, we developed OptoSkin—a novel tactile platform leveraging direct time-of-flight (ToF) LiDAR principles for robust contact and pressure detection. In this extended study, we systematically evaluate how key optical properties of waveguide materials affect ToF signal behavior and sensing fidelity. We examine a diverse set of materials, characterized by varying light transmission (82–92)%, scattering coefficients (0.02–1.1) cm−1, diffuse reflectance (0.17–7.40)%, and refractive indices 1.398–1.537 at the ToF emitter wavelength of 940 nm. Through systematic evaluation, we demonstrate that controlled light scattering within the material significantly enhances ToF signal quality for both direct touch and near-proximity sensing. These findings underscore the critical role of material selection in designing efficient, low-cost, and geometry-independent optical tactile systems. Full article
(This article belongs to the Section Polymeric Materials)
Show Figures

Figure 1

13 pages, 1764 KiB  
Article
Functionalization of Oligosiloxane for Polyester Comonomer
by Satoru Saotome, Jiaorong Kuang, Reina Akashi, Momoko Takahashi, Yujia Liu, Takayuki Iijima and Masafumi Unno
Molecules 2025, 30(13), 2775; https://doi.org/10.3390/molecules30132775 - 27 Jun 2025
Viewed by 301
Abstract
This paper proposes a new functionalized oligosiloxane as a comonomer for polyester, designed to provide hydrophobic surface properties and enhance low-temperature impact resistance. The functionalization of polymer resin itself has attracted attention in the context of monomaterialization. Chemically designing the primary structure of [...] Read more.
This paper proposes a new functionalized oligosiloxane as a comonomer for polyester, designed to provide hydrophobic surface properties and enhance low-temperature impact resistance. The functionalization of polymer resin itself has attracted attention in the context of monomaterialization. Chemically designing the primary structure of not only polymers but also monomers is crucial for enhancing the intrinsic performance of the resin. However, little is known about oligosiloxane monomers for polyester that can provide oligosiloxane-like properties such as hydrophobicity and flexibility at low temperatures. Here, we report the functional design of a polyester material through silicone copolymerization. A novel comonomer was designed and synthesized to optimize both the molecular structure and the compatibility of the silicone segments, promoting uniform copolymer formation. Incorporating silicone into the polymer matrix reduced surface energy, thereby improving water repellency. Furthermore, the flexibility imparted by the silicone components effectively mitigated the brittleness of polyester at sub-zero temperatures, resulting in superior impact resistance. Structural analysis, contact angle measurements, and low-temperature impact tests were conducted on the copolymers. The results confirmed that optimizing comonomer design enables significant enhancement of both hydrophobicity and impact durability, contributing to the development of high-performance polyester materials suitable for demanding environments. Full article
(This article belongs to the Section Macromolecular Chemistry)
Show Figures

Graphical abstract

14 pages, 2916 KiB  
Article
Investigation of the Electrodialysis of Sodium Tungstate Solutions for the Production of Tungstic Acid
by Adelya Dauletbakova, Bolotpay Baimbetov, Yeleussiz Tazhiyev and Gulnara Moldabayeva
Appl. Sci. 2025, 15(13), 7033; https://doi.org/10.3390/app15137033 - 22 Jun 2025
Viewed by 613
Abstract
Industrial technologies for processing tungsten concentrates using soda roasting or autoclave leaching are based on the production of alkaline sodium tungstate solutions that contain impurities such as silicon, phosphorus, arsenic, and others. The purification of these solutions from impurities requires the neutralization of [...] Read more.
Industrial technologies for processing tungsten concentrates using soda roasting or autoclave leaching are based on the production of alkaline sodium tungstate solutions that contain impurities such as silicon, phosphorus, arsenic, and others. The purification of these solutions from impurities requires the neutralization of excess soda or alkali with inorganic acids, which leads to the formation of chloride and sulfate effluents that are subsequently discharged into waste repositories. An analysis was carried out on existing methods for the production and processing of sodium tungstate solutions using HNO3 and NH3, as well as extraction and sorption techniques involving anion exchange resins. Currently, processes such as nanofiltration, reverse osmosis, and electrodialysis are being applied for water purification and the treatment of sulfate and chloride effluents. These processes employ various types of industrially manufactured membranes. For the purpose of electrodialysis, a two-compartment electrodialyzer setup was employed using cation-exchange membranes of the MK-40 (Russia) and EDC1R (China) types. The composition and structure of sodium tungstate, used as the starting reagents, were analyzed. Based on experiments conducted on a laboratory-scale unit with continuous circulation of the catholyte and anolyte, dependencies of various parameters on current density and process duration were established. Stepwise changes in the anolyte pH were recorded, indirectly confirming changes in the composition of the Na2WO4 solution, including the formation of polytungstates of variable composition and the production of H2WO4 via electrodialysis at pH < 2. The resulting tungstic acid solutions were also analyzed. The conducted studies on the processing of sodium tungstate solutions using electrodialysis made it possible to obtain alkaline solutions and tungstic acid at a current density of 500–1500 A/m2, without the use of acid for neutralization. Yellow tungstic acid was obtained from the tungstic acid solution by evaporation. Full article
Show Figures

Figure 1

13 pages, 3366 KiB  
Article
Compatibility of Dual-Cure Core Materials with Self-Etching Adhesives
by Zachary K. Greene, Augusto A. Robles and Nathaniel C. Lawson
Dent. J. 2025, 13(7), 276; https://doi.org/10.3390/dj13070276 - 20 Jun 2025
Viewed by 384
Abstract
Background/Objectives: A material incompatibility has been established between self-etching adhesives and amine-containing dual-cure resin composite materials used for core buildups. This study aims to compare the dentin bond strength of several amine-containing and amine-free core materials using self-etching adhesives with different pHs. [...] Read more.
Background/Objectives: A material incompatibility has been established between self-etching adhesives and amine-containing dual-cure resin composite materials used for core buildups. This study aims to compare the dentin bond strength of several amine-containing and amine-free core materials using self-etching adhesives with different pHs. Methods: Extracted human molars were mounted in acrylic and ground flat with 320-grit silicon carbide paper. Next, 520 specimens (n = 10/group) were assigned to a dual-cure core buildup material group (10 amine-containing, 2 amine-free, and 1 reference light-cure only bulk fill flowable composite) and assigned to a self-etching adhesive subgroup (pH levels of approximately 1.0, 3.0, and 4.0). Within 4 h of surface preparation, the adhesive corresponding to the specimen’s subgroup was applied and light-cured. Composite buttons for the assigned dual-cure core material of each group were placed using a bonding clamp apparatus, allowed to self-cure for 2 h at 37 °C, and then unclamped. An additional group with one adhesive (pH = 3.0) was prepared in which the dual-cure core materials were light-cured. The bonded specimens were stored in water at 37 °C for 24 h. The specimens were mounted on a testing clamp and de-bonded in a universal testing machine with a load applied to a circular notched-edge blade at a crosshead speed of 1 mm/min until bond failure. The maximum load divided by the area of the button was recorded as the shear bond strength. The data was analyzed via 2-way ANOVA. Results: The analysis of bond strength via 2-way ANOVA determined statistically significant differences between the adhesives, the core materials, and their interaction (p < 0.01). There was a general trend in shear bond strength for the adhesives, where pH 4.0 > 3.0 > 1.0. The amine-free core materials consistently demonstrated higher shear bond strengths as compared to the other core materials when chemically cured only. Light-curing improved bond strength for some materials with perceived incompatibility. Conclusions: The results of this study suggest that an incompatibility can exist between self-etching adhesives and dual-cure resin composite core materials. A decrease in the pH of the utilized adhesive corresponded to a decrease in the bond strength of dual-cure core materials when self-curing. This incompatibility may be minimized with the use of core materials formulated with amine-free chemistry. Alternatively, the dual-cure core materials may be light-cured. Full article
(This article belongs to the Special Issue Dental Materials Design and Innovative Treatment Approach)
Show Figures

Figure 1

19 pages, 3737 KiB  
Article
Phosphorus–Silicon Additive Increases the Mechanical and Fire Resistance of Epoxy Resins
by Zhe Wang, Shuaijun Guo, Wenwen Yu and Xiaohong Liang
Materials 2025, 18(12), 2753; https://doi.org/10.3390/ma18122753 - 12 Jun 2025
Viewed by 418
Abstract
Epoxy resins are limited by their flammability and brittleness. In this study, a phosphorus- and silicon-based additive was synthesized to improve fire resistance and mechanical performance. The incorporation of just 1 wt% phosphorus from this additive into epoxy resin achieved a limiting oxygen [...] Read more.
Epoxy resins are limited by their flammability and brittleness. In this study, a phosphorus- and silicon-based additive was synthesized to improve fire resistance and mechanical performance. The incorporation of just 1 wt% phosphorus from this additive into epoxy resin achieved a limiting oxygen index of 33% and a V-0 fire rating. The modified epoxy exhibited a 52.43% reduction in the peak heat release rate and a 35.70% decrease in total smoke production compared to the unmodified resin, demonstrating enhanced heat resistance and smoke suppression. Notably, the modified epoxy thermoset displayed superior mechanical properties, with tensile and impact strengths increasing by 48.41% and 130%, respectively. This research presents a promising approach for developing high-performance epoxy resins with improved flame retardancy, smoke suppression, and mechanical strength. Full article
(This article belongs to the Section Polymeric Materials)
Show Figures

Figure 1

9 pages, 1591 KiB  
Communication
Highly Sensitive Dissolved Oxygen Sensor with High Stability in Seawater Based on Silica-Encapsulated Platinum(II) Porphyrin
by Hang Lv, Siyuan Cheng, Song Hu and Guohong Zhou
Sensors 2025, 25(11), 3559; https://doi.org/10.3390/s25113559 - 5 Jun 2025
Viewed by 566
Abstract
This study utilized tetramethylammonium hydroxide (TMAH) as a substitute for traditional catalysts and successfully incorporated platinum octaethylporphyrin (PtOEP) into SiO2 nanoparticles (PtOEP@SiO2) via the Stöber method. Methyl silicone resin was employed as the matrix material, and a drop-coating technique was [...] Read more.
This study utilized tetramethylammonium hydroxide (TMAH) as a substitute for traditional catalysts and successfully incorporated platinum octaethylporphyrin (PtOEP) into SiO2 nanoparticles (PtOEP@SiO2) via the Stöber method. Methyl silicone resin was employed as the matrix material, and a drop-coating technique was applied to fabricate thin films of PtOEP@SiO2 particles for dissolved oxygen (DO) sensing in seawater. By optimizing the concentrations of TMAH and PtOEP, a highly sensitive oxygen-sensing film with a quenching ratio (I0/I100) of 28 was ultimately developed, with a wide linear detection range (0~20 mg/L, R2 = 0.994). Stability tests revealed no significant performance degradation during five oxygen–nitrogen cycle tests. After 30 days of immersion in East China Sea seawater, the quenching ratio decreased by only 6%, confirming its long-term stability and excellent resistance to ion interference. This research provides a novel strategy for developing highly reliable in situ marine DO sensors. Full article
(This article belongs to the Section Optical Sensors)
Show Figures

Figure 1

16 pages, 4322 KiB  
Article
Synthesis of Silver Nanocluster-Loaded FAU Zeolites and the Application in Light Emitting Diode
by Tianning Zheng, Ruihao Huang, Haoran Zhang, Song Ye and Deping Wang
Chemistry 2025, 7(3), 90; https://doi.org/10.3390/chemistry7030090 - 30 May 2025
Viewed by 493
Abstract
Silver nanoclusters that are confined inside zeolites can give off intensive tunable emission across the visible region under UV excitation. In this research, a series of silver nanoclusters loaded with R-FAU/Ag (R = Li, Na, K) zeolites were synthesized and then applied as [...] Read more.
Silver nanoclusters that are confined inside zeolites can give off intensive tunable emission across the visible region under UV excitation. In this research, a series of silver nanoclusters loaded with R-FAU/Ag (R = Li, Na, K) zeolites were synthesized and then applied as phosphors for LEDs. The XRD and SEM measurements showed the R-FAU/Ag (R = Li, Na, K) zeolites have high crystallinity and a size distribution of 0.7–1.25 μm. Under excitations of 310–330 nm ultraviolet radiation, Li-FAU/Ag, Na-FAU/Ag, and K-FAU/Ag exhibit monotonically declining emission intensities and red-shifted emissions with peak wavelengths of 520, 527, and 535 nm, respectively. By using silicone-based epoxy resin as the packaging material, a series of LEDs were fabricated by mixing R-FAU/Ag (R = Li, Na, K) phosphors. It is indicated that the Li-FAU/Ag-LED shows the strongest intensity of 94.9 mcd, much higher than that of the LEDs made from Na-FAU/Ag (63.7 mcd) and K-FAU/Ag (74.2 mcd) phosphors. Additionally, the chromaticity coordinate of the Li-FAU/Ag-LED is located at (0.2651, 0.4073) and has a high color temperature of 7873 K. Thermal test data showed that upon heating to 440 K, the intensities of R-FAU/Ag (R = Li, Na, K) LEDs decreased to 81%, 79%, and 75% of their initial intensities measured at 280 K, respectively. This research proposes a method for regulating the luminescent properties of silver nanoclusters in FAU zeolite by modifying the extra-framework cations and demonstrates excellent performance in LED products. Full article
(This article belongs to the Section Chemistry of Materials)
Show Figures

Figure 1

19 pages, 4306 KiB  
Article
The Modulation of the Pore Structure in Porous Carbon by Metal Salts and Its Application for Joining Silicon Carbide Ceramics
by Xishi Wu, Zehua Liu, Bingbing Pei, Haibo Wu and Zhengren Huang
Materials 2025, 18(10), 2336; https://doi.org/10.3390/ma18102336 - 17 May 2025
Viewed by 461
Abstract
In this work, the metal salts were introduced into the resin-solvent gel system to leverage their ortho-substitution effect, thereby accelerating the polymerization-induced phase separation process. Subsequent in-situ carbonization resulted in the preparation of porous carbon materials with three-dimensional interconnected pores. By precisely tuning [...] Read more.
In this work, the metal salts were introduced into the resin-solvent gel system to leverage their ortho-substitution effect, thereby accelerating the polymerization-induced phase separation process. Subsequent in-situ carbonization resulted in the preparation of porous carbon materials with three-dimensional interconnected pores. By precisely tuning the parameters of the resin-solvent-metal ion system, control over the pore structure of the porous carbon was achieved, with a porosity range of 16.5% to 66.5% and a pore diameter range of 8 to 248 nm. The addition of metallic salts can simply and effectively increase the pore structure after carbonization, making the infiltration of molten silicon easier. This is beneficial to the joining process of silicon carbide ceramics. Based on these findings, a high-reliability joining technique for large-sized (135 mm × 205 mm) silicon carbide ceramics was developed. The resulting interlayer was dense and defect-free, exhibiting a joining strength of 309 ± 33 MPa and a Weibull modulus of 10.67. These results highlight the critical role of structured porous media in advancing the field of large-sized ceramic joining. Full article
(This article belongs to the Section Advanced and Functional Ceramics and Glasses)
Show Figures

Figure 1

18 pages, 2870 KiB  
Article
Preparation and Properties of Environmentally Friendly Carboxyl Graphene Oxide/Silicone Coatings
by Zhenhua Chu, Jiahao Lu, Wan Tang, Yuchen Xu, Quantong Jiang and Jingxiang Xu
Materials 2025, 18(9), 2122; https://doi.org/10.3390/ma18092122 - 5 May 2025
Viewed by 435
Abstract
To address the protective demands of marine engineering equipment in complex corrosive environments, this study proposes an environmentally friendly composite coating based on carboxylated graphene oxide (CGO)-modified water-based epoxy organosilicon resin. By incorporating varying mass fractions (0.05–0.25%) of CGO into the resin matrix [...] Read more.
To address the protective demands of marine engineering equipment in complex corrosive environments, this study proposes an environmentally friendly composite coating based on carboxylated graphene oxide (CGO)-modified water-based epoxy organosilicon resin. By incorporating varying mass fractions (0.05–0.25%) of CGO into the resin matrix via mechanical blending, the microstructure, corrosion resistance, and long-term corrosion kinetics of the coatings were systematically investigated. The results demonstrate that the coating with 0.15 wt.% CGO (designated as KCG15) exhibited optimal comprehensive performance: its corrosion current density (Icorr = 4.37 × 10−8 A/cm2) was two orders of magnitude lower than that of the pure resin coating, while its low-frequency impedance modulus (∣Z0.1Hz = 4.99 × 106 Ω⋅cm2) is significantly enhanced, accompanied by improved surface compactness. The coating achieved a 97% inhibition rate against sulfate-reducing bacteria (SRB) through synergistic physical disruption and electrostatic repulsion mechanisms. Long-term corrosion kinetics analysis via 60-day seawater immersion identified three degradation phases—permeation (0–1 day), blockage (1–4 days), and failure (7–60 days)—with structural evolution from microcrack networks to foam-like blistering ultimately reducing by 97.8%. Furthermore, a 180-day atmospheric exposure test confirms the superior weatherability and adhesion of the KCG15 coating, with only minor discoloration observed due to its hydrophobic surface. This work provides theoretical and technical foundations for developing marine anti-corrosion coatings that synergize environmental sustainability with long-term protective performance. Full article
(This article belongs to the Section Thin Films and Interfaces)
Show Figures

Figure 1

14 pages, 3853 KiB  
Article
Preparation and Characterization of Composite Hydrogen Barrier Coatings with (Graphene–Epoxy Resin)/(Silicon Carbide–Epoxy Resin)/(Graphene–Epoxy Resin) Sandwich Structures
by Ke Cai and Bailing Jiang
Coatings 2025, 15(5), 518; https://doi.org/10.3390/coatings15050518 - 25 Apr 2025
Cited by 1 | Viewed by 786
Abstract
How to solve hydrogen embrittlement (HE) is a key issue that urgently needs to be addressed in the hydrogen energy industry. The use of hydrogen barrier coatings can effectively reduce the occurrence of HE. In this article, we utilized the epoxy resin (ER) [...] Read more.
How to solve hydrogen embrittlement (HE) is a key issue that urgently needs to be addressed in the hydrogen energy industry. The use of hydrogen barrier coatings can effectively reduce the occurrence of HE. In this article, we utilized the epoxy resin (ER) as the base coating and the graphene (GN) and the silicon carbide (SiC) as the additives to prepare the (GN-ER)/(SiC-ER)/(GN-ER) sandwich structure composite hydrogen barrier coatings by the spin coating method and investigated the effect of coating composite ways on the hydrogen barrier performance. The GN-ER and the SiC-ER are used as the hydrogen barrier layer and the hydrogen capture layer, respectively, in order to improve the hydrogen barrier performances jointly. The XRD and the SEM were used to characterize their phase compositions and microstructures, and the hydrogen barrier performances were analyzed by the electrochemical hydrogen permeation curves. The adhesive strength was characterized through the pull-out method. Compared to the single-layer and the double-layer structures, sandwich structures can effectively enhance the hydrogen barrier performance of the coatings, such as the relatively low electrochemical hydrogen diffusion coefficient (Dt, 3.88 × 10−8 cm2·s−1), the relatively high permeation reduction factor (PRF, 59) and adhesive strength (10.9 MPa). This research may provide a theoretical basis for improving the hydrogen barrier performance of coatings. The (GN-ER)/(SiC ER)/(GN-ER) sandwich structures composite hydrogen barrier coatings can be expected to be used in the field of safe hydrogen storage and transportation. Full article
Show Figures

Graphical abstract

12 pages, 5184 KiB  
Article
Dual Flame-Retardant and Curing-Agent Effects of Phytic Acid–Guanazole as an Additive in Fire-Protective Coatings for Wood
by Xue Zheng, Yongjin Zou, Cuili Xiang, An Wei, Yuhong Wei and Lixian Sun
Polymers 2025, 17(9), 1169; https://doi.org/10.3390/polym17091169 - 25 Apr 2025
Viewed by 411
Abstract
Recent research has focused on developing environmentally friendly flame-retardant coatings to improve the fire resistance of wood. In this study, phytic acid–guanazole (PG), a dual-functional compound synthesized through an ionic reaction between phytic acid and guanazole, was added to KH550-modified urea–formaldehyde resin (KUF) [...] Read more.
Recent research has focused on developing environmentally friendly flame-retardant coatings to improve the fire resistance of wood. In this study, phytic acid–guanazole (PG), a dual-functional compound synthesized through an ionic reaction between phytic acid and guanazole, was added to KH550-modified urea–formaldehyde resin (KUF) as both a curing agent and flame retardant. The PO43 groups from phytic acid act as an acid source to accelerate char formation during combustion, while the −NH2 groups introduced by guanazole release non-combustible gases to dilute oxygen in the air, synergistically enhancing flame retardancy. Additionally, the hygroscopic PO43 groups absorb free water in the resin, reducing the curing temperature and accelerating coating solidification. The KH550 coupling agent improves compatibility between KUF and PG while introducing silicon, which forms SiO2 during combustion to strengthen the char layer and further enhance flame resistance. Evaluations showed that PG outperforms conventional tannic acid (TA) in curing efficiency and fire resistance. Comprehensive analyses, including Differential Scanning Calorimetry (DSC), Limiting Oxygen Index (LOI), vertical flame tests, and cone calorimetry, confirmed PG’s dual functionality. Scanning Electron Microscope (SEM) and Raman spectroscopy revealed that PG-modified coatings form denser post-combustion char layers, directly linked to improved fire resistance. As a multifunctional additive, PG eliminates the need for separate curing agents and utilizes bio-based phytic acid, offering cost-effective and sustainable advantages for industrial applications. Full article
(This article belongs to the Section Polymer Analysis and Characterization)
Show Figures

Figure 1

16 pages, 4184 KiB  
Article
Low Shrinkage Transparent UV-Cured 3D Printing Hard Silicone Resins
by Haibo Wu, Qili Shen, Zhu Liu, Xiantai Zhou, Yanxiong Fang, Hongping Xiang and Xiaoxuan Liu
Polymers 2025, 17(8), 1123; https://doi.org/10.3390/polym17081123 - 21 Apr 2025
Viewed by 572
Abstract
Acrylated silicone elastomers for UV-curing 3D printing have gathered considerable attention in biomedical applications due to their exceptional mechanical and thermal stability. However, traditional manufacturing methods for these resins often face challenges such as stringent conditions and self-polymerization. In this study, various acrylate [...] Read more.
Acrylated silicone elastomers for UV-curing 3D printing have gathered considerable attention in biomedical applications due to their exceptional mechanical and thermal stability. However, traditional manufacturing methods for these resins often face challenges such as stringent conditions and self-polymerization. In this study, various acrylate silicone resins (LMDT-AE) and silicone oils (PDMS-AE) were synthesized through ring-opening hydrolysis-polycondensation. The structures of LMDT-AE and PDMS-AE, with varying AE contents (molar ratio of organic groups to silicon atoms), were characterized using FTIR, 1H NMR, 13C NMR, and GPC. Additionally, their physical properties, including viscosity, density, refractive index, and transparency, were thoroughly examined. The 3D-AE silicone resin composed of LMDT-AE-2.0 and PDMS-AE-20/1, in a mass ratio of 2:1, demonstrated superior mechanical properties, thermal stability, and curing shrinkage rate compared to other formulations. This curing silicone resin is capable of producing 3D physical entities with smooth surfaces and well-defined contours. It is shown that the successful preparation of transparent and high-strength UV-cured silicone resin based on free radical polymerization can provide a potential path for high-precision biological 3D printing. Full article
(This article belongs to the Special Issue Polymer Materials for Application in Additive Manufacturing)
Show Figures

Figure 1

Back to TopTop