Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (3,000)

Search Parameters:
Keywords = signal-to-signal translation

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
33 pages, 4098 KiB  
Systematic Review
Pharmacological Inhibition of the PI3K/AKT/mTOR Pathway in Rheumatoid Arthritis Synoviocytes: A Systematic Review and Meta-Analysis (Preclinical)
by Tatiana Bobkova, Artem Bobkov and Yang Li
Pharmaceuticals 2025, 18(8), 1152; https://doi.org/10.3390/ph18081152 (registering DOI) - 2 Aug 2025
Abstract
Background/Objectives: Constitutive activation of the PI3K/AKT/mTOR signaling cascade underlies the aggressive phenotype of fibroblast-like synoviocytes (FLSs) in rheumatoid arthritis (RA); however, a quantitative synthesis of in vitro data on pathway inhibition remains lacking. This systematic review and meta-analysis aimed to (i) aggregate [...] Read more.
Background/Objectives: Constitutive activation of the PI3K/AKT/mTOR signaling cascade underlies the aggressive phenotype of fibroblast-like synoviocytes (FLSs) in rheumatoid arthritis (RA); however, a quantitative synthesis of in vitro data on pathway inhibition remains lacking. This systematic review and meta-analysis aimed to (i) aggregate standardized effects of pathway inhibitors on proliferation, apoptosis, migration/invasion, IL-6/IL-8 secretion, p-AKT, and LC3; (ii) assess heterogeneity and identify key moderators of variability, including stimulus type, cell source, and inhibitor class. Methods: PubMed, Europe PMC, and the Cochrane Library were searched up to 18 May 2025 (PROSPERO CRD420251058185). Twenty of 2684 screened records met eligibility. Two reviewers independently extracted data and assessed study quality with SciRAP. Standardized mean differences (Hedges g) were pooled using a Sidik–Jonkman random-effects model with Hartung–Knapp confidence intervals. Heterogeneity (τ2, I2), 95% prediction intervals, and meta-regression by cell type were calculated; robustness was tested with REML-HK, leave-one-out, and Baujat diagnostics. Results: PI3K/AKT/mTOR inhibition markedly reduced proliferation (to –5.1 SD), IL-6 (–11.1 SD), and IL-8 (–6.5 SD) while increasing apoptosis (+2.7 SD). Fourteen of seventeen outcome clusters showed large effects (|g| ≥ 0.8), with low–moderate heterogeneity (I2 ≤ 35% in 11 clusters). Prediction intervals crossed zero only in small k-groups; sensitivity analyses shifted pooled estimates by ≤0.05 SD. p-AKT and p-mTOR consistently reflected functional changes and emerged as reliable pharmacodynamic markers. Conclusions: Targeted blockade of PI3K/AKT/mTOR robustly suppresses the proliferative and inflammatory phenotype of RA-FLSs, reaffirming this axis as a therapeutic target. The stability of estimates across multiple analytic scenarios enhances confidence in these findings and highlights p-AKT and p-mTOR as translational response markers. The present synthesis provides a quantitative basis for personalized dual-PI3K/mTOR strategies and supports the adoption of standardized long-term preclinical protocols. Full article
Show Figures

Graphical abstract

15 pages, 611 KiB  
Review
Role of Dyadic Proteins in Proper Heart Function and Disease
by Carter Liou and Michael T. Chin
Int. J. Mol. Sci. 2025, 26(15), 7478; https://doi.org/10.3390/ijms26157478 (registering DOI) - 2 Aug 2025
Abstract
Cardiovascular disease encompasses a wide group of conditions that affect the heart and blood vessels. Of these diseases, cardiomyopathies and arrhythmias specifically have been well-studied in their relationship to cardiac dyads, nanoscopic structures that connect electrical signals to muscle contraction. The proper development [...] Read more.
Cardiovascular disease encompasses a wide group of conditions that affect the heart and blood vessels. Of these diseases, cardiomyopathies and arrhythmias specifically have been well-studied in their relationship to cardiac dyads, nanoscopic structures that connect electrical signals to muscle contraction. The proper development and positioning of dyads is essential in excitation–contraction (EC) coupling and, thus, beating of the heart. Three proteins, namely CMYA5, JPH2, and BIN1, are responsible for maintaining the dyadic cleft between the T-tubule and junctional sarcoplasmic reticulum (jSR). Various other dyadic proteins play integral roles in the primary function of the dyad—translating a propagating action potential (AP) into a myocardial contraction. Ca2+, a secondary messenger in this process, acts as an allosteric activator of the sarcomere, and its cytoplasmic concentration is regulated by the dyad. Loss-of-function mutations have been shown to result in cardiomyopathies and arrhythmias. Adeno-associated virus (AAV) gene therapy with dyad components can rescue dyadic dysfunction, which results in cardiomyopathies and arrhythmias. Overall, the dyad and its components serve as essential mediators of calcium homeostasis and excitation–contraction coupling in the mammalian heart and, when dysfunctional, result in significant cardiac dysfunction, arrhythmias, morbidity, and mortality. Full article
(This article belongs to the Special Issue Cardiovascular Diseases: Histopathological and Molecular Diagnostics)
Show Figures

Figure 1

26 pages, 1030 KiB  
Review
Natural Flavonoids for the Prevention of Sarcopenia: Therapeutic Potential and Mechanisms
by Ye Eun Yoon, Seong Hun Ju, Yebean Kim and Sung-Joon Lee
Int. J. Mol. Sci. 2025, 26(15), 7458; https://doi.org/10.3390/ijms26157458 (registering DOI) - 1 Aug 2025
Abstract
Sarcopenia, characterized by progressive skeletal muscle loss and functional decline, represents a major public heath challenge in aging populations. Despite increasing awareness, current management strategies—primarily resistance exercise and nutritional support—remain limited by accessibility, adherence, and inconsistent outcomes. This underscores the urgent need for [...] Read more.
Sarcopenia, characterized by progressive skeletal muscle loss and functional decline, represents a major public heath challenge in aging populations. Despite increasing awareness, current management strategies—primarily resistance exercise and nutritional support—remain limited by accessibility, adherence, and inconsistent outcomes. This underscores the urgent need for novel, effective, and scalable therapeutics. Flavonoids, a diverse class of plant-derived polyphenolic compounds, have attracted attention for their muti-targeted biological activities, including anti-inflammatory, antioxidant, metabolic, and myogenic effects. This review aims to evaluate the anti-sarcopenic potential of selected flavonoids—quercetin, rutin, kaempferol glycosides, baicalin, genkwanin, isoschaftoside, naringin, eriocitrin, and puerarin—based on recent preclinical findings and mechanistic insights. These compounds modulate key pathways involved in muscle homeostasis, such as NF-κB and Nrf2 signaling, AMPK and PI3K/Akt activation, mitochondrial biogenesis, proteosomal degradation, and satellite cell function. Importantly, since muscle wasting also features prominently in cancer cachexia—a distinct but overlapping syndrome—understanding flavonoid action may offer broader therapeutic relevance. By targeting shared molecular axes, flavonoids may provide a promising, biologically grounded approach to mitigating sarcopenia and the related muscle-wasting conditions. Further translational studies and clinical trials are warranted to assess their efficacy and safety in human populations. Full article
(This article belongs to the Special Issue Role of Natural Products in Human Health and Disease)
18 pages, 929 KiB  
Review
From Hypoxia to Bone: Reprogramming the Prostate Cancer Metastatic Cascade
by Melissa Santos, Sarah Koushyar, Dafydd Alwyn Dart and Pinar Uysal-Onganer
Int. J. Mol. Sci. 2025, 26(15), 7452; https://doi.org/10.3390/ijms26157452 (registering DOI) - 1 Aug 2025
Abstract
Bone is the most frequent site of distant metastasis in advanced prostate cancer (PCa), contributing substantially to patient morbidity and mortality. Hypoxia, a defining feature of the solid tumour microenvironment, plays a pivotal role in driving bone-tropic progression by promoting epithelial-to-mesenchymal transition (EMT), [...] Read more.
Bone is the most frequent site of distant metastasis in advanced prostate cancer (PCa), contributing substantially to patient morbidity and mortality. Hypoxia, a defining feature of the solid tumour microenvironment, plays a pivotal role in driving bone-tropic progression by promoting epithelial-to-mesenchymal transition (EMT), cancer stemness, extracellular matrix (ECM) remodelling, and activation of key signalling pathways such as Wingless/Integrated (Wnt) Wnt/β-catenin and PI3K/Akt. Hypoxia also enhances the secretion of extracellular vesicles (EVs), enriched with pro-metastatic cargos, and upregulates bone-homing molecules including CXCR4, integrins, and PIM kinases, fostering pre-metastatic niche formation and skeletal colonisation. In this review, we analysed current evidence on how hypoxia orchestrates PCa dissemination to bone, focusing on the molecular crosstalk between HIF signalling, Wnt activation, EV-mediated communication, and cellular plasticity. We further explore therapeutic strategies targeting hypoxia-related pathways, such as HIF inhibitors, hypoxia-activated prodrugs, and Wnt antagonists, with an emphasis on overcoming therapy resistance in castration-resistant PCa (CRPC). By examining the mechanistic underpinnings of hypoxia-driven bone metastasis, we highlight promising translational avenues for improving patient outcomes in advanced PCa. Full article
(This article belongs to the Special Issue Hypoxia: Molecular Mechanism and Health Effects)
Show Figures

Graphical abstract

21 pages, 3146 KiB  
Article
TnP as a Multifaceted Therapeutic Peptide with System-Wide Regulatory Capacity
by Geonildo Rodrigo Disner, Emma Wincent, Carla Lima and Monica Lopes-Ferreira
Pharmaceuticals 2025, 18(8), 1146; https://doi.org/10.3390/ph18081146 (registering DOI) - 1 Aug 2025
Abstract
Background: The candidate therapeutic peptide TnP demonstrates broad, system-level regulatory capacity, revealed through integrated network analysis from transcriptomic data in zebrafish. Our study primarily identifies TnP as a multifaceted modulator of drug metabolism, wound healing, proteolytic activity, and pigmentation pathways. Results: Transcriptomic profiling [...] Read more.
Background: The candidate therapeutic peptide TnP demonstrates broad, system-level regulatory capacity, revealed through integrated network analysis from transcriptomic data in zebrafish. Our study primarily identifies TnP as a multifaceted modulator of drug metabolism, wound healing, proteolytic activity, and pigmentation pathways. Results: Transcriptomic profiling of TnP-treated larvae following tail fin amputation revealed 558 differentially expressed genes (DEGs), categorized into four functional networks: (1) drug-metabolizing enzymes (cyp3a65, cyp1a) and transporters (SLC/ABC families), where TnP alters xenobiotic processing through Phase I/II modulation; (2) cellular trafficking and immune regulation, with upregulated myosin genes (myhb/mylz3) enhancing wound repair and tlr5-cdc42 signaling fine-tuning inflammation; (3) proteolytic cascades (c6ast4, prss1) coupled to autophagy (ulk1a, atg2a) and metabolic rewiring (g6pca.1-tg axis); and (4) melanogenesis-circadian networks (pmela/dct-fbxl3l) linked to ubiquitin-mediated protein turnover. Key findings highlight TnP’s unique coordination of rapid (protease activation) and sustained (metabolic adaptation) responses, enabled by short network path lengths (1.6–2.1 edges). Hub genes, such as nr1i2 (pxr), ppara, and bcl6aa/b, mediate crosstalk between these systems, while potential risks—including muscle hypercontractility (myhb overexpression) or cardiovascular effects (ace2-ppp3ccb)—underscore the need for targeted delivery. The zebrafish model validated TnP-conserved mechanisms with human relevance, particularly in drug metabolism and tissue repair. TnP’s ability to synchronize extracellular matrix remodeling, immune resolution, and metabolic homeostasis supports its development for the treatment of fibrosis, metabolic disorders, and inflammatory conditions. Conclusions: Future work should focus on optimizing tissue-specific delivery and assessing genetic variability to advance clinical translation. This system-level analysis positions TnP as a model example for next-generation multi-pathway therapeutics. Full article
Show Figures

Graphical abstract

17 pages, 3272 KiB  
Review
Timing Is Everything: The Fungal Circadian Clock as a Master Regulator of Stress Response and Pathogenesis
by Victor Coca-Ruiz and Daniel Boy-Ruiz
Stresses 2025, 5(3), 47; https://doi.org/10.3390/stresses5030047 (registering DOI) - 1 Aug 2025
Abstract
Fungi, from saprophytes to pathogens, face predictable daily fluctuations in light, temperature, humidity, and nutrient availability. To cope, they have evolved an internal circadian clock that confers a major adaptive advantage. This review critically synthesizes current knowledge on the molecular architecture and physiological [...] Read more.
Fungi, from saprophytes to pathogens, face predictable daily fluctuations in light, temperature, humidity, and nutrient availability. To cope, they have evolved an internal circadian clock that confers a major adaptive advantage. This review critically synthesizes current knowledge on the molecular architecture and physiological relevance of fungal circadian systems, moving beyond the canonical Neurospora crassa model to explore the broader phylogenetic diversity of timekeeping mechanisms. We examine the core transcription-translation feedback loop (TTFL) centered on the FREQUENCY/WHITE COLLAR (FRQ/WCC) system and contrast it with divergent and non-canonical oscillators, including the metabolic rhythms of yeasts and the universally conserved peroxiredoxin (PRX) oxidation cycles. A central theme is the clock’s role in gating cellular defenses against oxidative, osmotic, and nutritional stress, enabling fungi to anticipate and withstand environmental insults through proactive regulation. We provide a detailed analysis of chrono-pathogenesis, where the circadian control of virulence factors aligns fungal attacks with windows of host vulnerability, with a focus on experimental evidence from pathogens like Botrytis cinerea, Fusarium oxysporum, and Magnaporthe oryzae. The review explores the downstream pathways—including transcriptional cascades, post-translational modifications, and epigenetic regulation—that translate temporal signals into physiological outputs such as developmental rhythms in conidiation and hyphal branching. Finally, we highlight critical knowledge gaps, particularly in understudied phyla like Basidiomycota, and discuss future research directions. This includes the exploration of novel clock architectures and the emerging, though speculative, hypothesis of “chrono-therapeutics”—interventions designed to disrupt fungal clocks—as a forward-looking concept for managing fungal infections. Full article
(This article belongs to the Collection Feature Papers in Plant and Photoautotrophic Stresses)
Show Figures

Figure 1

16 pages, 2820 KiB  
Article
AiiA Lactonase Suppresses ETEC Pathogenicity Through 3OC12-HSL Quenching in a Murine Model
by Yang Yang, Ji Shao, Zixin Han, Junpeng Li, Qiaoqiao Fang and Guoqiang Zhu
Microbiol. Res. 2025, 16(8), 166; https://doi.org/10.3390/microbiolres16080166 - 31 Jul 2025
Abstract
This study elucidates how the quorum-sensing (QS) signal 3OC12-HSL exacerbates enterotoxigenic E. coli (ETEC) pathogenicity and intestinal barrier dysfunction. In vitro, 3OC12-HSL enhanced ETEC C83902 growth (66.7% CFU increase at 8 h) and dysregulated stress/growth genes (e.g., eight-fold rmf upregulation under static conditions). [...] Read more.
This study elucidates how the quorum-sensing (QS) signal 3OC12-HSL exacerbates enterotoxigenic E. coli (ETEC) pathogenicity and intestinal barrier dysfunction. In vitro, 3OC12-HSL enhanced ETEC C83902 growth (66.7% CFU increase at 8 h) and dysregulated stress/growth genes (e.g., eight-fold rmf upregulation under static conditions). In synthetic gut microbiota, 3OC12-HSL selectively augmented E. coli colonization (37.6% 16S rDNA increase at 12 h). Murine studies revealed 3OC12-HSL reduced jejunal villus height (381.5 μm vs. 543.2 μm in controls), elevated serum LPS, D-lactate, and DAO, and altered microbial composition (Firmicutes/Bacteroidetes imbalance). The lactonase AiiA reversed these effects by degrading 3OC12-HSL. It abrogated bacterial growth stimulation (in vitro CFU restored to baseline), normalized microbiota diversity (Shannon index recovered to control levels), suppressed pro-inflammatory cytokines (IL-6/TNF-α reduction), and restored intestinal integrity (villus length: 472.5 μm, 20.5% increase vs. ETEC-infected mice). Our findings establish AiiA as a potent quorum-quenching agent that counteracts ETEC virulence via targeted signal inactivation, highlighting its translational value. Full article
Show Figures

Figure 1

14 pages, 4802 KiB  
Article
Curcumin Attenuates Zearalenone-Induced Reproductive Damage in Mice by Modulating the Gut Microbe–Testis Axis
by Bangwang Peng, Shuaiju Guo, Junlong Niu, Yongpeng Guo, Zhixiang Wang and Wei Zhang
Foods 2025, 14(15), 2703; https://doi.org/10.3390/foods14152703 (registering DOI) - 31 Jul 2025
Abstract
Zearalenone (ZEN), a mycotoxin commonly found in cereal crops and foods, induces testicular damage and disrupts gut microbial composition. Curcumin (CUR), a bioactive compound derived from turmeric, is known to enhance intestinal microbial balance and exhibit anti-inflammatory properties. This study aimed to investigate [...] Read more.
Zearalenone (ZEN), a mycotoxin commonly found in cereal crops and foods, induces testicular damage and disrupts gut microbial composition. Curcumin (CUR), a bioactive compound derived from turmeric, is known to enhance intestinal microbial balance and exhibit anti-inflammatory properties. This study aimed to investigate the mechanism by which CUR alleviates ZEN-induced reductions in sperm quality through the modulation of the gut microbiota–testis axis. Forty-eight 6-week-old Balb/c male mice were randomly assigned to four treatment groups: control (CON), CUR (200 mg/kg body weight CUR), ZEN (40 mg/kg body weight ZEN), and ZEN + CUR (200 mg/kg CUR + 40 mg/kg ZEN). The degree of sperm damage was quantified by assessing both the survival rate and the morphological integrity of the spermatozoa. CUR was found to mitigate ZEN-induced reductions in the testosterone levels, testicular structural damage, and disrupted spermatogenesis. Exposure to ZEN markedly perturbed the gut microbiota, characterized by increased relative abundances of Prevotella and Bacteroides and a concomitant reduction in Lactobacillus. These alterations were accompanied by pronounced activation of the IL-17A–TNF-α signaling axis, as demonstrated by elevated transcriptional and translational expression of pathway-associated genes and proteins. Co-administration of CUR effectively reinstated microbial homeostasis and mitigated ZEN-induced IL-17A pathway activation. In conclusion, ZEN induces testicular inflammation and reduced sperm quality by lowering testosterone levels and disrupting gut microbial balance, which drives the testicular IL-17A signaling pathway. CUR alleviates ZEN-induced testicular inflammation and sperm quality reduction by restoring beneficial gut microbes and testosterone levels. Full article
Show Figures

Figure 1

35 pages, 6006 KiB  
Review
Enhancing Mitochondrial Maturation in iPSC-DerivedCardiomyocytes: Strategies for Metabolic Optimization
by Dhienda C. Shahannaz, Tadahisa Sugiura and Brandon E. Ferrell
BioChem 2025, 5(3), 23; https://doi.org/10.3390/biochem5030023 - 31 Jul 2025
Viewed by 32
Abstract
Background: Induced pluripotent stem cell-derived cardiomyocytes (iPSC-CMs) hold transformative potential for cardiovascular regenerative medicine, yet their clinical application is hindered by suboptimal mitochondrial maturation and metabolic inefficiencies. This systematic review evaluates targeted strategies for optimizing mitochondrial function, integrating metabolic preconditioning, substrate selection, and [...] Read more.
Background: Induced pluripotent stem cell-derived cardiomyocytes (iPSC-CMs) hold transformative potential for cardiovascular regenerative medicine, yet their clinical application is hindered by suboptimal mitochondrial maturation and metabolic inefficiencies. This systematic review evaluates targeted strategies for optimizing mitochondrial function, integrating metabolic preconditioning, substrate selection, and pathway modulation to enhance energy production and cellular resilience. Additionally, we examine the role of extracellular matrix stiffness and mechanical stimulation in mitochondrial adaptation, given their influence on metabolism and maturation. Methods: A comprehensive analysis of recent advancements in iPSC-CM maturation was conducted, focusing on metabolic interventions that enhance mitochondrial structure and function. Studies employing metabolic preconditioning, lipid and amino acid supplementation, and modulation of key signaling pathways, including PGC-1α, AMPK, and mTOR, were reviewed. Computational modeling approaches predicting optimal metabolic shifts were assessed, alongside insights into reactive oxygen species (ROS) signaling, calcium handling, and the impact of electrical pacing on energy metabolism. Results: Evidence indicates that metabolic preconditioning with fatty acids and oxidative phosphorylation enhancers improves mitochondrial architecture, cristae density, and ATP production. Substrate manipulation fosters a shift toward adult-like metabolism, while pathway modulation refines mitochondrial biogenesis. Computational models enhance precision, predicting interventions that best align iPSC-CM metabolism with native cardiomyocytes. The synergy between metabolic and biomechanical cues offers new avenues for accelerating maturation, bridging the gap between in vitro models and functional cardiac tissues. Conclusions: Strategic metabolic optimization is essential for overcoming mitochondrial immaturity in iPSC-CMs. By integrating biochemical engineering, predictive modeling, and biomechanical conditioning, a robust framework emerges for advancing iPSC-CM applications in regenerative therapy and disease modeling. These findings pave the way for more physiologically relevant cell models, addressing key translational challenges in cardiovascular medicine. Full article
(This article belongs to the Special Issue Feature Papers in BioChem, 2nd Edition)
Show Figures

Figure 1

22 pages, 1268 KiB  
Review
Natural Polymer-Based Hydrogel Platforms for Organoid and Microphysiological Systems: Mechanistic Insights and Translational Perspectives
by Yeonoh Cho, Jungmok You and Jong Hun Lee
Polymers 2025, 17(15), 2109; https://doi.org/10.3390/polym17152109 - 31 Jul 2025
Viewed by 49
Abstract
Organoids and microphysiological systems (MPSs) have emerged as physiologically relevant platforms that recapitulate key structural and functional features of human organs, tissues, and microenvironments. As one of the essential components that define the success of these systems, hydrogels play the central role of [...] Read more.
Organoids and microphysiological systems (MPSs) have emerged as physiologically relevant platforms that recapitulate key structural and functional features of human organs, tissues, and microenvironments. As one of the essential components that define the success of these systems, hydrogels play the central role of providing a three-dimensional, biomimetic scaffold that supports cell viability, spatial organization, and dynamic signaling. Natural polymer-based hydrogels, derived from materials such as collagen, gelatin, hyaluronic acid, and alginate, offer favorable properties including biocompatibility, degradability, and an extracellular matrix-like architecture. This review presents recent advances in the design and application of such hydrogels, focusing on crosslinking strategies (physical, chemical, and hybrid), the viscoelastic characteristics, and stimuli-responsive behaviors. The influence of these materials on cellular processes, such as stemness maintenance, differentiation, and morphogenesis, is critically examined. Furthermore, the applications of organoid culture and dynamic MPS platforms are discussed, highlighting their roles in morphogen delivery, barrier formation, and vascularization. Current challenges and future perspectives toward achieving standardized, scalable, and translational hydrogel systems are also addressed. Full article
Show Figures

Figure 1

38 pages, 2158 KiB  
Review
Epigenetic Modulation and Bone Metastasis: Evolving Therapeutic Strategies
by Mahmoud Zhra, Jasmine Hanafy Holail and Khalid S. Mohammad
Pharmaceuticals 2025, 18(8), 1140; https://doi.org/10.3390/ph18081140 - 31 Jul 2025
Viewed by 265
Abstract
Bone metastasis remains a significant cause of morbidity and diminished quality of life in patients with advanced breast, prostate, and lung cancers. Emerging research highlights the pivotal role of reversible epigenetic alterations, including DNA methylation, histone modifications, chromatin remodeling complex dysregulation, and non-coding [...] Read more.
Bone metastasis remains a significant cause of morbidity and diminished quality of life in patients with advanced breast, prostate, and lung cancers. Emerging research highlights the pivotal role of reversible epigenetic alterations, including DNA methylation, histone modifications, chromatin remodeling complex dysregulation, and non-coding RNA networks, in orchestrating each phase of skeletal colonization. Site-specific promoter hypermethylation of tumor suppressor genes such as HIN-1 and RASSF1A, alongside global DNA hypomethylation that activates metastasis-associated genes, contributes to cancer cell plasticity and facilitates epithelial-to-mesenchymal transition (EMT). Key histone modifiers, including KLF5, EZH2, and the demethylases KDM4/6, regulate osteoclastogenic signaling pathways and the transition between metastatic dormancy and reactivation. Simultaneously, SWI/SNF chromatin remodelers such as BRG1 and BRM reconfigure enhancer–promoter interactions that promote bone tropism. Non-coding RNAs, including miRNAs, lncRNAs, and circRNAs (e.g., miR-34a, NORAD, circIKBKB), circulate via exosomes to modulate the RANKL/OPG axis, thereby conditioning the bone microenvironment and fostering the formation of a pre-metastatic niche. These mechanistic insights have accelerated the development of epigenetic therapies. DNA methyltransferase inhibitors (e.g., decitabine, guadecitabine) have shown promise in attenuating osteoclast differentiation, while histone deacetylase inhibitors display context-dependent effects on tumor progression and bone remodeling. Inhibitors targeting EZH2, BET proteins, and KDM1A are now advancing through early-phase clinical trials, often in combination with bisphosphonates or immune checkpoint inhibitors. Moreover, novel approaches such as CRISPR/dCas9-based epigenome editing and RNA-targeted therapies offer locus-specific reprogramming potential. Together, these advances position epigenetic modulation as a promising axis in precision oncology aimed at interrupting the pathological crosstalk between tumor cells and the bone microenvironment. This review synthesizes current mechanistic understanding, evaluates the therapeutic landscape, and outlines the translational challenges ahead in leveraging epigenetic science to prevent and treat bone metastases. Full article
(This article belongs to the Section Biopharmaceuticals)
Show Figures

Graphical abstract

25 pages, 2693 KiB  
Article
Adipokine and Hepatokines in Metabolic Dysfunction-Associated Steatotic Liver Disease (MASLD): Current and Developing Trends
by Salvatore Pezzino, Stefano Puleo, Tonia Luca, Mariacarla Castorina and Sergio Castorina
Biomedicines 2025, 13(8), 1854; https://doi.org/10.3390/biomedicines13081854 - 30 Jul 2025
Viewed by 231
Abstract
Background/Objectives: Metabolic dysfunction-associated steatotic liver disease (MASLD) represents a major global health challenge characterized by complex adipose–liver interactions mediated by adipokines and hepatokines. Despite rapid field evolution, a comprehensive understanding of research trends and translational advances remains fragmented. This study systematically maps the [...] Read more.
Background/Objectives: Metabolic dysfunction-associated steatotic liver disease (MASLD) represents a major global health challenge characterized by complex adipose–liver interactions mediated by adipokines and hepatokines. Despite rapid field evolution, a comprehensive understanding of research trends and translational advances remains fragmented. This study systematically maps the scientific landscape through bibliometric analysis, identifying emerging domains and future clinical translation directions. Methods: A comprehensive bibliometric analysis of 1002 publications from 2004 to 2025 was performed using thematic mapping, temporal trend evaluation, and network analysis. Analysis included geographical and institutional distributions, thematic cluster identification, and research paradigm evolution assessment, focusing specifically on adipokine–hepatokine signaling mechanisms and clinical implications. Results: The United States and China are at the forefront of research output, whereas European institutions significantly contribute to mechanistic discoveries. The thematic map analysis reveals the motor/basic themes residing at the heart of the field, such as insulin resistance, fatty liver, metabolic syndrome, steatosis, fetuin-A, and other related factors that drive innovation. Basic clusters include metabolic foundations (obesity, adipose tissue, FGF21) and adipokine-centered subjects (adiponectin, leptin, NASH). New themes focus on inflammation, oxidative stress, gut microbiota, lipid metabolism, and hepatic stellate cells. Niche areas show targeted fronts such as exercise therapies, pediatric/novel adipokines (chemerin, vaspin, omentin-1), and advanced molecular processes that focus on AMPK and endoplasmic-reticulum stress. Temporal analysis shows a shift from single liver studies to whole models that include the gut microbiota, mitochondrial dysfunction, and interactions between other metabolic systems. The network analysis identifies nine major clusters: cardiovascular–metabolic links, adipokine–inflammatory pathways, hepatokine control, and new therapeutic domains such as microbiome interventions and cellular stress responses. Conclusions: In summary, this study delineates current trends and emerging areas within the field and elucidates connections between mechanistic research and clinical translation to provide guidance for future research and development in this rapidly evolving area. Full article
(This article belongs to the Special Issue Advances in Hepatology)
Show Figures

Figure 1

31 pages, 3754 KiB  
Review
Artificial Gametogenesis and In Vitro Spermatogenesis: Emerging Strategies for the Treatment of Male Infertility
by Aris Kaltsas, Maria-Anna Kyrgiafini, Eleftheria Markou, Andreas Koumenis, Zissis Mamuris, Fotios Dimitriadis, Athanasios Zachariou, Michael Chrisofos and Nikolaos Sofikitis
Int. J. Mol. Sci. 2025, 26(15), 7383; https://doi.org/10.3390/ijms26157383 - 30 Jul 2025
Viewed by 257
Abstract
Male-factor infertility accounts for approxiamately half of all infertility cases globally, yet therapeutic options remain limited for individuals with no retrievable spermatozoa, such as those with non-obstructive azoospermia (NOA). In recent years, artificial gametogenesis has emerged as a promising avenue for fertility restoration, [...] Read more.
Male-factor infertility accounts for approxiamately half of all infertility cases globally, yet therapeutic options remain limited for individuals with no retrievable spermatozoa, such as those with non-obstructive azoospermia (NOA). In recent years, artificial gametogenesis has emerged as a promising avenue for fertility restoration, driven by advances in two complementary strategies: organotypic in vitro spermatogenesis (IVS), which aims to complete spermatogenesis ex vivo using native testicular tissue, and in vitro gametogenesis (IVG), which seeks to generate male gametes de novo from pluripotent or reprogrammed somatic stem cells. To evaluate the current landscape and future potential of these approaches, a narrative, semi-systematic literature search was conducted in PubMed and Scopus for the period January 2010 to February 2025. Additionally, landmark studies published prior to 2010 that contributed foundational knowledge in spermatogenesis and testicular tissue modeling were reviewed to provide historical context. This narrative review synthesizes multidisciplinary evidence from cell biology, tissue engineering, and translational medicine to benchmark IVS and IVG technologies against species-specific developmental milestones, ranging from rodent models to non-human primates and emerging human systems. Key challenges—such as the reconstitution of the blood–testis barrier, stage-specific endocrine signaling, and epigenetic reprogramming—are discussed alongside critical performance metrics of various platforms, including air–liquid interface slice cultures, three-dimensional organoids, microfluidic “testis-on-chip” devices, and stem cell-derived gametogenic protocols. Particular attention is given to clinical applicability in contexts such as NOA, oncofertility preservation in prepubertal patients, genetic syndromes, and reprocutive scenarios involving same-sex or unpartnered individuals. Safety, regulatory, and ethical considerations are critically appraised, and a translational framework is outlined that emphasizes biomimetic scaffold design, multi-omics-guided media optimization, and rigorous genomic and epigenomic quality control. While the generation of functionally mature sperm in vitro remains unachieved, converging progress in animal models and early human systems suggests that clinically revelant IVS and IVG applications are approaching feasibility, offering a paradigm shift in reproductive medicine. Full article
Show Figures

Figure 1

32 pages, 12213 KiB  
Review
Capacitive Sensors for Label-Free Detection in High-Ionic-Strength Bodily Fluids: A Review
by Seerat Sekhon, Richard Bayford and Andreas Demosthenous
Biosensors 2025, 15(8), 491; https://doi.org/10.3390/bios15080491 - 30 Jul 2025
Viewed by 91
Abstract
Capacitive sensors are platforms that enable label-free, real-time detection at low non-perturbing voltages. These sensors do not rely on Faradaic processes, thereby eliminating the need for redox-active species and simplifying system integration for point-of-care diagnostics. However, their sensitivity in high-ionic-strength solutions, such as [...] Read more.
Capacitive sensors are platforms that enable label-free, real-time detection at low non-perturbing voltages. These sensors do not rely on Faradaic processes, thereby eliminating the need for redox-active species and simplifying system integration for point-of-care diagnostics. However, their sensitivity in high-ionic-strength solutions, such as bodily fluids, is limited due to a reduced Debye length and non-specific interactions. The present review highlights advances in material integration, surface modification, and signal enhancement techniques to mitigate the challenges of deploying capacitive sensors in biofluids (sweat, saliva, blood, serum). This work further expands on the promise of such sensors for advancing liquid biopsies and highlights key technical challenges in translating capacitive systems to clinics. Full article
(This article belongs to the Special Issue Novel Designs and Applications for Electrochemical Biosensors)
Show Figures

Figure 1

27 pages, 1869 KiB  
Review
Understanding the Molecular Basis of Miller–Dieker Syndrome
by Gowthami Mahendran and Jessica A. Brown
Int. J. Mol. Sci. 2025, 26(15), 7375; https://doi.org/10.3390/ijms26157375 - 30 Jul 2025
Viewed by 297
Abstract
Miller–Dieker Syndrome (MDS) is a rare neurodevelopmental disorder caused by a heterozygous deletion of approximately 26 genes within the MDS locus of human chromosome 17. MDS, which affects 1 in 100,000 babies, can lead to a range of phenotypes, including lissencephaly, severe neurological [...] Read more.
Miller–Dieker Syndrome (MDS) is a rare neurodevelopmental disorder caused by a heterozygous deletion of approximately 26 genes within the MDS locus of human chromosome 17. MDS, which affects 1 in 100,000 babies, can lead to a range of phenotypes, including lissencephaly, severe neurological defects, distinctive facial abnormalities, cognitive impairments, seizures, growth retardation, and congenital heart and liver abnormalities. One hallmark feature of MDS is an unusually smooth brain surface due to abnormal neuronal migration during early brain development. Several genes located within the MDS locus have been implicated in the pathogenesis of MDS, including PAFAH1B1, YWHAE, CRK, and METTL16. These genes play a role in the molecular and cellular pathways that are vital for neuronal migration, the proper development of the cerebral cortex, and protein translation in MDS. Improved model systems, such as MDS patient-derived organoids and multi-omics analyses indicate that WNT/β-catenin signaling, calcium signaling, S-adenosyl methionine (SAM) homeostasis, mammalian target of rapamycin (mTOR) signaling, Janus kinase/signal transducer and activator of transcription (JAK/STAT) signaling, and others are dysfunctional in MDS. This review of MDS integrates details at the clinical level alongside newly emerging details at the molecular and cellular levels, which may inform the development of novel therapeutic strategies for MDS. Full article
(This article belongs to the Special Issue Rare Diseases and Neuroscience)
Show Figures

Figure 1

Back to TopTop