Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (73)

Search Parameters:
Keywords = shrink fitting

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
36 pages, 9959 KB  
Article
Design and Validation of Elastic Dies for Enhanced Metal Powder Compaction: A FEM and Experimental Study
by Dan Cristian Noveanu and Simona Noveanu
Materials 2025, 18(19), 4491; https://doi.org/10.3390/ma18194491 - 26 Sep 2025
Viewed by 451
Abstract
Metal powder compaction in rigid dies often suffers from high ejection forces, non-uniform density, and accelerated tool wear. We investigate an elastic-sleeve die concept in which a conical shrink-fit sleeve provides controllable radial confinement during pressing and elastic relaxation during extraction. An extensive [...] Read more.
Metal powder compaction in rigid dies often suffers from high ejection forces, non-uniform density, and accelerated tool wear. We investigate an elastic-sleeve die concept in which a conical shrink-fit sleeve provides controllable radial confinement during pressing and elastic relaxation during extraction. An extensive experimental program on Fe-based and 316L powders, carried out in parallel with finite element analyses (SolidWorks Simulation version 2021; Marc Mentat 2005), quantified the roles of taper angle (α = 1–4°), axial pretension (Δh = 0.5–1.5 mm), and friction. Contact pressure increased from ≈52 MPa at α = 1° to ≈200 MPa at α = 3°, with negligible gains beyond 3°. For 316L, relative density reached ρ ≈ 0.889 at 325 kN with Δh = 1.5 mm; Fe–Cu–C achieved ρ ≈ 0.865 under identical conditions. The experimental results provided direct validation of the FEM, with calibrated viscoplastic simulations reproducing density–force trends within ≈±5% (mean density error ≈ 4.6%), while mid-stroke force differences (≈15–20%) reflected rearrangement/friction effects not captured by the constitutive law. The combined evidence identifies an optimal window of α ≈ 3° and Δh ≈ 1.0–1.5 mm that maximizes contact pressure and densification without overstressing the sleeve. Elastic relaxation of the sleeve facilitates extraction and suggests reduced ejection effort compared with rigid dies. These findings support elastic dies as a practical route to improved densification and tool life in powder metallurgy. Full article
(This article belongs to the Section Materials Simulation and Design)
Show Figures

Figure 1

25 pages, 7211 KB  
Article
Modeling and Experimental Analysis of Tofu-Drying Kinetics
by Cécile Hanon, Morouge Al Hassan, Soulaimane Nassouh, Salahaldin Abuabdou, Charlotte Van Engeland and Frédéric Debaste
Appl. Sci. 2025, 15(19), 10319; https://doi.org/10.3390/app151910319 - 23 Sep 2025
Viewed by 413
Abstract
Drying critically shapes tofu’s texture, structure, and final appearance, whether it occurs during cooking or is applied intentionally in reprocessing. This study aimed to characterize the drying kinetics of tofu through experimental analysis and through modeling. Tofu samples were dried at temperatures ranging [...] Read more.
Drying critically shapes tofu’s texture, structure, and final appearance, whether it occurs during cooking or is applied intentionally in reprocessing. This study aimed to characterize the drying kinetics of tofu through experimental analysis and through modeling. Tofu samples were dried at temperatures ranging from 40 °C to 90 °C using a convective drying tunnel and an oven. Shrinkage and color changes were analyzed. Empirical models, a shrinking-core model and a newly developed oven-cooking model were tested against experimental data. The drying kinetics exhibited a constant and a decreasing rate phase, which were separated by a water content threshold of 2.56 kgW/kgDS. Tofu undergoes non-enzymatic browning and exhibited total shrinkage of 0.38. These physical changes were more significant at lower drying temperatures when the product was dried below a water content of 1.39 kgW/kgDS. The logarithmic model provided the best fit (R20.9920) to the experimental data. However, the cooking model shows good results as well (R2=0.9678) and offers physical validity. This study provides evidence that the drying mechanisms of tofu are not temperature-dependent within the studied range. It also emphasizes the importance of drying time over drying temperature in the physical changes of the product. The successful fit of the cooking model highlights the link between drying and cooking processes, suggesting potential applications in both areas. Full article
(This article belongs to the Section Food Science and Technology)
Show Figures

Figure 1

16 pages, 2715 KB  
Article
Hydrate Formation and Mitigation Methods Under Multiple Operational Conditions in Deepwater Drilling
by Yanjun Li, Deli Gao, Shujie Liu, Ying Zhao, Lei Li and Shuzhan Li
Processes 2025, 13(9), 3008; https://doi.org/10.3390/pr13093008 - 21 Sep 2025
Viewed by 335
Abstract
During deepwater drilling operations, when influx gas invades the wellbore, gas hydrates may form through the combination of the gas with free water in the drilling fluid under favorable temperature and pressure conditions. This process can alter the physical properties and flow behavior [...] Read more.
During deepwater drilling operations, when influx gas invades the wellbore, gas hydrates may form through the combination of the gas with free water in the drilling fluid under favorable temperature and pressure conditions. This process can alter the physical properties and flow behavior of the wellbore fluid, potentially leading to safety incidents. To prevent natural gas hydrate formation, mitigate wellbore blockages caused by hydrates, and address the associated safety hazards, this study conducted laboratory experiments to investigate hydrate formation and remediation under multiple deepwater drilling conditions. The hydrate formation boundaries for four different drilling fluid systems—seawater-based bentonite mud, seawater polymer mud, Plus/KCl mud, and HEM mud—were determined for varying well depths and pressure–temperature conditions, and corresponding trend lines were fitted. Key results reveal that a higher carbon content promotes hydrate formation, and the phase equilibrium curves also reveal significant differences among the four drilling fluids. The hydrate aggregation states and blockage processes were clarified for three typical drilling scenarios: drilling, well killing, and drilling suspension. Hydrate formation risk is negligible during normal circulation but increases dramatically during well-killing operations, significantly shrinking the safe operational window. A comparative analysis identified that adding 1% P(M-VCL), a kinetic hydrate inhibitor, to the drilling fluid was the most effective solution, demonstrating superior performance in delaying hydrate nucleation and preventing agglomeration. The study established a complete formation–inhibition–remediation approach for hydrate management in deepwater drilling, thereby enhancing operational safety and efficiency. Full article
(This article belongs to the Section Chemical Processes and Systems)
Show Figures

Figure 1

18 pages, 4518 KB  
Article
Nitric Acid Purification of Molybdenite Concentrate: Copper-Iron Removal and Development of a Comprehensive Dissolution Kinetics Model
by Hossein Shalchian, Payam Ghorbanpour, Behzad Nateq, Marco Passadoro, Pietro Romano, Francesco Vegliò and Nicolò Maria Ippolito
Minerals 2025, 15(9), 982; https://doi.org/10.3390/min15090982 - 16 Sep 2025
Viewed by 456
Abstract
The selective removal of impurities from molybdenite concentrates is crucial for producing high-purity molybdenum products. In this study, the purification of molybdenite concentrate was investigated using nitric acid as both a leaching medium and oxidizing agent. Leaching experiments were carried out under various [...] Read more.
The selective removal of impurities from molybdenite concentrates is crucial for producing high-purity molybdenum products. In this study, the purification of molybdenite concentrate was investigated using nitric acid as both a leaching medium and oxidizing agent. Leaching experiments were carried out under various conditions of temperature (22–78 °C) and nitric acid concentration (0.12–0.48 M). The results demonstrated that while molybdenite remained mostly undissolved, copper and iron were effectively leached, with near-complete removal at 78 °C in 0.24 M HNO3 after 6 h. Compared with other acid systems, nitric acid leaching experiments in this study demonstrated higher efficiency and selectivity under relatively moderate conditions of concentration and temperature. Kinetic analyses were performed based on the shrinking core model (SCM) and extended by developing a comprehensive rate equation that incorporates both nitric acid concentration and reactive surface effects. Fitting the developed model to experimental data revealed distinct kinetic regimes below and above 50 °C, suggesting a mechanism shift from surface chemical reaction control to diffusion through an ash layer. The purified molybdenite was characterized by SEM-EDS and ICP-OES, confirming almost complete elimination of Cu and Fe impurities. This work highlights nitric acid as a promising and efficient medium for selective leaching of molybdenite concentrates and provides a comprehensive kinetic model applicable across different leaching conditions. Full article
Show Figures

Figure 1

17 pages, 3364 KB  
Article
Influence of Thin-Film Coatings on the Joining Process of Shaft-Hub Connections
by Charlotte Breuning, Marcel Plogmeyer, Christina Pongratz, Markus Wagner, Anna Schott, Matthias Kreimeyer and Günter Bräuer
Machines 2025, 13(9), 776; https://doi.org/10.3390/machines13090776 - 29 Aug 2025
Viewed by 472
Abstract
With the ongoing electrification of vehicles and the resulting demand for higher power densities, drivetrain requirements are becoming increasingly stringent. Shaft-hub connections are particularly affected in terms of both quantity and design, making innovative solutions necessary. A key factor in meeting these requirements [...] Read more.
With the ongoing electrification of vehicles and the resulting demand for higher power densities, drivetrain requirements are becoming increasingly stringent. Shaft-hub connections are particularly affected in terms of both quantity and design, making innovative solutions necessary. A key factor in meeting these requirements is knowledge of the stress state within the contact area. One promising approach is the application of a thin-film-based sensor system directly onto the shaft surface. This enables, for the first time, the direct measurement of contact pressure in the interface, allowing for more precise connection design. To fully exploit the potential of this sensor technology, its influence on the joining process of shaft-hub connections must be investigated. In this study, cylindrical interference-fits were coated with two thin-film systems relevant to the application, followed by joining tests. The resulting damage was analyzed to derive general recommendations for the joining of coated shaft-hub connections. The results show that shrink-fitting enables damage-free joining, provided specific parameters are met, as confirmed by experimental testing and microscopic examination. This not only preserves the integrity of the sensor system but also establishes the prerequisite for potential in situ measurements, thereby laying the foundation for the feasibility of direct load monitoring during operation. Full article
(This article belongs to the Section Machine Design and Theory)
Show Figures

Figure 1

15 pages, 3051 KB  
Article
Study on the Kinetics of Carbothermic Reduction of Stainless Steel Dust by Walnut Shell Biochar
by Guoyu Cui, Xiang Zhang, Yanghui Xu, Guojun Ma, Dingli Zheng and Ju Xu
Metals 2025, 15(8), 835; https://doi.org/10.3390/met15080835 - 26 Jul 2025
Cited by 1 | Viewed by 580
Abstract
Stainless steel dust (SSD) is a by-product generated during the smelting process of stainless steel, which is rich in valuable metals such as Fe, Cr, Ni, and Mn. To optimize the carbothermic reduction process of SSD, this study first conducted the thermodynamic analysis [...] Read more.
Stainless steel dust (SSD) is a by-product generated during the smelting process of stainless steel, which is rich in valuable metals such as Fe, Cr, Ni, and Mn. To optimize the carbothermic reduction process of SSD, this study first conducted the thermodynamic analysis of the carbothermic reduction of SSD and then employed walnut shell biochar as a reductant with non-isothermal thermogravimetric analysis with linear heating rates of 5 °C/min, 10 °C/min, 15 °C/min, and 20 °C/min. The activation energies of the carbothermic reduction reactions were calculated using the FWO method, KAS method, and Friedman method, respectively. Subsequently, the corresponding kinetic models were fitted and matched using the Málek method. The results indicate that before 600 °C, the direct reduction of SSD by carbon plays a dominant role. As the temperature increases, the indirect reduction becomes the main reduction reaction for SSD due to the generation of CO. The activation energies calculated by the Flynn–Wall–Ozawa (FWO) method, Kissinger–Akahira–Sunose (KAS) method, and Friedman method are 412.120 kJ/mol, 416.930 kJ/mol, and 411.778 kJ/mol, respectively, showing close values and a general trend of increasing activation energy as the conversion rate increased from 10% to 90%. Moreover, the reduction reaction is staged. In the conversion range of 10% to 50%, the carbothermic reduction reaction conforms to the shrinking core model within phase boundary reactions, coded as R1/4. In the conversion range of 50% to 60%, it conforms to the shrinking core model within phase boundary reactions, coded as R1/2; in the conversion range of 60% to 90%, the carbothermic reduction reaction follows the second-order chemical reaction model, coded as F2. Full article
(This article belongs to the Special Issue Separation, Reduction, and Metal Recovery in Slag Metallurgy)
Show Figures

Figure 1

21 pages, 5921 KB  
Article
Coverage Path Planning Based on Region Segmentation and Path Orientation Optimization
by Tao Yang, Xintong Du, Bo Zhang, Xu Wang, Zhenpeng Zhang and Chundu Wu
Agriculture 2025, 15(14), 1479; https://doi.org/10.3390/agriculture15141479 - 10 Jul 2025
Viewed by 806
Abstract
To address the operational demands of irregular farmland with fixed obstacles, this study proposes a full-coverage path planning framework that integrates UAV-based 3D perception and angle-adaptive optimization. First, digital orthophoto maps (DOMs) and digital elevation models (DEMs) were reconstructed from low-altitude aerial imagery. [...] Read more.
To address the operational demands of irregular farmland with fixed obstacles, this study proposes a full-coverage path planning framework that integrates UAV-based 3D perception and angle-adaptive optimization. First, digital orthophoto maps (DOMs) and digital elevation models (DEMs) were reconstructed from low-altitude aerial imagery. The feasible working region was constructed by shrinking field boundaries inward and dilating obstacle boundaries outward. This ensured sufficient safety margins for machinery operation. Next, segmentation angles were scanned from 0° to 180° to minimize the number and irregularity of sub-regions; then a two-level simulation search was performed over 0° to 360° to optimize the working direction for each sub-region. For each sub-region, the optimal working direction was selected based on four criteria: the number of turns, travel distance, coverage redundancy, and planning time. Between sub-regions, a closed-loop interconnection path was generated using eight-directional A* search combined with polyline simplification, arc fitting, Chaikin subdivision, and B-spline smoothing. Simulation results showed that a 78° segmentation yielded four regular sub-regions, achieving 99.97% coverage while reducing the number of turns, travel distance, and planning time by up to 70.42%, 23.17%, and 85.6%. This framework accounts for field heterogeneity and turning radius constraints, effectively mitigating path redundancy in conventional fixed-angle methods. This framework enables general deployment in agricultural field operations and facilitates extensions toward collaborative and energy-optimized task planning. Full article
(This article belongs to the Section Agricultural Technology)
Show Figures

Figure 1

24 pages, 10324 KB  
Article
A Versatile Platform for Designing and Fabricating Multi-Material Perfusable 3D Microvasculatures
by Nathaniel Harris, Charles Miller and Min Zou
Micromachines 2025, 16(6), 691; https://doi.org/10.3390/mi16060691 - 8 Jun 2025
Cited by 1 | Viewed by 1807
Abstract
Perfusable microvasculature is critical for advancing in vitro tissue models, particularly for neural applications where limited diffusion impairs organoid growth and fails to replicate neurovascular function. This study presents a versatile fabrication platform that integrates mesh-driven design, two-photon lithography (TPL), and modular interfacing [...] Read more.
Perfusable microvasculature is critical for advancing in vitro tissue models, particularly for neural applications where limited diffusion impairs organoid growth and fails to replicate neurovascular function. This study presents a versatile fabrication platform that integrates mesh-driven design, two-photon lithography (TPL), and modular interfacing to create multi-material, perfusable 3D microvasculatures. Various 2D and 3D capillary paths were test-printed using both polygonal and lattice support strategies. A double-layered capillary scaffold based on the Hilbert curve was used for comparative materials testing. Methods for printing rigid (OrmoComp), moderately stiff hydrogel (polyethylene glycol diacrylate, PEGDA 700), and soft elastomeric (photocurable polydimethylsiloxane, PDMS) materials were developed and evaluated. Cone support structures enabled high-fidelity printing of the softer materials. A compact heat-shrink tubing interface provided leak-free perfusion without bulky fittings. Physiologically relevant flow velocities and Dextran diffusion through the scaffold were successfully demonstrated. Cytocompatibility assays confirmed that all TPL-printed scaffold materials supported human neural stem cell viability. Among peripheral components, lids fabricated via fused deposition modeling designed to hold microfluidic needle adapters exhibited good biocompatibility, while those made using liquid crystal display-based photopolymerization showed significant cytotoxicity despite indirect exposure. Overall, this platform enables creation of multi-material microvascular systems facilitated by TPL technology for complex, 3D neurovascular modeling, blood–brain barrier studies, and integration into vascularized organ-on-chip applications. Full article
(This article belongs to the Special Issue Microfluidic Chips for Biomedical Applications)
Show Figures

Figure 1

21 pages, 13910 KB  
Article
Modeling and Simulation for Predicting Thermo-Mechanical Behavior of Wafer-Level Cu-PI RDLs During Manufacturing
by Xianglong Chu, Shitao Wang, Chunlei Li, Zhizhen Wang, Shenglin Ma, Daowei Wu, Hai Yuan and Bin You
Micromachines 2025, 16(5), 582; https://doi.org/10.3390/mi16050582 - 15 May 2025
Cited by 1 | Viewed by 1892
Abstract
The development of chip manufacturing and advanced packaging technologies has significantly changed redistribution layers (RDLs), leading to shrinking line width/spacing, increasing the number of build-up layers and package size, and introducing organic materials such as polyimide (PI) for dielectrics. The fineness and complexity [...] Read more.
The development of chip manufacturing and advanced packaging technologies has significantly changed redistribution layers (RDLs), leading to shrinking line width/spacing, increasing the number of build-up layers and package size, and introducing organic materials such as polyimide (PI) for dielectrics. The fineness and complexity of structures, combined with the temperature-dependent and viscoelastic properties of organic materials, make it increasingly difficult to predict the thermo-mechanical behavior of wafer-level Cu-PI RDL structures, posing a severe challenge in warpage prediction. This study models and simulates the thermo-mechanical response during the manufacturing process of Cu-PI RDL at the wafer level. A cross-scale wafer-level equivalent model was constructed using a two-level partitioning method, while the PI material properties were extracted via inverse fitting based on thermal warpage measurements. The warpage prediction results were compared against experimental data using the maximum warpage as the indicator to validate the extracted PI properties, yielding errors under less than 10% at typical process temperatures. The contribution of RDL build-up, wafer backgrinding, chemical mechanical polishing (CMP), and through-silicon via (TSV)/through-glass via (TGV) interposers to the warpage was also analyzed through simulation, providing insight for process risk evaluation. Finally, an artificial neural network was developed to correlate the copper ratios of four RDLs with the wafer warpages for a specific process scenario, demonstrating the potential for wafer-level warpage control through copper ratio regulation in RDLs. Full article
(This article belongs to the Special Issue 3D Integration: Trends, Challenges and Opportunities)
Show Figures

Figure 1

27 pages, 5715 KB  
Article
The Development of a Kinetic Model for Biochar Gasification with CO2: Comparison Between a Thermogravimetric Analyzer and a Fluidized Bed Reactor
by Luis Reyes, Michael Jabbour, Lokmane Abdelouahed and Bechara Taouk
Fuels 2025, 6(2), 34; https://doi.org/10.3390/fuels6020034 - 3 May 2025
Cited by 1 | Viewed by 2324
Abstract
This study presents the development of a kinetic model for the gasification of biochar with carbon dioxide and compares the results obtained using a thermogravimetric analyzer (TGA) and a fluidized bed reactor (FBR). The kinetic experiments investigated the effects of the CO2 [...] Read more.
This study presents the development of a kinetic model for the gasification of biochar with carbon dioxide and compares the results obtained using a thermogravimetric analyzer (TGA) and a fluidized bed reactor (FBR). The kinetic experiments investigated the effects of the CO2 partial pressure (0.33–1 atm), temperature (800–1000 °C), and CO2/C ratio (3.5–10.5). Three structural models, the shrinking core model (SCM), volumetric model (VM), and power-law model (PLM), were evaluated for their ability to predict experimental results. The results demonstrated that increasing the temperature, CO2 partial pressure, and CO2/C ratio enhanced the gasification rate, reducing the time required for complete biochar conversion. The apparent activation energy for both reactors was similar (156–159 MJ/kmol), with reaction orders of 0.4–0.49. However, the kinetic models varied significantly between setups. In the TGA, the PLM provided the best fit to experimental data, with standard deviations of 2.6–9%, while in the FBR, the SCM was most accurate, yielding an average deviation of 1.5%. The SCM effectively described the layer-by-layer char consumption, where gasification slowed at high conversion levels. Conversely, the PLM for the TGA revealed a unique mathematical function not aligned with traditional models, indicating localized reaction behaviors. This study highlights the inability to directly extrapolate TGA-derived kinetic models to FBR systems, underscoring the distinct mechanisms governing char consumption in each reactor type. These findings provide critical insights for optimizing biochar gasification across diverse reactor configurations. Full article
Show Figures

Figure 1

15 pages, 4205 KB  
Article
Kinetics Study of Hydrogen Production by Aluminum Alloy Corrosion in Aqueous Acid Solutions: Effect of HCl Concentration
by Ana L. Martínez-Salazar, Luciano Aguilera-Vázquez, Pedro M. García-Vite, Nelson Rangel-Valdez, Carlos Vega-Ortíz and Marco A. Coronel-García
Processes 2025, 13(3), 798; https://doi.org/10.3390/pr13030798 - 9 Mar 2025
Viewed by 2171
Abstract
The current high cost of producing green hydrogen, for use as an energy vector, has motivated the search for the development of non-conventional technologies for its production, joining forces on the path towards energy transition. Hydrogen production by aluminum corrosion in aqueous acid [...] Read more.
The current high cost of producing green hydrogen, for use as an energy vector, has motivated the search for the development of non-conventional technologies for its production, joining forces on the path towards energy transition. Hydrogen production by aluminum corrosion in aqueous acid solutions seems to be a promising alternative. In order to evaluate its technical feasibility, a kinetic study was carried out, analyzing the impact of HCl concentration (1.125 to 1.75 M) on the aluminum corrosion capacity under the presence of a saline environment and using a promoter, fitting the proposed models to the data obtained through experimental runs. Although other studies use the shrinking core model to describe the kinetics of this type of reaction, in most cases, it does not fit well with the experimental data and needs to be modified. Finally, by considering the corrosion dynamics (variations in diffusion coefficients and shell thickness) in the kinetic model equations, it was possible to describe its behavior. For low HCl concentrations, a single resistance controls the reaction of the particle throughout; however, for high HCl concentrations, a combination of related equations must be used. The results of this study enable viable continuous reactor designs for a given amount of green hydrogen production. Full article
(This article belongs to the Special Issue 1st SUSTENS Meeting: Advances in Sustainable Engineering Systems)
Show Figures

Figure 1

21 pages, 6542 KB  
Article
An Automated System for Constructing a Database of Leidenfrost Evaporation Curves Using Image Processing Techniques
by Chun-Yu Tsai, Hsiu-Ju Cheng, Po-Lun Lai and Chen-Kang Huang
Processes 2025, 13(2), 586; https://doi.org/10.3390/pr13020586 - 19 Feb 2025
Viewed by 780
Abstract
To analyze the progression of Leidenfrost evaporation, traditional experiments were conducted manually to generate a complete evaporation curve. However, physical constraints render Leidenfrost evaporation experiments inherently time-consuming and susceptible to uncertainty. To address these challenges, this study aimed to develop an automated system [...] Read more.
To analyze the progression of Leidenfrost evaporation, traditional experiments were conducted manually to generate a complete evaporation curve. However, physical constraints render Leidenfrost evaporation experiments inherently time-consuming and susceptible to uncertainty. To address these challenges, this study aimed to develop an automated system using webcams for real-time image acquisition and processing, as well as a syringe pump constructed using an Arduino microcontroller, a stepper motor, and 3D-printed components. In the domain of real-time image processing, the radii of levitated droplets were determined using circular detection techniques. By fitting the droplet radii over hundreds of consecutive frames, it was concluded that the shrinking rate of levitated droplet radii remain constant when the radius exceeds 0.6 mm, and the evaporation time is accurately derived. A moving average algorithm was employed to identify the heat transfer area as well as the evaporation time between the boiling droplet and the hot surface, enabling simultaneous calculation of the heat flux. The automated system was then used to perform Leidenfrost experiments under varying experimental parameters, and was compared to manual methods to demonstrate its superior precision in both the film boiling and nucleate boiling regimes. For example, the automated system was utilized to perform a series of experiments as the Weber number increased from 7.01 to 23.18. The detected Leidenfrost temperature rose from 154 °C to 192 °C, while the evaporation time decreased from 85.2 s to 78.9 s. These findings were consistent with previous studies and aligned with physical expectations, reinforcing the reliability of the system and its results. Full article
Show Figures

Figure 1

18 pages, 3743 KB  
Article
Efficient Reuse of Rare Earth Carbonate Precipitation Mother Liquor for Rare Earth Leaching in Strong Acid-Restricted Area
by Jian Feng, Xiaoyan Wu, Fang Zhou and Ruan Chi
Minerals 2024, 14(11), 1179; https://doi.org/10.3390/min14111179 - 20 Nov 2024
Viewed by 1309
Abstract
Due to the restrictions of strong acids in some regions, the reuse process of rare earth (RE) precipitation mother liquor is difficult to carry out. To achieve the straightforward and efficient reuse of precipitation mother liquor in such areas, the potential for directly [...] Read more.
Due to the restrictions of strong acids in some regions, the reuse process of rare earth (RE) precipitation mother liquor is difficult to carry out. To achieve the straightforward and efficient reuse of precipitation mother liquor in such areas, the potential for directly reusing this liquor for rare earth (RE) leaching was explored. The results showed that when the RE concentration in the leachate ranged from 0.1 to 1.5 g/dm3 and the RE precipitation rate exceeded 96%, the residual total carbonate content in precipitation mother liquor was less than 0.01 mol/L, and the solution pH was 7–8. Furthermore, when the total carbonate content in leaching liquor was lower than 0.01 mol/L, the presence of carbonate had a minimal impact on the RE leaching efficiency, which was observed to exceed 93%. Additionally, the process of mother liquor leaching was analyzed using dynamic models and chromatography tray theory. It was found that the leaching results were well fitted with the shrinking core model, and the apparent activation energy of RE was 5.77 kJ/mol, indicating that the reaction was controlled by diffusion, and the reaction order was 0.672 for RE. This confirms that a total carbonate content below 0.01 mol/L in the precipitation mother liquor can be directly used for the RE leaching process. Full article
(This article belongs to the Special Issue Green and Efficient Recovery/Extraction of Rare Earth Resources)
Show Figures

Figure 1

21 pages, 9725 KB  
Article
Urban Regeneration through Cultural–Tourism Entrepreneurship Based on Albergo Diffuso Development: The Venac Historic Core in Sombor, Serbia
by Branislav Antonić, Aleksandra Stupar, Vladimir Kovač, Danira Sovilj and Aleksandar Grujičić
Land 2024, 13(9), 1379; https://doi.org/10.3390/land13091379 - 28 Aug 2024
Cited by 2 | Viewed by 3009
Abstract
The inner core of Sombor, known as “Venac”, is probably the best-preserved one among medium-sized cities in Serbia. The stagnation of Sombor during the 20th century and its urban shrinkage in the 21st century have prevented significant transformations of the core, enabling its [...] Read more.
The inner core of Sombor, known as “Venac”, is probably the best-preserved one among medium-sized cities in Serbia. The stagnation of Sombor during the 20th century and its urban shrinkage in the 21st century have prevented significant transformations of the core, enabling its preservation under state protection as an urban heritage site. However, the recent rise of cultural tourism has triggered urban regeneration. As the city is still unprepared for this change, this regeneration has mostly omitted the inner core. Realising this, local representatives and experts have started rethinking innovative approaches to its regeneration, including the concept of Albergo Diffuso. This sustainable concept is created to revive the historic cores of small, shrinking cities and towns. Basically, it represents a hotel situated in several old buildings dispersed throughout a historic urban fabric, fitting perfectly into the regeneration of Venac. However, the current lack of precise spatial indicators and thresholds makes their incorporation into the planning process challenging. Considering this, this study focuses on the current spatial development of tourism in Venac, analysing the elements that would support and facilitate the application of this concept in the future. This article also proposes a set of new planning measures to support a strategically organised approach—from the emphasis on urban reuse and physical renewal to multileveled linking of basic concept conditions to the prioritization of pedestrian-friendly places and the application of innovative urban design in open public spaces. By connecting the selected Albergo Diffuso approach with spatial development and its analysis, this study also contributes to the spatial imprint of the concept’s implementation. Full article
(This article belongs to the Section Urban Contexts and Urban-Rural Interactions)
Show Figures

Figure 1

15 pages, 8528 KB  
Article
Numerical Modeling and Optimization of a Quasi-Resonant Inverter-Based Induction Heating Process of a Magnetic Gear
by Tamás Orosz, Miklós Csizmadia and Balázs Nagy
Energies 2024, 17(16), 4130; https://doi.org/10.3390/en17164130 - 19 Aug 2024
Viewed by 1241
Abstract
Induction heating is a clear, cheap, and highly effective technology used for many industrial and commercial applications. Generally, a time-varying magnetic field produces the required heat in the workpiece with a specially designed coil. The efficiency of the heating process depends highly on [...] Read more.
Induction heating is a clear, cheap, and highly effective technology used for many industrial and commercial applications. Generally, a time-varying magnetic field produces the required heat in the workpiece with a specially designed coil. The efficiency of the heating process depends highly on the coil design and the geometrical arrangement. A detailed and accurate finite element analysis of the induction heating process usually needs to resolve a coupled thermoelastic–magnetic problem, whose parameters values depend on the solution of another field. The paper deals with a shrink-fitting process design problem: a gear should be assembled with an axe. The interesting part of this case study is given the prescribed low limits for critical stress, the temperature of the gear material, and the heat-treated wearing surfaces. A coupled finite-element-based model and a genetic algorithm-based parameter determination methodology were presented. A thermal imaging-based measurement validated the presented numerical model and parameter determination task. The results show that the proposed methodology can be used to calibrate and validate the numerical model and optimize an induction heating process. Full article
Show Figures

Figure 1

Back to TopTop