Correlation of SERPINA-1 Gene Over-Expression with Inhibition of Cell Proliferation and Modulation of the Expression of IL-6, Furin, and NSD2 Genes
Abstract
1. Introduction
2. Materials and Methods
2.1. Maintenance of the JP7 Cell Line
2.2. Establishment, Identification, and Selection of JP7pSer+ and JP7pSer- Cell Lines
2.3. Evaluation of the Effect of Serpina-1 Gene Transfection on Cell Lines in Culture
2.3.1. Cell Proliferation
2.3.2. Gene Expression of SERPINA-1, Furin, IL-6 and NSD2
2.3.3. Membrane Expression of the IGF-1 Receptor
2.4. Statistical Analysis
3. Results
3.1. Establishment, Identification, and Selection of JP7pSer+ and JP7pSer- Cell Lines
3.1.1. Microscopy
3.1.2. qRT-PCR
3.2. Evaluation of the Effect of SERPINA-1 Gene Transfection on Cultured Cell Lines
3.2.1. Cell Proliferation
3.2.2. Kinetics of Furin, IL-6, and NSD2 Gene Expression
3.2.3. Membrane Expression of the IGF-1 Receptor (IGF-1R, CD221)
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
IGF-1 | Insulin-like growth factor-1 |
PI3K | Phosphatidylinositol 3-kinase |
AKT | Protein kinase B |
mTOR | Mammalian target of rapamycin |
MAPK | Mitogen-activated protein kinase |
ERK | Extracellular signal-regulated kinases |
JAK | Janus kinases |
STAT | Signal transducer and activator of transcription proteins |
IGF-1R | Insulin-like growth factor-1 receptor |
IL-6 | Interleukin 6 |
TNF-α | Tumor necrosis factor |
NSD2 | Probable histone-lysine N-methyltransferase |
EBV | Epstein-Barr virus |
STAT3 | Signal transducer and activator of transcription 3 |
Lys | Lysine |
Arg | Arginine |
TGF-β1 | Transforming growth factor beta 1 |
PC | Proprotein convertase |
A1AT | Alpha-1 antitrypsin |
Alpha- 1PDX | Alpha-1 antitrypsin Portland variant |
PACE4 | Proprotein convertase subtilisin/kexin type 6 |
PC7 | Proprotein convertase subtilisin/kexin type 7 |
CMV | Cytomegalovirus |
GFP | Green fluorescent protein |
mRNA | Messenger ribonucleic acid |
qRT-PCR | Quantitative Reverse Transcription—Poly Chain Réaction |
CI | confidence interval |
References
- Casotti, M.C.; Meira, D.D.; Zetum, A.S.S.; Campanharo, C.V.; da Silva, D.R.C.; Giacinti, G.M.; da Silva, I.M.; Moura, J.A.D.; Barbosa, K.R.M.; Altoé, L.S.C.; et al. Integrating frontiers: A holistic, quantum and evolutionary approach to conquering cancer through systems biology and multidisciplinary synergy. Front. Oncol. 2024, 14, 1419599. [Google Scholar] [CrossRef]
- Caloian, A.D.; Cristian, M.; Calin, E.; Pricop, A.-R.; Mociu, S.-I.; Seicaru, L.; Deacu, S.; Ciufu, N.; Suceveanu, A.-I.; Suceveanu, A.-P.; et al. Epigenetic Symphony in Diffuse Large B-Cell Lymphoma: Orchestrating the Tumor Microenvironment. Biomedicines 2025, 13, 853. [Google Scholar] [CrossRef]
- Dakal, T.C.; Dhabhai, B.; Pant, A.; Moar, K.; Chaudhary, K.; Yadav, V.; Ranga, V.; Sharma, N.K.; Kumar, A.; Maurya, P.K.; et al. Oncogenes and tumor suppressor genes: Functions and roles in cancers. MedComm 2024, 5, e582. [Google Scholar] [CrossRef]
- Wang, S.; Guo, S.; Guo, J.; Du, Q.; Wu, C.; Wu, Y.; Zhang, Y. Cell death pathways: Molecular mechanisms and therapeutic targets for cancer. MedComm 2024, 5, e693. [Google Scholar] [CrossRef]
- Yuan, S.; Zhang, P.; Zhang, F.; Yan, S.; Dong, R.; Wu, C.; Deng, J. Profiling signaling mediators for cell-cell interactions and communications with microfluidics-based single-cell analysis tools. iScience 2024, 28, 111663. [Google Scholar] [CrossRef] [PubMed]
- Peng, Y.; Tan, J. The Relationship between IGF Pathway and Acquired Resistance to Tyrosine Kinase Inhibitors in Cancer Therapy. Front. Biosci. 2023, 28, 163. [Google Scholar] [CrossRef] [PubMed]
- Luo, Q.; Du, R.; Liu, W.; Huang, G.; Dong, Z.; Li, X. PI3K/Akt/mTOR Signaling Pathway: Role in Esophageal Squamous Cell Carcinoma, Regulatory Mechanisms and Opportunities for Targeted Therapy. Front. Oncol. 2022, 12, 852383. [Google Scholar] [CrossRef] [PubMed]
- Fu, D.; Hu, Z.; Xu, X.; Dai, X.; Liu, Z. Key signal transduction pathways and crosstalk in cancer: Biological and therapeutic opportunities. Transl. Oncol. 2022, 26, 101510. [Google Scholar] [CrossRef]
- Huang, B.; Lang, X.; Li, X. The role of IL-6/JAK2/STAT3 signaling pathway in cancers. Front. Oncol. 2022, 12, 1023177. [Google Scholar] [CrossRef]
- Derakhshani, A.; Rostami, Z.; Taefehshokr, S.; Safarpour, H.; Astamal, R.V.; Taefehshokr, N.; Alizadeh, N.; Argentiero, A.; Silvestris, N.; Baradaran, B. An Overview of the Oncogenic Signaling Pathways in Different Types of Cancers. Preprints 2020. [Google Scholar] [CrossRef]
- Aprile, M.; Cataldi, S.; Perfetto, C.; Federico, A.; Ciccodicola, A.; Costa, V. Targeting metabolism by B-raf inhibitors and diclofenac restrains the viability of BRAF-mutated thyroid carcinomas with Hif-1α-mediated glycolytic phenotype. Br. J. Cancer 2023, 129, 249–265. [Google Scholar] [CrossRef] [PubMed]
- Rascio, F.; Spadaccino, F.; Rocchetti, M.T.; Castellano, G.; Stallone, G.; Netti, G.S.; Ranieri, E. The Pathogenic Role of PI3K/AKT Pathway in Cancer Onset and Drug Resistance: An Updated Review. Cancers 2021, 13, 3949. [Google Scholar] [CrossRef] [PubMed]
- Wang, L.; Yi, T.; Kortylewski, M.; Pardoll, D.M.; Zeng, D.; Yu, H. IL-17 can promote tumor growth through an IL-6–Stat3 signaling pathway. J. Exp. Med. 2009, 206, 1457–1464. [Google Scholar] [CrossRef]
- Krajka-Kuźniak, V.; Belka, M.; Papierska, K. Targeting STAT3 and NF-κB Signaling Pathways in Cancer Prevention and Treatment: The Role of Chalcones. Cancers 2024, 16, 1092. [Google Scholar] [CrossRef]
- Liu, J.; Geng, X.; Hou, J.; Wu, G. New insights into M1/M2 macrophages: Key modulators in cancer progression. Cancer Cell Int. 2021, 21, 389. [Google Scholar] [CrossRef]
- Tanaka, T.; Narazaki, M.; Kishimoto, T. Interleukin (IL-6) Immunotherapy. Cold Spring Harb. Perspect. Biol. 2017, 10, a028456. [Google Scholar] [CrossRef]
- Harmer, D.; Falank, C.; Reagan, M.R. Interleukin-6 Interweaves the Bone Marrow Microenvironment, Bone Loss, and Multiple Myeloma. Front. Endocrinol. 2019, 9, 788. [Google Scholar] [CrossRef]
- Song, D.; Lan, J.; Chen, Y.; Liu, A.; Wu, Q.; Zhao, C.; Feng, Y.; Wang, J.; Luo, X.; Cao, Z.; et al. NSD2 promotes tumor angiogenesis through methylating and activating STAT3 protein. Oncogene 2021, 40, 2952–2967. [Google Scholar] [CrossRef]
- Li, W.; Tian, W.; Yuan, G.; Deng, P.; Sengupta, D.; Cheng, Z.; Cao, Y.; Ren, J.; Qin, Y.; Zhou, Y.; et al. Molecular basis of nucleosomal H3K36 methylation by NSD methyltransferases. Nature 2020, 590, 498–503. [Google Scholar] [CrossRef]
- Liu, Q.; Wang, M.W. Histone lysine methyltransferases as anti-cancer targets for drug discovery. Acta Pharmacol. Sin. 2016, 37, 1273–1280. [Google Scholar] [CrossRef]
- Gao, B.; Liu, X.; Li, Z.; Zhao, L.; Pan, Y. Overexpression of EZH2/NSD2 Histone Methyltransferase Axis Predicts Poor Prognosis and Accelerates Tumor Progression in Triple-Negative Breast Cancer. Front. Oncol. 2021, 10, 600514. [Google Scholar] [CrossRef]
- Mehranzadeh, E.; Crende, O.; Badiola, I.; Garcia-Gallastegi, P. What Are the Roles of Proprotein Convertases in the Immune Escape of Tumors? Biomedicines 2022, 10, 3292. [Google Scholar] [CrossRef] [PubMed]
- Poyil, P.K.; Siraj, A.K.; Padmaja, D.; Parvathareddy, S.K.; Diaz, R.; Thangavel, S.; Begum, R.; Haqawi, W.; Al-Mohanna, F.H.; Al-Sobhi, S.S.; et al. Overexpression of the pro-protein convertase furin predicts prognosis and promotes papillary thyroid carcinoma progression and metastasis through RAF/MEK signaling. Mol. Oncol. 2023, 17, 1324. [Google Scholar] [CrossRef] [PubMed]
- Cevenini, A.; Orrù, S.; Mancini, A.; Alfieri, A.; Buono, P.; Imperlini, E. Molecular Signatures of the Insulin-like Growth Factor 1-Mediated Epithelial-Mesenchymal Transition in Breast, Lung and Gastric Cancers. Int. J. Mol. Sci. 2018, 19, 2411. [Google Scholar] [CrossRef] [PubMed]
- Ianza, A.; Sirico, M.; Bernocchi, O.; Generali, D. Role of the IGF-1 Axis in Overcoming Resistance in Breast Cancer. Front. Cell Dev. Biol. 2021, 9, 641449. [Google Scholar] [CrossRef]
- Zhou, B.; Gao, S. Pan-Cancer Analysis of FURIN as a Potential Prognostic and Immunological Biomarker. Front. Mol. Biosci. 2021, 8, 648402. [Google Scholar] [CrossRef]
- Fu, J.; Bassi, D.E.; Zhang, J.; Li, T.; Nicolas, É.; Klein-Szanto, A.J. Transgenic Overexpression of the Proprotein Convertase Furin Enhances Skin Tumor Growth. Neoplasia 2012, 14, 271. [Google Scholar] [CrossRef]
- Bassi, D.; Lopez De Cicco, R.; Zucker, S.; Thomas, G.; Klein-Szanto, A.J. Furin inhibition results in absent or decreased invasiveness and tumorigenicity of human cancer cells. Proc. Natl. Acad. Sci. USA 2001, 98, 10326. [Google Scholar] [CrossRef]
- Seong, G.J.; Hong, S.; Jung, S.-A.; Lee, J.-J.; Lim, E.; Kim, S.-J.; Lee, J.H. TGF-beta-induced interleukin-6 participates in transdifferentiation of human Tenon’s fibroblasts to myofibroblasts. Mol. Vis. 2009, 15, 2123. [Google Scholar]
- Declercq, J.; Brouwers, B.; Pruniau, V.P.E.G.; Stijnen, P.; Tuand, K.; Meulemans, S.; Prat, A.; Seidah, N.G.; Khatib, A.-M.; Creemers, J.W.M. Liver-Specific Inactivation of the Proprotein Convertase FURIN Leads to Increased Hepatocellular Carcinoma Growth. BioMed Res. Int. 2015, 2015, 148651. [Google Scholar] [CrossRef]
- He, Z.; Khatib, A.; Creemers, J.W.M. Loss of Proprotein Convertase Furin in Mammary Gland Impairs proIGF1R and proIR Processing and Suppresses Tumorigenesis in Triple Negative Breast Cancer. Cancers 2020, 12, 2686. [Google Scholar] [CrossRef] [PubMed]
- Werner, H.; Meisel-Sharon, S.; Bruchim, I. Oncogenic fusion proteins adopt the insulin-like growth factor signaling pathway. Mol. Cancer 2018, 17, 28. [Google Scholar] [CrossRef] [PubMed]
- Ercetin, E.; Richtmann, S.; Delgado, B.M.; Gomez-Mariano, G.; Wrenger, S.; Korenbaum, E.; Liu, B.; DeLuca, D.; Kühnel, M.P.; Jonigk, D.; et al. Clinical Significance of SERPINA1 Gene and Its Encoded Alpha1-antitrypsin Protein in NSCLC. Cancers 2019, 11, 1306. [Google Scholar] [CrossRef] [PubMed]
- Izaguirre, G.; Arciniega, M.; Quezada, A. Specific and Selective Inhibitors of Proprotein Convertases Engineered by Transferring Serpin B8 Reactive-Site and Exosite Determinants of Reactivity to the Serpin α1PDX. Biochemistry 2019, 58, 1679. [Google Scholar] [CrossRef]
- Tissent, A.; Habti, N.; Sadiq, F.; El Amrani, N.; Benchemsi, N. Production d’un réactif monoclonal anti-B humain pour la détection des groupes sanguins ABO. Immuno-Anal. Biol. Spécialisée 2007, 22, 68–71. [Google Scholar] [CrossRef]
- Livak, K.J.; Schmittgen, T.D. Analysis of Relative Gene Expression Data Using Real-Time Quantitative PCR and the 2−ΔΔCT Method. Methods 2001, 25, 402–408. [Google Scholar] [CrossRef]
- Kubacz, M.; Kusowska, A.; Winiarska, M.; Bobrowicz, M. In Vitro Diffuse Large B-Cell Lymphoma Cell Line Models as Tools to Investigate Novel Immunotherapeutic Strategies. Cancers 2022, 15, 235. [Google Scholar] [CrossRef]
- Balduyck, M.; Odou, M.-F.; Zerimech, F.; Porchet, N.; Lafitte, J.-J.; Maitre, B. Diagnosis of alpha-1 antitrypsin deficiency: Modalities, indications and diagnosis strategy. Rev. Des Mal. Respir. 2014, 31, 729–745. [Google Scholar] [CrossRef]
- Seixas, S.; Marques, P.I. Known Mutations at the Cause of Alpha-1 Antitrypsin Deficiency an Updated Overview of SERPINA1 Variation Spectrum. Appl. Clin. Genet. 2021, 14, 173–194. [Google Scholar] [CrossRef]
- Maslakova, A.A.; Telkov, M.V.; Orlovsky, I.V.; Sokolova, O.S. Comparative analysis of SERPINA1 gene expression in tumor cell lines. Mosc. Univ. Biol. Sci. Bull. 2015, 70, 127–131. [Google Scholar] [CrossRef]
- Stanke, F.; Janciauskiene, S.; Tamm, S.; Wrenger, S.; Raddatz, E.L.; Jonigk, D.; Braubach, P. Effect of Alpha-1 Antitrypsin on CFTR Levels in Primary Human Airway Epithelial Cells Grown at the Air-Liquid-Interface. Molecules 2021, 26, 2639. [Google Scholar] [CrossRef] [PubMed]
- Ostermann, L.; Maus, R.; Stolper, J.; Schütte, L.; Katsarou, K.; Tumpara, S.; Pich, A.; Mueller, C.; Janciauskiene, S.; Welte, T.; et al. Alpha-1 antitrypsin deficiency impairs lung antibacterial immunity in mice. J. Clin. Investig. 2021, 6, e140816. [Google Scholar] [CrossRef] [PubMed]
- Cordova, Z.M.; Grönholm, A.; Kytölä, V.; Taverniti, V.; Hämäläinen, S.; Aittomäki, S.; Niininen, W.; Junttila, I.; Ylipää, A.; Nykter, M.; et al. Myeloid cell expressed proprotein convertase FURIN attenuates inflammation. Oncotarget 2016, 7, 54392–54404. [Google Scholar] [CrossRef] [PubMed]
- Khatib, A.-M.; Siegfried, G.; Prat, A.; Luis, J.; Chrétien, M.; Metrakos, P.; Seidah, N.G. Inhibition of Proprotein Convertases Is Associated with Loss of Growth and Tumorigenicity of HT-29 Human Colon Carcinoma Cells. J. Biol. Chem. 2001, 276, 30686–30693. [Google Scholar] [CrossRef]
- Ma, Y.-C.; Fan, W.-J.; Rao, S.-M.; Gao, L.; Bei, Z.-Y.; Xu, S.-T. Effect of Furin inhibitor on lung adenocarcinoma cell growth and metastasis. Cancer Cell Int. 2014, 14, 43. [Google Scholar] [CrossRef]
- Lockett, A.D.; Kimani, S.; Ddungu, G.; Wrenger, S.; Tuder, R.M.; Janciauskiene, S.M.; Petrache, I. α1-Antitrypsin Modulates Lung Endothelial Cell Inflammatory Responses to TNF-α. Am. J. Respir. Cell Mol. Biol. 2013, 49, 143–150. [Google Scholar] [CrossRef]
- Jain, S.; Gautam, V.; Naseem, S. Acute-phase proteins: As diagnostic tool. J. Pharm. Bioallied Sci. 2011, 3, 118–127. [Google Scholar] [CrossRef]
- Xie, Z.; Chooi, J.Y.; Toh, S.H.M.; Yang, D.; Basri, N.B.; Ho, Y.S.; Chng, W.J. MMSET I acts as an oncoprotein and regulates GLO1 expression in t(4;14) multiple myeloma cells. Leukemia 2018, 33, 739–748. [Google Scholar] [CrossRef]
- Vougiouklakis, T.; Hamamoto, R.; Nakamura, Y.; Saloura, V. The NSD Family of Protein Methyltransferases in Human Cancer. Epigenomics 2015, 7, 863–874. [Google Scholar] [CrossRef]
Genes | Forward | Reverse |
---|---|---|
SERPINA-1 | 5′-GGCTGACACTCACGATGAAA-3′ | 5′-GTGTCCCCGAAGTTGACAGT-3′ |
Furin | 5′-GCCCAGAATTGGACCACAGT-3 | 5′-TCCCGATGTCTTTGGGCTC-3′ |
IL-6 | 5′-AGACAGCCACTCACCTCTTCAG-3′ | 5′-TTCTGCCAGTGCCTCTTTGCTG-3′ |
NSD2 | 5′-AATATGACTCCTTGCTGGAGCAGG-3′ | 5′-ATTTCAACAGGTGGTCTTTGTCTC-3′ |
Beta-actin | 5′-TGGAATCCTGTGGCATCCATGAAAC-3 | 5′-TAAAACGCAGCTCAGTAACAGTCC-3′ |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tassou, N.; Anibat, H.; Tissent, A.; Habti, N. Correlation of SERPINA-1 Gene Over-Expression with Inhibition of Cell Proliferation and Modulation of the Expression of IL-6, Furin, and NSD2 Genes. Biologics 2025, 5, 22. https://doi.org/10.3390/biologics5030022
Tassou N, Anibat H, Tissent A, Habti N. Correlation of SERPINA-1 Gene Over-Expression with Inhibition of Cell Proliferation and Modulation of the Expression of IL-6, Furin, and NSD2 Genes. Biologics. 2025; 5(3):22. https://doi.org/10.3390/biologics5030022
Chicago/Turabian StyleTassou, Nassim, Hajar Anibat, Ahmed Tissent, and Norddine Habti. 2025. "Correlation of SERPINA-1 Gene Over-Expression with Inhibition of Cell Proliferation and Modulation of the Expression of IL-6, Furin, and NSD2 Genes" Biologics 5, no. 3: 22. https://doi.org/10.3390/biologics5030022
APA StyleTassou, N., Anibat, H., Tissent, A., & Habti, N. (2025). Correlation of SERPINA-1 Gene Over-Expression with Inhibition of Cell Proliferation and Modulation of the Expression of IL-6, Furin, and NSD2 Genes. Biologics, 5(3), 22. https://doi.org/10.3390/biologics5030022