Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (14,465)

Search Parameters:
Keywords = signaling receptor

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
26 pages, 12045 KiB  
Article
Notch2 Deletion Compromises Epithelial Integrity and Enamel Formation in Rodent Incisors
by Argyro Lamprou, Cristina Porcheri and Thimios A. Mitsiadis
Cells 2025, 14(15), 1224; https://doi.org/10.3390/cells14151224 - 7 Aug 2025
Abstract
The evolutionarily conserved Notch signalling pathway regulates the fate, proliferation and differentiation of cells in most developing organs, thus affecting their morphogenesis and function. Here, we investigated the role of the Notch2 receptor in the generation and function of epithelial cells of the [...] Read more.
The evolutionarily conserved Notch signalling pathway regulates the fate, proliferation and differentiation of cells in most developing organs, thus affecting their morphogenesis and function. Here, we investigated the role of the Notch2 receptor in the generation and function of epithelial cells of the continuously erupting rodent incisors. We used transgenic Notch1-CreERT2/+;Rosa26mT/mG and Notch2-CreERT2/+;Rosa26mT/mG mice to compare the contribution of Notch1- and Notch2-expressing cells and their progeny in the generation of the different epithelial cell populations. Furthermore, we examined if the dental epithelium organisation and enamel structure are affected in early postnatal incisors of Keratin14Cre/+;Notch2fl/fl mice using immunofluorescent staining, gene expression analysis, microcomputed tomography and scanning electron microscopy. Our results showed that Notch2 deletion resulted in smaller incisors with disorganised dental epithelium and defective enamel. Delayed eruption was correlated with alterations in the proliferative and differentiation status of epithelial stem cells in the cervical loop area of the incisors. Similar results were obtained with in vitro studies, where inhibition of the Notch signalling by the CB103 blocker recapitulated the in vivo phenotype. In conclusion, this study demonstrates for the first time the importance of Notch2 in epithelial cell fate acquisition, dental epithelium organisation and enamel structure in rodent incisors. Full article
Show Figures

Figure 1

32 pages, 1991 KiB  
Review
Synthetic Small-Molecule Ligands Targeted to Adenosine Receptors: Is There Potential Towards Ischemic Heart Disease?
by Qi Xu, Yaw Nana Opoku, Kalwant S. Authi and Agostino Cilibrizzi
Cells 2025, 14(15), 1219; https://doi.org/10.3390/cells14151219 - 7 Aug 2025
Abstract
Ischemic heart disease (IHD) represents a leading cause of global morbidity and mortality. Despite significant advances in treatment achieved over recent decades, as well as various therapeutic strategies available to manage IHD progression currently, the global incidence of this disorder remains high. This [...] Read more.
Ischemic heart disease (IHD) represents a leading cause of global morbidity and mortality. Despite significant advances in treatment achieved over recent decades, as well as various therapeutic strategies available to manage IHD progression currently, the global incidence of this disorder remains high. This review examines essential cell biology aspects of adenosine receptors (ARs), along with the effects of known synthetic small-molecule AR ligands, to provide an up-to-date view on the therapeutic potential towards IHD treatment. In particular, we report here advancements made on a selection of AR synthetic ligands that have demonstrated efficacy in pre-clinical or clinical studies, thereby holding promise as new therapeutic candidates in the field of IHD. Although this work adds further evidence that clinically valid small-molecule therapeutic agents targeting ARs exist, their use represents an emerging area, with most drug prototypes still in the pre-clinical developmental stage and many lacking large-scale clinical trials. The future lies in identifying improved AR synthetic ligands with enhanced efficacy and selectivity, as well as reduced adverse side effects, along with establishing a platform of specific and diversified pre-clinical tests, to inform in turn the resulting clinical investigations. Full article
Show Figures

Figure 1

21 pages, 9310 KiB  
Article
Synergistic Regulation of Pigment Cell Precursors’ Differentiation and Migration by ednrb1a and ednrb2 in Nile Tilapia
by Zilong Wen, Jinzhi Wu, Jiawen Yao, Fugui Fang, Siyu Ju, Chenxu Wang, Xingyong Liu and Deshou Wang
Cells 2025, 14(15), 1213; https://doi.org/10.3390/cells14151213 - 6 Aug 2025
Abstract
The evolutionary loss of ednrb2 in specific vertebrate lineages, such as mammals and cypriniform fish, raises fundamental questions about its functional necessity and potential redundancy or synergy with paralogous endothelin receptors in pigment cell development. In teleosts possessing both ednrb1a and ednrb2 (e.g., [...] Read more.
The evolutionary loss of ednrb2 in specific vertebrate lineages, such as mammals and cypriniform fish, raises fundamental questions about its functional necessity and potential redundancy or synergy with paralogous endothelin receptors in pigment cell development. In teleosts possessing both ednrb1a and ednrb2 (e.g., Nile tilapia), their respective and combined roles in regulating neural crest-derived pigment cell precursors remains unresolved. Using CRISPR/Cas9, we generated single and double ednrb mutants to dissect their functions. We demonstrated that ednrb1a and ednrb2 synergistically govern the differentiation and migration of iridophore precursors. While ednrb1a is broadly essential for iridophore development, ednrb2 plays a unique and indispensable role in the colonization of iridophores in the dorsal iris. Double mutants exhibit near-complete iridophore loss; severe depletion of melanophores, xanthophores, and erythrophores; and a striking, fertile, transparent phenotype. Crucially, this iridophore deficiency does not impair systemic guanine synthesis pathways. mRNA rescue experiments confirmed mitfa as a key downstream effector within the Ednrb signaling cascade. This work resolves the synergistic regulation of pigment cell fates by Ednrb receptors and establishes a mechanism for generating transparent ermplasm. Full article
Show Figures

Figure 1

17 pages, 2609 KiB  
Article
Residual Tumor Resection After Anti-PD-1 Therapy: A Promising Treatment Strategy for Overcoming Immune Evasive Phenotype Induced by Anti-PD-1 Therapy in Gastric Cancer
by Hajime Matsuida, Kosaku Mimura, Shotaro Nakajima, Katsuharu Saito, Sohei Hayashishita, Chiaki Takiguchi, Azuma Nirei, Tomohiro Kikuchi, Hiroyuki Hanayama, Hirokazu Okayama, Motonobu Saito, Tomoyuki Momma, Zenichiro Saze and Koji Kono
Cells 2025, 14(15), 1212; https://doi.org/10.3390/cells14151212 - 6 Aug 2025
Abstract
Background: Anti-programmed death 1 receptor (PD-1) therapy is a promising treatment strategy for patients with unresectable advanced or recurrent gastric/gastroesophageal junction (G/GEJ) cancer. However, its response rate and survival benefits are still limited; an immunological analysis of the residual tumor after anti-PD-1 therapy [...] Read more.
Background: Anti-programmed death 1 receptor (PD-1) therapy is a promising treatment strategy for patients with unresectable advanced or recurrent gastric/gastroesophageal junction (G/GEJ) cancer. However, its response rate and survival benefits are still limited; an immunological analysis of the residual tumor after anti-PD-1 therapy would be important. Methods: We evaluated the clinical efficacy of tumor resection (TR) after chemotherapy or anti-PD-1 therapy in patients with unresectable advanced or recurrent G/GEJ cancer and analyzed the immune status of tumor microenvironment (TME) by immunohistochemistry using their surgically resected specimens. Results: Patients treated with TR after anti-PD-1 therapy had significantly longer survival compared to those treated with chemotherapy and anti-PD-1 therapy alone. Expression of human leukocyte antigen (HLA) class I and major histocompatibility complex (MHC) class II on tumor cells was markedly downregulated after anti-PD-1 therapy compared to chemotherapy. Furthermore, the downregulation of HLA class I may be associated with the activation of transforming growth factor-β signaling pathway in the TME. Conclusions: Immune escape from cytotoxic T lymphocytes may be induced in the TME in patients with unresectable advanced or recurrent G/GEJ cancer after anti-PD-1 therapy due to the downregulation of HLA class I and MHC class II expression on tumor cells. TR may be a promising treatment strategy for these patients when TR is feasible after anti-PD-1 therapy. Full article
Show Figures

Figure 1

31 pages, 4843 KiB  
Review
Glucocorticoid-Mediated Skeletal Muscle Atrophy: Molecular Mechanisms and Potential Therapeutic Targets
by Uttapol Permpoon, Jiyeong Moon, Chul Young Kim and Tae-gyu Nam
Int. J. Mol. Sci. 2025, 26(15), 7616; https://doi.org/10.3390/ijms26157616 - 6 Aug 2025
Abstract
Skeletal muscle atrophy is a critical health issue affecting the quality of life of elderly individuals and patients with chronic diseases. These conditions induce dysregulation of glucocorticoid (GC) secretion. GCs play a critical role in maintaining homeostasis in the stress response and glucose [...] Read more.
Skeletal muscle atrophy is a critical health issue affecting the quality of life of elderly individuals and patients with chronic diseases. These conditions induce dysregulation of glucocorticoid (GC) secretion. GCs play a critical role in maintaining homeostasis in the stress response and glucose metabolism. However, prolonged exposure to GC is directly linked to muscle atrophy, which is characterized by a reduction in muscle size and weight, particularly affecting fast-twitch muscle fibers. The GC-activated glucocorticoid receptor (GR) decreases protein synthesis and facilitates protein breakdown. Numerous antagonists have been developed to mitigate GC-induced muscle atrophy, including 11β-HSD1 inhibitors and myostatin and activin receptor blockers. However, the clinical trial results have fallen short of the expected efficacy. Recently, several emerging pathways and targets have been identified. For instance, GC-induced sirtuin 6 isoform (SIRT6) expression suppresses AKT/mTORC1 signaling. Lysine-specific demethylase 1 (LSD1) cooperates with the GR for the transcription of atrogenes. The kynurenine pathway and indoleamine 2,3-dioxygenase 1 (IDO-1) also play crucial roles in protein synthesis and energy production in skeletal muscle. Therefore, a deeper understanding of the complexities of GR transactivation and transrepression will provide new strategies for the discovery of novel drugs to overcome the detrimental effects of GCs on muscle tissues. Full article
(This article belongs to the Special Issue Understanding Aging in Health and Disease)
Show Figures

Figure 1

13 pages, 1537 KiB  
Article
Correlation of SERPINA-1 Gene Over-Expression with Inhibition of Cell Proliferation and Modulation of the Expression of IL-6, Furin, and NSD2 Genes
by Nassim Tassou, Hajar Anibat, Ahmed Tissent and Norddine Habti
Biologics 2025, 5(3), 22; https://doi.org/10.3390/biologics5030022 - 6 Aug 2025
Abstract
Background and Objectives: The cytokine IL-6, methyltransferase NSD2, pro-protein convertase Furin, and growth factor receptor IGF-1R are essential factors in the proliferation of cancer cells. These proteins are involved in the tumor process by generating several cell-signaling pathways. However, the interactions of these [...] Read more.
Background and Objectives: The cytokine IL-6, methyltransferase NSD2, pro-protein convertase Furin, and growth factor receptor IGF-1R are essential factors in the proliferation of cancer cells. These proteins are involved in the tumor process by generating several cell-signaling pathways. However, the interactions of these oncogenic biomarkers, Furin, IL-6, and NSD2, and their links with the inhibitor SERPINA-1 remain largely unknown. Materials and Methods: Cell proliferation is measured by colorimetric and enzymatic methods. The genetic expressions of SERPINA-1, Furin, IL-6, and NSD2 are measured by qRT-PCR, while the expression of IGF-1R on the cell surface is measured by flow cytometry. Results: The proliferation of cells overexpressing SERPINA-1 (JP7pSer+) is decreased by more than 90% compared to control cells (JP7pSer-). The kinetics of the gene expression ratios of Furin, IL-6, and NSD2 show an increase for 48 h, followed by a decrease after 72 h for the three biomarkers in JP7pSer+ cells compared to JP7pSer- cells. The expression of IGF-1R on the cell surface in both cell lines is low, with JP7pSer- cells expressing 1.33 times more IGF-1R than JP7pSer+ cells. Conclusions: These results suggest gene correlations of SERPINA-1 overexpression with decreased cell proliferation and modulation of gene expression of Furin, IL-6, and NSD2. This study should be complemented by molecular transcriptomic and proteomic experiments to better understand the interaction of SERPINA-1 with IL-6, Furin, and NSD2, and their effect on tumor progression. Full article
(This article belongs to the Topic Advances in Anti-Cancer Drugs: 2nd Edition)
Show Figures

Figure 1

24 pages, 1028 KiB  
Review
Molecular Links Between Metabolism and Mental Health: Integrative Pathways from GDF15-Mediated Stress Signaling to Brain Energy Homeostasis
by Minju Seo, Seung Yeon Pyeon and Man S. Kim
Int. J. Mol. Sci. 2025, 26(15), 7611; https://doi.org/10.3390/ijms26157611 - 6 Aug 2025
Abstract
The relationship between metabolic dysfunction and mental health disorders is complex and has received increasing attention. This review integrates current research to explore how stress-related growth differentiation factor 15 (GDF15) signaling, ceramides derived from gut microbiota, and mitochondrial dysfunction in the brain interact [...] Read more.
The relationship between metabolic dysfunction and mental health disorders is complex and has received increasing attention. This review integrates current research to explore how stress-related growth differentiation factor 15 (GDF15) signaling, ceramides derived from gut microbiota, and mitochondrial dysfunction in the brain interact to influence both metabolic and psychiatric conditions. Evidence suggests that these pathways converge to regulate brain energy homeostasis through feedback mechanisms involving the autonomic nervous system and the hypothalamic–pituitary–adrenal axis. GDF15 emerges as a key stress-responsive biomarker that links peripheral metabolism with brainstem GDNF family receptor alpha-like (GFRAL)-mediated anxiety circuits. Meanwhile, ceramides impair hippocampal mitochondrial function via membrane incorporation and disruption of the respiratory chain. These disruptions may contribute to sustained pathological states such as depression, anxiety, and cognitive dysfunction. Although direct mechanistic data are limited, integrating these pathways provides a conceptual framework for understanding metabolic–psychiatric comorbidities. Furthermore, differences in age, sex, and genetics may influence these systems, highlighting the need for personalized interventions. Targeting mitochondrial function, GDF15-GFRAL signaling, and gut microbiota composition may offer new therapeutic strategies. This integrative perspective helps conceptualize how metabolic and psychiatric mechanisms interact for understanding the pathophysiology of metabolic and psychiatric comorbidities and highlights therapeutic targets for precision medicine. Full article
Show Figures

Figure 1

22 pages, 1029 KiB  
Review
Inter-Organellar Ca2+ Homeostasis in Plant and Animal Systems
by Philip Steiner and Susanna Zierler
Cells 2025, 14(15), 1204; https://doi.org/10.3390/cells14151204 (registering DOI) - 6 Aug 2025
Abstract
The regulation of calcium (Ca2+) homeostasis is a critical process in both plant and animal systems, involving complex interplay between various organelles and a diverse network of channels, pumps, and transporters. This review provides a concise overview of inter-organellar Ca2+ [...] Read more.
The regulation of calcium (Ca2+) homeostasis is a critical process in both plant and animal systems, involving complex interplay between various organelles and a diverse network of channels, pumps, and transporters. This review provides a concise overview of inter-organellar Ca2+ homeostasis, highlighting key regulators and mechanisms in plant and animal cells. We discuss the roles of key Ca2+ channels and transporters, including IP3Rs, RyRs, TPCs, MCUs, TRPMLs, and P2XRs in animals, as well as their plant counterparts. Here, we explore recent innovations in structural biology and advanced microscopic techniques that have enhanced our understanding of these proteins’ structure, functions, and regulations. We examine the importance of membrane contact sites in facilitating Ca2+ transfer between organelles and the specific expression patterns of Ca2+ channels and transporters. Furthermore, we address the physiological implications of inter-organellar Ca2+ homeostasis and its relevance in various pathological conditions. For extended comparability, a brief excursus into bacterial intracellular Ca2+ homeostasis is also made. This meta-analysis aims to bridge the gap between plant and animal Ca2+ signaling research, identifying common themes and unique adaptations in these diverse biological systems. Full article
Show Figures

Figure 1

19 pages, 332 KiB  
Review
Redefining Treatment Paradigms in Thyroid Eye Disease: Current and Future Therapeutic Strategies
by Nicolò Ciarmatori, Flavia Quaranta Leoni and Francesco M. Quaranta Leoni
J. Clin. Med. 2025, 14(15), 5528; https://doi.org/10.3390/jcm14155528 - 6 Aug 2025
Abstract
Background: Thyroid eye disease (TED) is a rare autoimmune orbital disorder predominantly associated with Graves’ disease. It is characterized by orbital inflammation, tissue remodeling, and potential visual morbidity. Conventional therapies, particularly systemic glucocorticoids, offer only partial symptomatic relief, failing to reverse chronic structural [...] Read more.
Background: Thyroid eye disease (TED) is a rare autoimmune orbital disorder predominantly associated with Graves’ disease. It is characterized by orbital inflammation, tissue remodeling, and potential visual morbidity. Conventional therapies, particularly systemic glucocorticoids, offer only partial symptomatic relief, failing to reverse chronic structural changes such as proptosis and diplopia, and are associated with substantial adverse effects. This review aims to synthesize recent developments in understandings of TED pathogenesis and to critically evaluate emerging therapeutic strategies. Methods: A systematic literature review was conducted using MEDLINE, Embase, and international clinical trial registries focusing on pivotal clinical trials and investigational therapies targeting core molecular pathways involved in TED. Results: Current evidence suggests that TED pathogenesis is primarily driven by the autoimmune activation of orbital fibroblasts (OFs) through thyrotropin receptor (TSH-R) and insulin-like growth factor-1 receptor (IGF-1R) signaling. Teprotumumab, a monoclonal IGF-1R inhibitor and the first therapy approved by the U.S. Food and Drug Administration for TED, has demonstrated substantial clinical benefit, including improvements in proptosis, diplopia, and quality of life. However, concerns remain regarding relapse rates and treatment-associated adverse events, particularly hearing impairment. Investigational therapies, including next-generation IGF-1R inhibitors, small-molecule antagonists, TSH-R inhibitors, neonatal Fc receptor (FcRn) blockers, cytokine-targeting agents, and gene-based interventions, are under development. These novel approaches aim to address both inflammatory and fibrotic components of TED. Conclusions: Teprotumumab has changed TED management but sustained control and toxicity reduction remain challenges. Future therapies should focus on targeted, mechanism-based, personalized approaches to improve long-term outcomes and patient quality of life. Full article
(This article belongs to the Section Ophthalmology)
19 pages, 1551 KiB  
Article
Genome-Wide Association Study Reveals Key Genetic Loci Controlling Oil Content in Soybean Seeds
by Xueyang Wang, Min Zhang, Fuxin Li, Xiulin Liu, Chunlei Zhang, Fengyi Zhang, Kezhen Zhao, Rongqiang Yuan, Sobhi F. Lamlom, Honglei Ren, Hongmei Qiu and Bixian Zhang
Agronomy 2025, 15(8), 1889; https://doi.org/10.3390/agronomy15081889 - 5 Aug 2025
Abstract
Seed oil represents a key trait in soybeans, which holds substantial economic significance, contributing to roughly 60% of global oilseed production. This research employed genome-wide association mapping to identify genetic loci associated with oil content in soybean seeds. A panel comprising 341 soybean [...] Read more.
Seed oil represents a key trait in soybeans, which holds substantial economic significance, contributing to roughly 60% of global oilseed production. This research employed genome-wide association mapping to identify genetic loci associated with oil content in soybean seeds. A panel comprising 341 soybean accessions, primarily sourced from Northeast China, was assessed for seed oil content at Heilongjiang Province in three replications over two growing seasons (2021 and 2023) and underwent genotyping via whole-genome resequencing, resulting in 1,048,576 high-quality SNP markers. Phenotypic analysis indicated notable variation in oil content, ranging from 11.00% to 21.77%, with an average increase of 1.73% to 2.28% across all growing regions between 2021 and 2023. A genome-wide association study (GWAS) analysis revealed 119 significant single-nucleotide polymorphism (SNP) loci associated with oil content, with a prominent cluster of 77 SNPs located on chromosome 8. Candidate gene analysis identified four key genes potentially implicated in oil content regulation, selected based on proximity to significant SNPs (≤10 kb) and functional annotation related to lipid metabolism and signal transduction. Notably, Glyma.08G123500, encoding a receptor-like kinase involved in signal transduction, contained multiple significant SNPs with PROVEAN scores ranging from deleterious (−1.633) to neutral (0.933), indicating complex functional impacts on protein function. Additional candidate genes include Glyma.08G110000 (hydroxycinnamoyl-CoA transferase), Glyma.08G117400 (PPR repeat protein), and Glyma.08G117600 (WD40 repeat protein), each showing distinct expression patterns and functional roles. Some SNP clusters were associated with increased oil content, while others correlated with decreased oil content, indicating complex genetic regulation of this trait. The findings provide molecular markers with potential for marker-assisted selection (MAS) in breeding programs aimed at increasing soybean oil content and enhancing our understanding of the genetic architecture governing this critical agricultural trait. Full article
Show Figures

Figure 1

18 pages, 1241 KiB  
Review
PCOS and the Genome: Is the Genetic Puzzle Still Worth Solving?
by Mario Palumbo, Luigi Della Corte, Dario Colacurci, Mario Ascione, Giuseppe D’Angelo, Giorgio Maria Baldini, Pierluigi Giampaolino and Giuseppe Bifulco
Biomedicines 2025, 13(8), 1912; https://doi.org/10.3390/biomedicines13081912 - 5 Aug 2025
Abstract
Background: Polycystic ovary syndrome (PCOS) is a complex and multifactorial disorder affecting reproductive, endocrine, and metabolic functions in women of reproductive age. While environmental and lifestyle factors play a role, increasing evidence highlights the contribution of genetic and epigenetic mechanisms to its pathogenesis. [...] Read more.
Background: Polycystic ovary syndrome (PCOS) is a complex and multifactorial disorder affecting reproductive, endocrine, and metabolic functions in women of reproductive age. While environmental and lifestyle factors play a role, increasing evidence highlights the contribution of genetic and epigenetic mechanisms to its pathogenesis. Objective: This narrative review aims to provide an updated overview of the current evidence regarding the role of genetic variants, gene expression patterns, and epigenetic modifications in the etiopathogenesis of PCOS, with a focus on their impact on ovarian function, fertility, and systemic alterations. Methods: A comprehensive search was conducted across MEDLINE, EMBASE, PubMed, Web of Science, and the Cochrane Library using MeSH terms including “PCOS”, “Genes involved in PCOS”, and “Etiopathogenesis of PCOS” from January 2015 to June 2025. The selection process followed the SANRA quality criteria for narrative reviews. Seventeen studies published in English were included, focusing on original data regarding gene expression, polymorphisms, and epigenetic changes associated with PCOS. Results: The studies analyzed revealed a wide array of molecular alterations in PCOS, including the dysregulation of SIRT and estrogen receptor genes, altered transcriptome profiles in cumulus cells, and the involvement of long non-coding RNAs and circular RNAs in granulosa cell function and endometrial receptivity. Epigenetic mechanisms such as the DNA methylation of TGF-β1 and inflammation-related signaling pathways (e.g., TLR4/NF-κB/NLRP3) were also implicated. Some genetic variants—particularly in DENND1A, THADA, and MTNR1B—exhibit signs of positive evolutionary selection, suggesting possible ancestral adaptive roles. Conclusions: PCOS is increasingly recognized as a syndrome with a strong genetic and epigenetic background. The identification of specific molecular signatures holds promise for the development of personalized diagnostic markers and therapeutic targets. Future research should focus on large-scale genomic studies and functional validation to better understand gene–environment interactions and their influence on phenotypic variability in PCOS. Full article
Show Figures

Figure 1

18 pages, 2229 KiB  
Article
Cell Surface Proteomics Reveals Hypoxia-Regulated Pathways in Cervical and Bladder Cancer
by Faris Alanazi, Ammar Sharif, Melissa Kidd, Emma-Jayne Keevill, Vanesa Biolatti, Richard D. Unwin, Peter Hoskin, Ananya Choudhury, Tim A. D. Smith and Conrado G. Quiles
Proteomes 2025, 13(3), 36; https://doi.org/10.3390/proteomes13030036 - 5 Aug 2025
Abstract
Background Plasma membrane proteins (PMPs) play key roles in cell signalling, adhesion, and trafficking, and are attractive therapeutic targets in cancer due to their surface accessibility. However, their typically low abundance limits detection by conventional proteomic approaches. Methods: To improve PMP detection, we [...] Read more.
Background Plasma membrane proteins (PMPs) play key roles in cell signalling, adhesion, and trafficking, and are attractive therapeutic targets in cancer due to their surface accessibility. However, their typically low abundance limits detection by conventional proteomic approaches. Methods: To improve PMP detection, we employed a surface proteomics workflow combining cell surface biotinylation and affinity purification prior to LC-MS/MS analysis in cervical (SiHa) and bladder (UMUC3) cancer cell lines cultured under normoxic (21% O2) or hypoxic (0.1% O2) conditions. Results: In SiHa cells, 43 hypoxia-upregulated proteins were identified exclusively in the biotin-enriched fraction, including ITGB2, ITGA7, AXL, MET, JAG2, and CAV1/CAV2. In UMUC3 cells, 32 unique upregulated PMPs were detected, including CD55, ADGRB1, SLC9A1, NECTIN3, and ACTG1. These proteins were not observed in corresponding whole-cell lysates and are associated with extracellular matrix remodelling, immune modulation, and ion transport. Biotinylation enhanced the detection of membrane-associated pathways such as ECM organisation, integrin signalling, and PI3K–Akt activation. Protein–protein interaction analysis revealed links between membrane receptors and intracellular stress regulators, including mitochondrial proteins. Conclusions: These findings demonstrate that surface biotinylation improves the sensitivity and selectivity of plasma membrane proteomics under hypoxia, revealing hypoxia-responsive proteins and pathways not captured by standard whole-cell analysis. Full article
(This article belongs to the Section Proteomics of Human Diseases and Their Treatments)
Show Figures

Figure 1

17 pages, 4116 KiB  
Article
A Bifunctional Anti-PD-1/TGF-β Fusion Antibody Restores Antitumour Immunity and Remodels the Tumour Microenvironment
by Lidi Nan, Yuting Qin, Xiao Huang, Mingzhu Pan, Xiaomu Wang, Yanqing Lv, Annette Sorensen, Xiaoqiang Kang, Hong Ling and Juan Zhang
Int. J. Mol. Sci. 2025, 26(15), 7567; https://doi.org/10.3390/ijms26157567 - 5 Aug 2025
Abstract
Although PD-1/PD-L1 inhibitors have transformed cancer immunotherapy, a substantial proportion of patients derive no clinical benefit due to resistance driven by the tumour microenvironment (TME). Transforming growth factor-β (TGF-β) is a key immunosuppressive cytokine implicated in this resistance. Several bifunctional antibodies that co-target [...] Read more.
Although PD-1/PD-L1 inhibitors have transformed cancer immunotherapy, a substantial proportion of patients derive no clinical benefit due to resistance driven by the tumour microenvironment (TME). Transforming growth factor-β (TGF-β) is a key immunosuppressive cytokine implicated in this resistance. Several bifunctional antibodies that co-target PD-1 and TGF-β signalling have entered clinical trials and shown encouraging efficacy, but the mechanistic basis of their synergy is not fully understood. Here, we engineered 015s, a bifunctional fusion antibody that simultaneously targets murine PD-1 and TGF-β and evaluated its antitumour efficacy and mechanistic impact in pre-clinical models. Antibody 015s exhibited high affinity, dual target binding, and the effective inhibition of PD-1 and TGF-β signalling. In vivo, 015s significantly suppressed tumour growth compared with anti-mPD-1 or TGF-β receptor II (TGF-βRII) monotherapy. When combined with the CD24-targeted ADC, 015s produced even greater antitumour activity and achieved complete tumour regression. Mechanistic studies demonstrated that 015s significantly reduced tumour cell migration and invasion, reversed epithelial–mesenchymal transition (EMT), decreased microvascular density, and attenuated collagen deposition within the TME. Antibody 015s also decreased bioactive TGF-β1 and increased intratumoural IFN-γ, creating a more immunostimulatory milieu. These findings support further development of PD-1/TGF-β bifunctional antibodies for cancers with high TGF-β activity or limited response to immune checkpoint blockade. Full article
(This article belongs to the Section Molecular Immunology)
Show Figures

Graphical abstract

16 pages, 12012 KiB  
Article
Complement Receptor 3 Regulates Microglial Exosome Release and Related Neurotoxicity via NADPH Oxidase in Neuroinflammation Associated with Parkinson’s Disease
by Yu Ma, Xiaomeng Zhang, Jiaqi Xu, Runnan Luo, Sheng Li, Hong Su, Qingshan Wang and Liyan Hou
Antioxidants 2025, 14(8), 963; https://doi.org/10.3390/antiox14080963 - 5 Aug 2025
Abstract
Microglia-mediated chronic neuroinflammation is a common pathological feature of Parkinson’s disease (PD). Strong evidence suggests that activated microglia can lesion neurons by releasing exosomes. However, the mechanisms of exosome release from activated microglia remain unclear. We recently revealed a key role of complement [...] Read more.
Microglia-mediated chronic neuroinflammation is a common pathological feature of Parkinson’s disease (PD). Strong evidence suggests that activated microglia can lesion neurons by releasing exosomes. However, the mechanisms of exosome release from activated microglia remain unclear. We recently revealed a key role of complement receptor 3 (CR3) in regulating microglial activation in the process of progressive neurodegeneration. This study aimed to investigate whether CR3 can regulate exosome release from activated microglia, as well as the underlying mechanisms. We found that LPS, an inducer of microglial M1 activation, induced exosome release from activated microglia. Inhibition of exosome synthesis suppressed LPS-induced microglial activation, gene expression of proinflammatory factors, and related neurotoxicity. Silencing or knocking out CR3 attenuated LPS-induced exosome release in microglia. NADPH oxidase (NOX2) was further identified as a downstream signal of CR3, mediating microglial exosome release and related neurotoxicity. CR3 silencing blocked LPS-induced NOX2 activation and superoxide production through inhibition of p47phox phosphorylation and membrane translocation. Moreover, NOX2 activation elicited by PMA or supplementation of H2O2 recovered exosome release from CR3-silenced microglia. Subsequently, we demonstrated that the CR3-NOX2 axis regulates syntenin-1 to control microglial exosome release. Finally, we observed that the expression of CR3 was increased in the brain of LPS-treated mice, and genetic ablation of CR3 significantly reduced LPS-induced NOX2 activation, microglial M1 polarization, and exosome production in mice. Overall, our findings revealed a critical role of the CR3-NOX2 axis in controlling microglial exosome release and related neurotoxicity through syntenin-1, providing a novel target for the development of a therapeutic strategy for neuroinflammation-mediated neurodegeneration. Full article
(This article belongs to the Section Antioxidant Enzyme Systems)
Show Figures

Graphical abstract

24 pages, 2475 KiB  
Article
An Immunomodulating Peptide with Potential to Promote Anticancer Immunity Without Compromising Immune Tolerance
by Michael Agrez, Christopher Chandler, Amanda L. Johnson, Marlena Sorensen, Kirstin Cho, Stephen Parker, Benjamin Blyth, Darryl Turner, Justyna Rzepecka, Gavin Knox, Anastasia Nika, Andrew M. Hall, Hayley Gooding and Laura Gallagher
Biomedicines 2025, 13(8), 1908; https://doi.org/10.3390/biomedicines13081908 - 5 Aug 2025
Abstract
Background: Immune checkpoint inhibitor therapy in patients with lung cancer and metastatic melanoma is associated with exacerbation of autoimmune-related diseases. The efficacy of treatment targeting the programmed cell death receptor-1 (PD-1) checkpoint relies upon a feedback loop between interferon gamma (IFN-γ) and the [...] Read more.
Background: Immune checkpoint inhibitor therapy in patients with lung cancer and metastatic melanoma is associated with exacerbation of autoimmune-related diseases. The efficacy of treatment targeting the programmed cell death receptor-1 (PD-1) checkpoint relies upon a feedback loop between interferon gamma (IFN-γ) and the interleukin-12 isoform, IL-12p40. Paradoxically, both cytokines and the anti-PD-1 antibody worsen psoriasis. We previously reported an immunomodulating peptide, designated IK14004, that inhibits progression of Lewis lung cancer in mice yet uncouples IFN-γ from IL-12p40 production in human immune cells. Methods: Immune cells obtained from healthy donors were exposed to IK14004 in vitro to further characterise the signalling pathways affected by this peptide. Using C57BL/6 immunocompetent mice, the effect of IK14004 was tested in models of lung melanoma and psoriatic skin. Results: Differential effects of IK14004 on the expression of IFN-α/β, the interleukin-15 (IL-15) receptor and signal transducers and activators of transcription were consistent with immune responses relevant to both cancer surveillance and immune tolerance. Moreover, both melanoma and psoriasis were inhibited by the peptide. Conclusions: Taken together, these findings suggest mechanisms underlying immune homeostasis that could be exploited in the setting of cancer and autoimmune pathologies. Peptide administered together with checkpoint blockers in relevant models of autoimmunity and cancer may offer an opportunity to gain further insight into how immune tolerance can be retained in patients receiving cancer immunotherapy. Full article
(This article belongs to the Special Issue Peptides and Amino Acids in Drug Development: Here and Now)
Show Figures

Figure 1

Back to TopTop