Functionalization of Oligosiloxane for Polyester Comonomer
Abstract
1. Introduction
2. Results and Discussion
2.1. Synthesis of Siloxane-Based Comonomers
2.2. Copolymerization of Oligosiloxanes and Polybutylene Terephthalate (PBT)
2.3. Thermal Properties of Oligosiloxanes and Copolyesters
2.4. Surface Property of Copolyester
2.5. Impact Resistance of Copolyester
3. Materials and Methods
3.1. Equipment
3.2. General Considerations of Synthesis
3.3. Synthetic Procedures of Compounds
3.3.1. Synthesis of PDMS-Vi
3.3.2. Synthesis of Siloxane 1
3.3.3. Synthesis of Siloxane 2
3.3.4. Synthesis of Si-PBT
3.3.5. Synthesis of PBT
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Sfameni, S.; Lawnick, T.; Rando, G.; Visco, A.; Textor, T.; Plutino, M.R. Super-Hydrophobicity of Polyester Fabrics Driven by Functional Sustainable Fluorine-Free Silane-Based Coatings. Gels 2023, 9, 109. [Google Scholar] [CrossRef] [PubMed]
- Xu, L.; Xie, K.; Liu, Y.; Zhang, C. Stable super-hydrophobic and comfort PDMS-coated polyester fabric. e-Polymers 2021, 21, 654–661. [Google Scholar] [CrossRef]
- Endo, H.; Takeda, N.; Takanashi, M.; Imai, T.; Unno, M. Refractive Indices of Silsesquioxanes with Various Structures. Silicon 2014, 7, 127–132. [Google Scholar] [CrossRef]
- Zhang, B.; Liu, B.; Deng, X.; Cao, S.; Hou, X.; Chen, H. A novel approach for the preparation of organic-siloxane oligomers and the creation of hydrophobic surface. Appl. Surf. Sci. 2007, 254, 452–458. [Google Scholar] [CrossRef]
- Bogdanowicz, K.A.; Dutkiewicz, M.; Maciejewski, H.; Nowicki, M.; Przybył, W.; Plebankiewicz, I.; Iwan, A. Siloxane resins as hydrophobic self-cleaning layers for silicon and dye-sensitized solar cells: Material and application aspects. RSC Adv. 2022, 12, 19154–19170. [Google Scholar] [CrossRef]
- Ho, C.-H.; Wang, C.-H.; Lin, C.-I.; Lee, Y.-D. Synthesis and characterization of (AB)n-type poly(l-lactide)–poly(dimethyl siloxane) multiblock copolymer and the effect of its macrodiol composition on urethane formation. Eur. Polym. J. 2009, 45, 2455–2466. [Google Scholar] [CrossRef]
- Anisimov, A.A.; Kuvandykova, E.A.; Buzina, A.I.; Muzafarov, A.M. Synthesis of siloxane analogue of polyethylene terephthalate. Mendeleev Commun. 2019, 29, 461–462. [Google Scholar] [CrossRef]
- Racles, C.; Cozan, V.; Bele, A.; Dascalu, M. Polar silicones: Structure-dielectric properties relationship. Des. Monomers Polym. 2016, 19, 496–507. [Google Scholar] [CrossRef]
- Schauser, N.S.; Grzetic, D.J.; Tabassum, T.; Kliegle, G.A.; Le, M.L.; Susca, E.M.; Antoine, S.; Keller, T.J.; Delaney, K.T.; Han, S.; et al. The Role of Backbone Polarity on Aggregation and Conduction of Ions in Polymer Electrolytes. J. Am. Chem. Soc. 2020, 142, 7055–7065. [Google Scholar] [CrossRef]
- Zhou, W.; Osby, J. Siloxane modification of polycarbonate for superior flow and impact toughness. Polymer 2010, 51, 1990–1999. [Google Scholar] [CrossRef]
- Ueki, Y.; Oshida, M.; Sando, H.; Seko, N. Bleed-out suppression of silicone rubber by electron beam crosslinking. Radiat. Phys. Chem. 2022, 193, 110002. [Google Scholar] [CrossRef]
- Fukasawa, Y.; Okuda, T.; Shimada, T.; Hattori, M.; Saito, H. Bleeding Surfactant at the Surface of Polyethylene Blend Films. KOBUNSHI RONBUNSHU 2008, 65, 98–103. [Google Scholar] [CrossRef]
- Fox, H.; Taylor, P.; Zisman, W. Polyorganosiloxanes… Surface Active Properties. Ind. Eng. Chem. 1947, 39, 1401–1409. [Google Scholar] [CrossRef]
- Pawlenko, S. Organosilicon Chemistry; Walter de Gruyter: New York, NY, USA, 1986; pp. 13–16. [Google Scholar]
- Yamaya, M. Silocone Taizen; The Nikkan Kogyo Shimbun, Ltd.: Tokyo, Japan, 2024; pp. 8–11. [Google Scholar]
- Tao, H.; Zhang, X.; Sun, Y.; Yang, H.; Lin, B. The influence of molecular weight of siloxane macromere on phase separation morphology, oxygen permeability, and mechanical properties in multicomponent silicone hydrogels. Colloid Polym. Sci. 2016, 295, 205–213. [Google Scholar] [CrossRef]
- Friedman, E.M.; Porter, R.S. Polymer Viscosity-Molecular Weight Distribution Correlations via Blending: For High Molecular Weight Poly(dimethyl Siloxanes) and for Polystyrenes. Trans. Soc. Rheol. 1975, 19, 493–508. [Google Scholar] [CrossRef]
- Gordon, G.V.; Schmidt, R.G.; Quintero, M.; Benton, N.J.; Cosgrove, T.; Krukonis, V.J.; Williams, K.; Wetmore, P.M. Impact of Polymer Molecular Weight on the Dynamics of Poly(dimethylsiloxane)−Polysilicate Nanocomposites. Macromolecules 2010, 43, 10132–10142. [Google Scholar] [CrossRef]
- Xue, L.; Wang, D.; Yang, Z.; Liang, Y.; Zhang, J.; Feng, S. Facile, versatile and efficient synthesis of functional polysiloxanes via thiol–ene chemistry. Eur. Polym. J. 2013, 49, 1050–1056. [Google Scholar] [CrossRef]
- Cohen, C.; Damiron, D.; Ben Dkhil, S.; Drockenmuller, E.; Restagno, F.; Léger, L. Synthesis of well-defined poly(dimethylsiloxane) telechelics having nitrobenzoxadiazole fluorescent chain-ends via thiol-ene coupling. J. Polym. Sci. Part A Polym. Chem. 2012, 50, 1827–1833. [Google Scholar] [CrossRef]
- Stein, R.S.; Misra, A. Morphological studies on polybutylene terephthalate. J. Polym. Sci. Polym. Phys. Ed. 1980, 18, 327–342. [Google Scholar] [CrossRef]
- Misra, A.; Gorg, N.S. Morphology and properties of poly(butylene terephthalate). Polym. Sci. Polym Lett. 1982, 20, 121–125. [Google Scholar] [CrossRef]
- Yeh, T.J.; Runt, J. Multiple melting in annealed poly(butylene terephthalate). J. Polym. Sci. Polym. Phys. 1989, 27, 1543–1550. [Google Scholar] [CrossRef]
- Jariyavidyanont, K.; Androsch, R.; Schick, C. Crystal reorganization of poly (butylene terephthalate). Polymer 2017, 124, 274–283. [Google Scholar] [CrossRef]
- Kitazaki, Y.; Hata, T. Revision of the Fowkes’s Formula and Evaluation of Surface Energy of High Molecule Solid Material. J. Adhes. Soc. Jpn. 1972, 8, 131–137. [Google Scholar]
- Designation:D6110-10; Standard Test Method for Determining the Charpy Impact Resistance of Notched Specimens of Plastics. ASTM International: West Conshohocken, PA, USA, 2010. Available online: https://borgoltz.aoe.vt.edu/aoe3054/manual/expt5/D6110.pdf (accessed on 5 May 2025).
- Pereira, A.C.; Monteiro, S.N.; de Assis, F.S.; Margem, F.M.; da Luz, F.S.; de Oliveira Braga, F. Charpy impact tenacity of epoxy matrix composites reinforced with aligned jute fibers. J. Mater. Res. Technol. 2017, 6, 312–316. [Google Scholar] [CrossRef]
- Woehrle, G.H.; Warner, M.G.; Hutchison, J.E. Molecular-Level Control of Feature Separation in One-Dimensional Nanostructure Assemblies Formed by Biomolecular Nanolithography. Langmuir 2004, 20, 5982–5988. [Google Scholar] [CrossRef]
- Frye, C.L.; Salinger, R.M.; Fearon, F.W.G.; Klosowski, J.M.; DeYoung, T. Reactions of organolithium reagents with siloxane substrates. J. Org. Chem. 1970, 35, 1308–1314. [Google Scholar] [CrossRef]
- Liu, Y.; Kigure, M.; Okawa, R.; Takeda, N.; Unno, M.; Ouali, A. Synthesis and characterization of tetrathiol-substituted double-decker or ladder silsesquioxane nano-cores. Dalton Trans. 2021, 50, 3473–3478. [Google Scholar] [CrossRef]
- Lodge, A.S.; Schieber, J.D.; Bird, R.B. The Weissenberg effect at finite rod-rotation speeds. J. Chem. Phys. 1988, 88, 4001–4007. [Google Scholar] [CrossRef]
Polymer | ηred [dL/g] 1 | Mn [g/mol] 2 | Mw [g/mol] 2 | PDI 2 |
---|---|---|---|---|
Si-PBT | 0.89 | 1.5 × 104 | 6.0 × 104 | 3.9 |
PBT | 1.08 | 1.7 × 104 | 4.4 × 104 | 3.5 |
DMT [mol%] | 1,4-BG [mol%] | Siloxane 2 [mol%] | |
---|---|---|---|
Feed | 100 | 95 | 5 |
1H NMR 1 | 100 | 93 | 4 1 |
Td3 | Td5 | Td10 | |
---|---|---|---|
Siloxane 2 | 284.3 | 306.2 | 355.2 |
N2 Atmosphere | Air Atmosphere | |||||
---|---|---|---|---|---|---|
Td3 | Td5 | Td10 | Td3 | Td5 | Td10 | |
Si-PBT | 330.6 | 344.6 | 359.0 | 321.9 | 335.1 | 350.7 |
PBT | 359.9 | 368.3 | 376.3 | 328.7 | 354.0 | 367.4 |
Tm [°C] | ΔH(Tm) [J/g] | |
---|---|---|
Si-PBT | 216.4 | −34.7 |
PBT | 223.8 | −52.3 |
Water | n-Hexadecane | CH2I2 | |
---|---|---|---|
Si-PBT | 113.3 | 15 | 52.4 |
PBT | 77.8 | 5.5 | 23.8 |
γd | γp | γh | γtotal | |
---|---|---|---|---|
Si-PBT | 23.2 | 4.6 | 0.0 | 27.8 |
PBT | 27.5 | 40.8 | 1.7 | 70.0 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Saotome, S.; Kuang, J.; Akashi, R.; Takahashi, M.; Liu, Y.; Iijima, T.; Unno, M. Functionalization of Oligosiloxane for Polyester Comonomer. Molecules 2025, 30, 2775. https://doi.org/10.3390/molecules30132775
Saotome S, Kuang J, Akashi R, Takahashi M, Liu Y, Iijima T, Unno M. Functionalization of Oligosiloxane for Polyester Comonomer. Molecules. 2025; 30(13):2775. https://doi.org/10.3390/molecules30132775
Chicago/Turabian StyleSaotome, Satoru, Jiaorong Kuang, Reina Akashi, Momoko Takahashi, Yujia Liu, Takayuki Iijima, and Masafumi Unno. 2025. "Functionalization of Oligosiloxane for Polyester Comonomer" Molecules 30, no. 13: 2775. https://doi.org/10.3390/molecules30132775
APA StyleSaotome, S., Kuang, J., Akashi, R., Takahashi, M., Liu, Y., Iijima, T., & Unno, M. (2025). Functionalization of Oligosiloxane for Polyester Comonomer. Molecules, 30(13), 2775. https://doi.org/10.3390/molecules30132775